Frobenius Vectors

Vector GCDs

Conclusion

The Multi-Dimensional Frobenius Problem and Vector GCDs

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

Fachbereich Mathematik/Informatik Universität Bremen April 19, 2011

http://www-rohan.sdsu.edu/~vadim/frob-gcd.pdf

Frobenius Vectors

Vector GCDs

Conclusion

Acknowledgments

- Ulrich Krause
- National Science Foundation
- Jeffrey Amos, Iuliana Pascu, Enrique Treviño, Yan Zhang

Frobenius Vectors

Vector GCDs

Conclusion

Two Puzzles

If this talk becomes boring...

Let
$$A = \left\{ \begin{pmatrix} 6\\2 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix} \right\}$$
. Question: Is $Span(A) = \mathbb{Z}^2$?
 $Span(A) = \left\{ k_1 \begin{pmatrix} 6\\2 \end{pmatrix} + k_2 \begin{pmatrix} 1\\1 \end{pmatrix} + k_3 \begin{pmatrix} -1\\3 \end{pmatrix} : k_i \in \mathbb{Z} \right\}$.

Also for $B = \{ \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \end{pmatrix} \}.$

Frobenius Vectors

Vector GCDs

Conclusion

Starting Point

Fix a set *A* of positive integers. Usually, the Frobenius number is defined via:

 $g(A) = \max \mathbb{Z} \setminus \mathbb{N}_0[A]$

This does not generalize "correctly" to vectors. Instead:

 $g(A) = \inf\{x : \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\}$

Note: For $A = \{4, 6\}, g(A)$ is undefined.

Frobenius Vectors

Vector GCDs

Conclusion

Starting Point

Fix a set *A* of positive integers. Usually, the Frobenius number is defined via:

 $g(A) = \max \mathbb{Z} \setminus \mathbb{N}_0[A]$

This does not generalize "correctly" to vectors. Instead:

 $g(A) = \inf\{x : \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\}$

Note: For $A = \{4, 6\}, g(A)$ is undefined.

Frobenius Vectors

Vector GCDs

Conclusion

Starting Point

Fix a set *A* of positive integers. Usually, the Frobenius number is defined via:

 $g(A) = \max \mathbb{Z} \setminus \mathbb{N}_0[A]$

This does not generalize "correctly" to vectors. Instead:

 $g(A) = \inf\{x : \text{if } y > x \text{ then } y \in \mathbb{N}_0[A]\}$

Note: For $A = \{4, 6\}$, g(A) is undefined.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

Fix a set *A* of vectors from \mathbb{N}_0^d , with $|A| \ge d$.

Set $C = \mathbb{R}^{>0}[A]$, an open cone in the first orthant.

C is *simple* if *d* vectors determine it. We assume this.

Define a partial order on vectors via y > x if $y - x \in C$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

Fix a set *A* of vectors from \mathbb{N}_0^d , with $|A| \ge d$.

Set $C = \mathbb{R}^{>0}[A]$, an open cone in the first orthant.

C is *simple* if *d* vectors determine it. We assume this.

Define a partial order on vectors via y > x if $y - x \in C$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

Fix a set *A* of vectors from \mathbb{N}_0^d , with $|A| \ge d$.

Set $C = \mathbb{R}^{>0}[A]$, an open cone in the first orthant.

C is *simple* if *d* vectors determine it. We assume this.

Define a partial order on vectors via y > x if $y - x \in C$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

Fix a set *A* of vectors from \mathbb{N}_0^d , with $|A| \ge d$.

Set $C = \mathbb{R}^{>0}[A]$, an open cone in the first orthant.

C is *simple* if *d* vectors determine it. We assume this.

Define a partial order on vectors via y > x if $y - x \in C$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

Fix a set *A* of vectors from \mathbb{N}_0^d , with $|A| \ge d$.

Set $C = \mathbb{R}^{>0}[A]$, an open cone in the first orthant.

C is *simple* if *d* vectors determine it. We assume this.

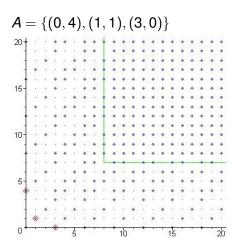
Define a partial order on vectors via y > x if $y - x \in C$.

