A Generalization of Bonse's Inequality

Over 100 years ago, Bonse proved (see [1]) his famous inequality, which relates the sequence of primes $p_1 = 2, p_2 = 3, p_4 = 5, ...$ as:

For all
$$n \ge 4$$
, we have $p_1 p_2 \cdots p_n > p_{n+1}^2$.

We offer the following generalization.

Theorem. Suppose we have constants μ , λ satisfying $1 < \mu \leq \lambda$. Let a_i be a nondecreasing sequence of real numbers satisfying $a_1 = \mu$ and $a_{i+1} \leq \lambda a_i$ (for each $i \geq 1$). Then, taking $K = 2 + 3 \log_{\mu} \lambda$, we get:

For all
$$n \geq K$$
, we have $a_1 a_2 \cdots a_n \geq a_{n+1}^2$.

The inequality is strict except possibly for n = K.

Note that Bertrand's postulate gives $p_{n+1} \leq 2p_n$, so we may take $\mu = \lambda = 2$ with $a_n = p_n$, and recover Bonse's inequality (apart from n = 4, 5).

Proof. Note that K is chosen so that $n \ge K$ implies $\mu^{n-2} \ge \lambda^3$. We get

$$a_1 a_2 \cdots a_{n-1} \ge \mu^{n-2} a_{n-1} \ge \lambda^3 a_{n-1} \ge \lambda^2 a_n \ge \lambda a_{n+1} \ge \frac{a_{n+1}^2}{a_n}$$

The first inequality follows from $a_i \ge \mu$, and the last three each use $a_{i+1} \le \lambda a_i$. Note that if n > K then $\mu^{n-2} > \lambda^3$, making the second inequality strict.

Note that equality is possible if $n = K \in \mathbb{Z}$, via $a_1 = a_2 = \cdots = a_{K-1} = \mu$, $a_K = \lambda \mu$, and $a_{K+1} = \lambda^2 \mu$. Now $\mu^{n-2} = \lambda^3$, so $a_1 a_2 \cdots a_n = a_{n+1}^2$.

REFERENCES

 Bonse, H. (1907). Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung. Archiv der Mathematik und Physik. 12 (3): 292–295.

—Submitted by (suppressed for review)

doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 11Y60; 40A05