Summation Using an Expected Value Identity

Let X be a random variable taking values among the nonnegative integers. We recall the well-known identity $\mathbb{E}[X]=\sum_{n \geq 0} \mathbb{P}(X>n)$. For convenience, we set $p_{t}=\mathbb{P}(X=t)$, arriving at the beautiful identity

$$
\begin{equation*}
\sum_{x=0}^{\infty} x p_{x}=\sum_{x=0}^{\infty}\left(1-\sum_{y=0}^{x} p_{y}\right) . \tag{1}
\end{equation*}
$$

If we further insist that X has support in $[0, n]$, we may rearrange this to get

$$
\begin{equation*}
n+1=\sum_{x=0}^{n} 1=\sum_{x=0}^{n}\left(x p_{x}+\sum_{y=0}^{x} p_{y}\right) . \tag{2}
\end{equation*}
$$

We now offer two applications of (2). First, take the uniform distribution for X, namely $p_{x}=\frac{1}{n+1}$. This gives

$$
n+1=\sum_{x=0}^{n}\left(\frac{x}{n+1}+\sum_{y=0}^{x} \frac{1}{n+1}\right)=\sum_{x=0}^{n} \frac{x}{n+1}+\frac{x+1}{n+1}=1+\frac{2}{n+1} \sum_{x=0}^{n} x .
$$

We may rearrange this to find a new proof of the familiar $\sum_{x=0}^{n} x=\frac{n(n+1)}{2}$. Compare this also to the probabilistic proof in [1]. For our second application, take the distribution $p_{x}=\frac{2 x}{n(n+1)}$. Applying (2) gives

$$
n+1=\sum_{x=0}^{n}\left(\frac{2 x^{2}}{n(n+1)}+\sum_{y=0}^{x} \frac{2 y}{n(n+1)}\right)=\frac{1}{n(n+1)} \sum_{x=0}^{n} 2 x^{2}+x(x+1) .
$$

We rearrange this to $3 \sum_{x=0}^{n} x^{2}=n(n+1)^{2}-\sum_{x=0}^{n} x$, which gives a new proof of the familiar $\sum_{x=0}^{n} x^{2}=\frac{n(n+1)(2 n+1)}{6}$.

REFERENCES

1. Treviño, E. (2019). Probabilistic Proof that $1+2+\cdots+n=\frac{n(n+1)}{2}$. Amer. Math. Monthly. 126 (9): 840.
-Submitted by Reza Farhadian, Razi University and Vadim Ponomarenko, San Diego State University
[^0]
[^0]: doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 40C99, 60C99