Frobenius Vectors

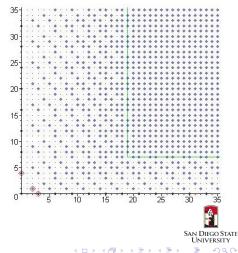
Vector GCDs

Conclusion

Pictures



 $A = \{(0, 4), (2, 1), (3, 0)\}$

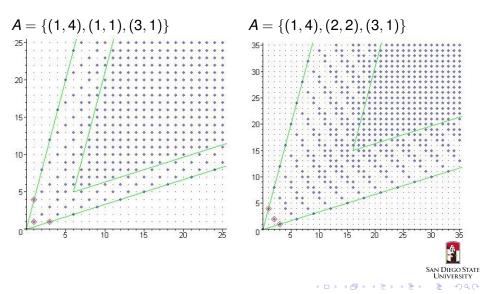


Frobenius Vectors

Vector GCDs

Conclusion

More Pictures



Vector GCDs

Conclusion

Just One Vector?

Thm [Simpson Tijdeman 2003]: Suppose |A| = d + 1, g(A) is nonempty, and a_1, \ldots, a_d determine *C*. Then $g(A) = \{|a_1 a_2 \cdots a_d| a_{d+1} - \sum A\}.$

Generalizes the 1-d: $g(a_1, a_2) = a_1 a_2 - a_1 - a_2$.

In particular, |g(A)| = 1, and $g(A) \subseteq \mathbb{Z}^d$.

Vector GCDs

Conclusion

Just One Vector?

Thm [Simpson Tijdeman 2003]: Suppose |A| = d + 1, g(A) is nonempty, and a_1, \ldots, a_d determine *C*. Then $g(A) = \{|a_1 a_2 \cdots a_d| a_{d+1} - \sum A\}.$

Generalizes the 1-d: $g(a_1, a_2) = a_1a_2 - a_1 - a_2$.

In particular, |g(A)| = 1, and $g(A) \subseteq \mathbb{Z}^d$.

Vector GCDs

Conclusion

Just One Vector?

Thm [Simpson Tijdeman 2003]: Suppose |A| = d + 1, g(A) is nonempty, and a_1, \ldots, a_d determine *C*. Then $g(A) = \{|a_1 a_2 \cdots a_d| a_{d+1} - \sum A\}.$

Generalizes the 1-d: $g(a_1, a_2) = a_1a_2 - a_1 - a_2$.

In particular, |g(A)| = 1, and $g(A) \subseteq \mathbb{Z}^d$.

Vector GCDs

Conclusion

Just One Vector?

Thm [Simpson Tijdeman 2003]: Suppose |A| = d + 1, g(A) is nonempty, and a_1, \ldots, a_d determine *C*. Then $g(A) = \{|a_1 a_2 \cdots a_d| a_{d+1} - \sum A\}.$

Generalizes the 1-d: $g(a_1, a_2) = a_1a_2 - a_1 - a_2$.

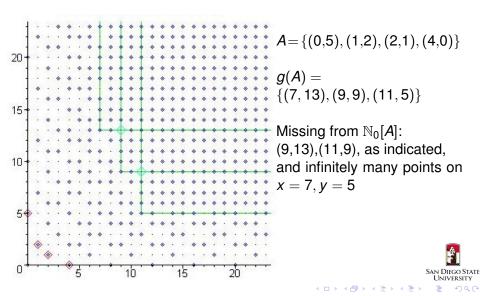
In particular, |g(A)| = 1, and $g(A) \subseteq \mathbb{Z}^d$.

Frobenius Vectors

Vector GCDs

Conclusion

|g(A)| > 1



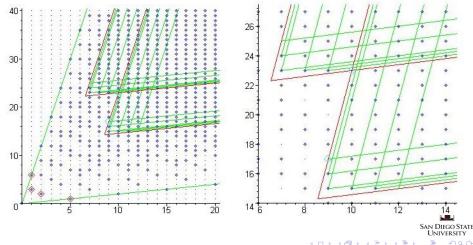
Frobenius Vectors

Vector GCDs

Conclusion

$g(A) \nsubseteq \mathbb{Z}^d$

 $\begin{array}{l} A = \{(1,6), (2,2), (1,3), (5,1)\}. \ g(A) = \{\left(\frac{190}{29}, \frac{647}{29}\right), \left(\frac{248}{29}, \frac{415}{29}\right)\} \\ (2 \text{ Frobenius vectors are better than 11}) \quad \text{Why 29?} \end{array}$



Vector GCDs

Conclusion

Miscellaneous Results

Assume $A \subseteq \mathbb{N}_0^d$, a_1, a_2, \ldots, a_d determine $C, g(A) \neq \emptyset$.

