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Every calculus student learns how to solve indeterminate limits of the form 1∞;
most quickly learn to hate and fear this process. It is error-prone, full of tedious
algebra, and requires careful attention to L’Hôpital’s rule. Here is a typical “fairly
simple”example:
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What tedium! And this is the short version, suppressing details on the two
derivatives (perhaps two quotient rules, perhaps something slightly better). Of
course, this may be tedious for students, but some people who are experts use sim-
pler and shorter ways. Indeed, replacing n by 4k converts the limit to
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. So the problem reduces to

the familiar limit.
Here, we are interested in formulating these methods as a general formula for

calculating indeterminate limits of the form 1∞. We prove the following theorem.

Theorem 0.1. Suppose that f(n) is a function with limn→∞ f(n) = 1, and g(n)
is a function with limn→∞ g(n) = ∞. Then

lim
n→∞

f(n)g(n) = elimn→∞ g(n)(f(n)−1).

We present two proofs for this theorem. In the first proof we assume that the
function f(n) is differentiable and then the L’Hôpital’s rule is used. In the second
proof needs neither L’Hôpital’s rule, nor the hypothesis that f(n) is differentiable,
nor interpolation with cubic splines.

First proof. First we note that limn→∞
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1. We start with the usual algebra, then finish with our observation:
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Second proof. Since ln(1 + x) = x + o(x), equivalently limn→∞
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replacing x with f(n)− 1 shows that
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With Theorem 0.1 our “fairly simple”example becomes truly fairly simple:
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Theorem 0.1 can be applied to the famous Euler’s Limit limn→∞
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and, to some extensions thereof, such as (from [1]) limn→∞

(
An+1

An

) An
An+1−An

= e (if

An+1 ∼ An).
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