A Generalization of Bonse’s Inequality

Over 100 years ago, Bonse proved (see [1]) his famous inequality, which relates the sequence of primes \(p_1 = 2, p_2 = 3, p_4 = 5, \ldots \) as:

For all \(n \geq 4 \), we have \(p_1 p_2 \cdots p_n > p_{n+1}^2 \).

We offer the following generalization.

Theorem. Suppose we have constants \(\mu, \lambda \) satisfying \(1 < \mu \leq \lambda \). Let \(a_i \) be a nondecreasing sequence of real numbers satisfying \(a_1 = \mu \) and \(a_{i+1} \leq \lambda a_i \) (for each \(i \geq 1 \)). Then, taking \(K = 2 + 3 \log_{\mu} \lambda \), we get:

For all \(n \geq K \), we have \(a_1 a_2 \cdots a_n \geq a_{n+1}^2 \).

The inequality is strict except possibly for \(n = K \).

Note that Bertrand’s postulate gives \(p_{n+1} \leq 2p_n \), so we may take \(\mu = \lambda = 2 \) with \(a_n = p_n \), and recover Bonse’s inequality (apart from \(n = 4, 5 \)).

Proof. Note that \(K \) is chosen so that \(n \geq K \) implies \(\mu^{n-2} \geq \lambda^3 \). We get

\[
a_1 a_2 \cdots a_{n-1} \geq \mu^{n-2} a_{n-1} \geq \lambda^3 a_{n-1} \geq \lambda^2 a_n \geq \lambda a_{n+1} \geq \frac{a_{n+1}^2}{a_n}
\]

The first inequality follows from \(a_i \geq \mu \), and the last three each use \(a_{i+1} \leq \lambda a_i \).

Note that if \(n > K \) then \(\mu^{n-2} > \lambda^3 \), making the second inequality strict.

Note that equality is possible if \(n = K \in \mathbb{Z} \), via \(a_1 = a_2 = \cdots = a_{K-1} = \mu \), \(a_K = \lambda \mu \), and \(a_{K+1} = \lambda^2 \mu \). Now \(\mu^{n-2} = \lambda^3 \), so \(a_1 a_2 \cdots a_n = a_{n+1}^2 \).

REFERENCES

---Submitted by (suppressed for review)