Thm: $|a_1 a_2 \cdots a_d | g(A) \subseteq \mathbb{Z}^d$. (not too far from \mathbb{Z}^d)

Thm: $g(A) \le (|a_1 a_2 \cdots a_d| - 1) LUB(a_{d+1}, \dots, a_k) - a_1 - \dots - a_d$

Vector GCDs

Conclusion

Miscellaneous Results

Assume $A \subseteq \mathbb{N}_0^d$, a_1, a_2, \ldots, a_d determine $C, g(A) \neq \emptyset$.

Thm: $|a_1a_2\cdots a_d|g(A) \subseteq \mathbb{Z}^d$. (not too far from \mathbb{Z}^d)

Thm: $g(A) \le (|a_1 a_2 \cdots a_d| - 1) LUB(a_{d+1}, \dots, a_k) - a_1 - \dots - a_d$

Vector GCDs

Conclusion

Miscellaneous Results

Assume $A \subseteq \mathbb{N}_0^d$, a_1, a_2, \ldots, a_d determine $C, g(A) \neq \emptyset$.

Thm: $|a_1a_2\cdots a_d|g(A) \subseteq \mathbb{Z}^d$. (not too far from \mathbb{Z}^d)

Thm: $g(A) \leq (|a_1a_2\cdots a_d| - 1)LUB(a_{d+1}, \dots, a_k) - a_1 - \dots - a_d$

Vector GCDs

Conclusion

Miscellaneous Results

Assume $A \subseteq \mathbb{N}_0^d$, a_1, a_2, \ldots, a_d determine $C, g(A) \neq \emptyset$.

Thm: $|a_1a_2\cdots a_d|g(A) \subseteq \mathbb{Z}^d$. (not too far from \mathbb{Z}^d)

Thm: $g(A) \leq (|a_1a_2\cdots a_d| - 1)LUB(a_{d+1}, \dots, a_k) - a_1 - \dots - a_d$

Frobenius Vectors

Vector GCDs

Conclusion

Existence of g(A)

Schur's Thm: g(A) is nonempty if and only if GCD(A) = 1

Novikov 92/94, Halter-Koch 93, found technical conditions for $g(A) \neq \emptyset$, but not this nice.

Need to define GCD(A) for $A \subseteq \mathbb{N}_0^d$.

Frobenius Vectors

Vector GCDs

Conclusion

Existence of g(A)

Schur's Thm: g(A) is nonempty if and only if GCD(A) = 1

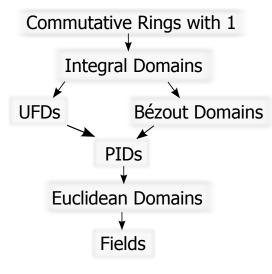
Novikov 92/94, Halter-Koch 93, found technical conditions for $g(A) \neq \emptyset$, but not this nice.

Need to define GCD(A) for $A \subseteq \mathbb{N}_0^d$.

Vector GCDs

Conclusion

Algebraic Context for GCDs



- 1. Commutative Rings: anything goes
- 2. Integral Domains: GCD's are associates
- 3. UFDs: GCD's exist
- 4. Bézout Domains: GCD's exist, in span
- 5. PIDs: Smith normal form
- 6. Euclidean Domains: good computation
- 7. Fields: GCD's trivial

(日)

Frobenius Vectors

Vector GCDs

Conclusion

Definition

$A \subseteq \mathbb{Z}^d$. Set n = |A|. We will define $GCD(A) \in \mathbb{N}_0$.

Let [*A*] be the $d \times n$ matrix whose columns are *A*. Choose *d* columns of [*A*], take determinant. Let \overline{A} be a list of all these $\binom{n}{d}$ determinants.

