A Generalization of Bonse's Inequality

Over 100 years ago, Bonse proved (see [1]) his famous inequality, which relates the sequence of primes $p_{1}=2, p_{2}=3, p_{4}=5, \ldots$ as:

For all $n \geq 4$, we have $p_{1} p_{2} \cdots p_{n}>p_{n+1}^{2}$.
We offer the following generalization.
Theorem. Suppose we have constants μ, λ satisfying $1<\mu \leq \lambda$. Let a_{i} be a nondecreasing sequence of real numbers satisfying $a_{1}=\mu$ and $a_{i+1} \leq \lambda a_{i}$ (for each $i \geq 1$). Then, taking $K=2+3 \log _{\mu} \lambda$, we get:

$$
\text { For all } n \geq K, \text { we have } a_{1} a_{2} \cdots a_{n} \geq a_{n+1}^{2}
$$

The inequality is strict except possibly for $n=K$.
Note that Bertrand's postulate gives $p_{n+1} \leq 2 p_{n}$, so we may take $\mu=\lambda=2$ with $a_{n}=p_{n}$, and recover Bonse's inequality (apart from $n=4,5$).
Proof. Note that K is chosen so that $n \geq K$ implies $\mu^{n-2} \geq \lambda^{3}$. We get

$$
a_{1} a_{2} \cdots a_{n-1} \geq \mu^{n-2} a_{n-1} \geq \lambda^{3} a_{n-1} \geq \lambda^{2} a_{n} \geq \lambda a_{n+1} \geq \frac{a_{n+1}^{2}}{a_{n}}
$$

The first inequality follows from $a_{i} \geq \mu$, and the last three each use $a_{i+1} \leq \lambda a_{i}$. Note that if $n>K$ then $\mu^{n-2}>\lambda^{3}$, making the second inequality strict.

Note that equality is possible if $n=K \in \mathbb{Z}$, via $a_{1}=a_{2}=\cdots=a_{K-1}=\mu$, $a_{K}=\lambda \mu$, and $a_{K+1}=\lambda^{2} \mu$. Now $\mu^{n-2}=\lambda^{3}$, so $a_{1} a_{2} \cdots a_{n}=a_{n+1}^{2}$.

REFERENCES

1. Bonse, H. (1907). Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung. Archiv der Mathematik und Physik. 12 (3): 292-295.
—Submitted by (suppressed for review)
[^0]MSC: Primary 11Y60; 40A05

[^0]: doi.org/10.XXXX/amer.math.monthly.122.XX.XXX