Define $GCD(A) = GCD(\overline{A})$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

 $A \subseteq \mathbb{Z}^d$. Set n = |A|. We will define $GCD(A) \in \mathbb{N}_0$. Let [A] be the $d \times n$ matrix whose columns are A. Choose d columns of [A], take determinant. Let \overline{A} be a list of all these $\binom{n}{d}$ determinants.

Define $GCD(A) = GCD(\overline{A})$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

 $A \subseteq \mathbb{Z}^d$. Set n = |A|. We will define $GCD(A) \in \mathbb{N}_0$. Let [A] be the $d \times n$ matrix whose columns are A. Choose d columns of [A], take determinant. Let \overline{A} be a list of all these $\binom{n}{d}$ determinants.

Define $GCD(A) = GCD(\overline{A})$.

Frobenius Vectors

Vector GCDs

Conclusion

Definition

 $A \subseteq \mathbb{Z}^d$. Set n = |A|. We will define $GCD(A) \in \mathbb{N}_0$. Let [A] be the $d \times n$ matrix whose columns are A. Choose d columns of [A], take determinant. Let \overline{A} be a list of all these $\binom{n}{d}$ determinants.

Define $GCD(A) = GCD(\overline{A})$.

Vector GCDs •••• Conclusion

Some GCD Properties

Increasing: Let $B \subseteq A$. Then GCD(A)|GCD(B)

Similarity: Suppose there are invertible matrices L, R with [A] = L[B]R. Then GCD(A) = GCD(B).

"Common" Divisor: For all $A \subseteq \mathbb{Z}^d$ there exists $B \subseteq \mathbb{Z}^d$ and $M \in M_d(\mathbb{Z})$ with A = MB and GCD(A) = det(M).

"Greatest" Common Divisor: For all $A \subseteq \mathbb{Z}^d$, $M \in M_d(\mathbb{Z})$, GCD(MA) = |det(M)|GCD(A).

Vector GCDs •••• Conclusion

Some GCD Properties

Increasing: Let $B \subseteq A$. Then GCD(A)|GCD(B)Similarity: Suppose there are invertible matrices L, R with [A] = L[B]R. Then GCD(A) = GCD(B).

"Common" Divisor: For all $A \subseteq \mathbb{Z}^d$ there exists $B \subseteq \mathbb{Z}^d$ and $M \in M_d(\mathbb{Z})$ with A = MB and GCD(A) = det(M).

"Greatest" Common Divisor: For all $A \subseteq \mathbb{Z}^d$, $M \in M_d(\mathbb{Z})$, GCD(MA) = |det(M)|GCD(A).

Conclusion

Some GCD Properties

Increasing: Let $B \subseteq A$. Then GCD(A)|GCD(B)

Similarity: Suppose there are invertible matrices L, R with [A] = L[B]R. Then GCD(A) = GCD(B).

"Common" Divisor: For all $A \subseteq \mathbb{Z}^d$ there exists $B \subseteq \mathbb{Z}^d$ and $M \in M_d(\mathbb{Z})$ with A = MB and GCD(A) = det(M).

"Greatest" Common Divisor: For all $A \subseteq \mathbb{Z}^d$, $M \in M_d(\mathbb{Z})$, GCD(MA) = |det(M)|GCD(A).

Conclusion

Some GCD Properties

Increasing: Let $B \subseteq A$. Then GCD(A)|GCD(B)

Similarity: Suppose there are invertible matrices L, R with [A] = L[B]R. Then GCD(A) = GCD(B).

"Common" Divisor: For all $A \subseteq \mathbb{Z}^d$ there exists $B \subseteq \mathbb{Z}^d$ and $M \in M_d(\mathbb{Z})$ with A = MB and GCD(A) = det(M).

"Greatest" Common Divisor: For all $A \subseteq \mathbb{Z}^d$, $M \in M_d(\mathbb{Z})$, GCD(MA) = |det(M)|GCD(A).

Conclusion

Some GCD Properties

Increasing: Let $B \subseteq A$. Then GCD(A)|GCD(B)

Similarity: Suppose there are invertible matrices L, R with [A] = L[B]R. Then GCD(A) = GCD(B).

"Common" Divisor: For all $A \subseteq \mathbb{Z}^d$ there exists $B \subseteq \mathbb{Z}^d$ and $M \in M_d(\mathbb{Z})$ with A = MB and GCD(A) = det(M).

"Greatest" Common Divisor: For all $A \subseteq \mathbb{Z}^d$, $M \in M_d(\mathbb{Z})$, GCD(MA) = |det(M)|GCD(A).

Frobenius Vectors

Vector GCDs ○○○ ○●○○ Conclusion

Bézout's identity

Thm: $Span(A) = GCD(A)\mathbb{Z}$ (1-d)

Thm: $[\mathbb{Z}^d : Span(A)] = GCD(A) \ (\neq 0)$. submodule index

Cor: g(A) is nonempty if and only if GCD(A) = 1

Frobenius Vectors

Vector GCDs

Conclusion

Bézout's identity

Thm: $Span(A) = GCD(A)\mathbb{Z}$ (1-d)

Thm: $[\mathbb{Z}^d : Span(A)] = GCD(A) \ (\neq 0)$. submodule index

Cor: g(A) is nonempty if and only if GCD(A) = 1

Frobenius Vectors

Vector GCDs

Conclusion

Bézout's identity

Thm: $Span(A) = GCD(A)\mathbb{Z}$ (1-d)

Thm: $[\mathbb{Z}^d : Span(A)] = GCD(A) \ (\neq 0)$. submodule index

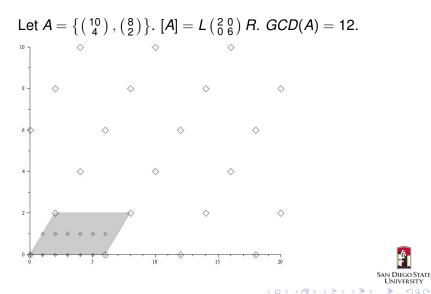
Cor: g(A) is nonempty if and only if GCD(A) = 1

Frobenius Vectors

Vector GCDs

Conclusion

Pictures

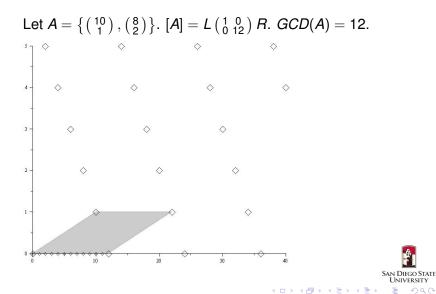


Frobenius Vectors

Vector GCDs

Conclusion

Pictures



Prefaction OC

Frobenius Vectors

Vector GCDs

Conclusion

Original Two Puzzles

Let $A = \left\{ \begin{pmatrix} 6\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 3 \end{pmatrix} \right\}$. Question: Is $Span(A) = \mathbb{Z}^2$? $\overline{A} = \{4, 20, 4\}$ so $GCD(A) = 4 = [\mathbb{Z}^2 : Span(A)]$. NO

Also for $B = \{ \begin{pmatrix} 6\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 1 \end{pmatrix}, \begin{pmatrix} -2\\ 3 \end{pmatrix} \}$. $\overline{B} = \{4, 22, 5\}$ so GCD(A) = 1 and $Span(B) = \mathbb{Z}^2$. YES

Frobenius Vectors

Vector GCDs

Conclusion

Original Two Puzzles

Let
$$A = \left\{ \begin{pmatrix} 6\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 3 \end{pmatrix} \right\}$$
. Question: Is $Span(A) = \mathbb{Z}^2$?
 $\overline{A} = \{4, 20, 4\}$ so $GCD(A) = 4 = [\mathbb{Z}^2 : Span(A)]$. NO

Also for
$$B = \left\{ \begin{pmatrix} 6\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 1 \end{pmatrix}, \begin{pmatrix} -2\\ 3 \end{pmatrix} \right\}$$
.
 $\overline{B} = \{4, 22, 5\}$ so $GCD(A) = 1$ and $Span(B) = \mathbb{Z}^2$. YES

Frobenius Vectors

Vector GCDs

Conclusion

Final Thoughts

Are all $\binom{n}{d}$ determinants necessary?

See "The Multi-Dimensional Frobenius Problem", http://www-rohan.sdsu.edu/~vadim/research.html

Frobenius Vectors

Vector GCDs

Conclusion

Final Thoughts

Are all $\binom{n}{d}$ determinants necessary?

See "The Multi-Dimensional Frobenius Problem", http://www-rohan.sdsu.edu/~vadim/research.html

