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Abstract. Let M be a (commutative cancellative) monoid. A nonunit element q ∈ M is
called almost primary if for all a, b ∈ M , q|ab implies that there exists k ∈ N such that q|ak or
q|bk. We introduce a new monoid invariant, diversity, which generalizes this almost primary
property. This invariant is developed and contextualized with other monoid invariants. It
naturally leads to two additional properties (homogeneity and strong homogeneity) that
measure how far an almost primary element is from being primary. Finally, as an application
the authors consider factorizations into almost primary elements, which generalizes the
established notion of factorization into primary elements.
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1. Introduction

Throughout this paper, all monoids under consideration are commutative, and
(unless otherwise stated) cancellative, and multiplicative, with identity denoted by
1. If M is a monoid, then M× denotes the set of units (or invertible elements) of M .
If π ∈ M \ M×, we say that π is an atom (or irreducible element) of M if for all
a, b ∈ M , π = ab implies that a ∈ M× or b ∈ M×. The set of atoms of a monoid M

is denoted by A(M). We say that M is an atomic monoid if every nonunit of M can
be written as a product of atoms. If S = {s1, s2, · · · , sk} is a finite subset of M , then
we denote the product of the elements of S by

∏
S := s1s2 · · · sk. If A ⊆ M \M×,

we denote the monoid generated by A to be [A], and we say that A is a generating
set of M if M = [A]. Thus, M is atomic if and only if M = [A(M) ∪M×]. By N,
N0, and Sn we mean the set of natural numbers, nonnegative integers, and the group
of permutations on n letters, respectively.

Let M be a monoid. We establish some terminology regarding ideal-theoretic
properties of M (proofs of the following claims can be found in [6]). If A and B are
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(nonempty) subsets of M , then AB := {ab | a ∈ A, b ∈ B} and if x ∈ M , we denote
{x}A by xA. A subset I of M is called an ideal of M if IM = I.1 If I is an ideal of
M , then I = M if and only if I ∩M× 6= ∅. If I 6= M , we say that I is a proper ideal
of M . We call I a prime ideal of M if I is a proper ideal and M \ I is a submonoid
of M (equivalently, for all a, b ∈ M with ab ∈ I, we have a ∈ I or b ∈ I). A proper
ideal I is a primary ideal of M if and only if for all a, b ∈ M with ab ∈ I, either
a ∈ I or bk ∈ I for some k (or, equivalently, if ab ∈ I, then either a ∈ I, or b ∈ I

or there exist m,n ∈ N such that am ∈ I and bn ∈ I). We say that I is an almost
primary ideal if for all a, b ∈ M , ab ∈ I implies that for some n ∈ N, an ∈ I or
bn ∈ I. Every prime ideal is primary, and every primary ideal is almost primary, but
neither converse holds.

If I is an ideal of M , then the radical of I is
√

I := {x ∈ M |xn ∈ I for some n ∈ N}.

As in the case for ideals of a ring, it can be shown that the radical of a primary ideal
is prime, and that if I and J are ideals, then

√
IJ =

√
I ∩

√
J . It is easy to see that

I is almost primary if and only if
√

I is a prime ideal.
If p ∈ M , then it is apparent that p is prime if and only if pM is a prime ideal of

M . If q ∈ M , we say that q is a primary element of M if qM is a primary ideal of
M , and q is an almost primary element of M if qM is an almost primary ideal
of M .

Following Halter-Koch in [5], we say that M is a weakly factorial monoid (or
WFM) if every nonunit element of M can be written as a product of primary ele-
ments. WFMs were named analogously after the weakly factorial domains introduced
by Anderson and Mahaney in [1]. If M is a WFM, and if x is a nonunit of M , then
(up to associates) there is only one factorization of x into primary elements with
mutually distinct radicals (such a factorization is called a reduced factorization–see
Section 4 for more details).

In this paper, we define and study a new type of monoid invariant, called diversity.
If M is an atomic monoid, if we pick x, y ∈ M \M×, and if we write y = sa1

1 sa2
2 · · · sak

k

with si ∈ M and ai ∈ N, then x divides a power of y if and only if x divides a power
of s1s2 · · · sk. So, to measure how “far” x is from being almost primary, we can look
for the largest value of n such that x divides a power of s1s2 · · · sk, but not a power
of any subproduct. This is what we will call the diversity of x.

Definition 1.1. Let M be a monoid.

(1) We say that x|S (in M) if x ∈ M , S is a finite subset of M , and if there
exists t ∈ N such that x| (

∏
S)t.

1Our notion of an ideal of a monoid is technically the concept of an s-ideal as defined in [6].
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(2) We say that x strictly divides S, denoted x‖S if x|S, but x - T for all T ( S.
(3) We define the diversity of x, denoted div(x), to be

div(x) = sup{|S| : S ⊆ M with x‖S}

(4) We define the diversity of M and the atomic diversity of M , denoted by
div(M) and diva(M), respectively, by

div(M) = sup
x∈M

div(x), and diva(M) = sup
x∈A(M)

div(x).

If x is a unit, then x‖∅ (since
∏
∅ = 1), and hence div(x) = 0. Otherwise, x‖S

implies that the elements of S are pairwise nonassociate nonunits.
In Section 2, present some preliminary results, including that, for x ∈ M , div(x) =

1 if and only if x is almost primary (Proposition 2.3). Further, if M is atomic and if
x ∈ M , we need only count sets S of atoms with x||S to determine div(x) (Corollary
2.5). We also show that div(x) is bounded above by both the tame degree t(M,x)
and ω(M,x), and that for v-Noetherian monoids (in particular, for the multiplicative
monoids of Notherian or Krull domains), the diversity of every element is finite.

In Section 3, we introduce two additional properties, called “homogeneous” and
“strongly homogeneous” that lie between “almost primary” and “primary” and that
are also related to Definition 1.1. We show that all nonunit divisors of homogeneous
(respectively strongly homogeneous) elements are themselves homogeneous (respec-
tively strongly homogeneous) (Theorem 3.8) – a property that is not shared by
almost primary elements. An element x is homogeneous precisely when

√
xM is not

only a prime ideal, but maximal amongst radicals of principal ideals (Theorem 3.8).
We also show that div(x) is determined if x divides a set of strongly homogeneous
elements (Corollary 3.10).

Finally, in Section 4, we consider factorizations of elements into almost primary
elements. We find that such factorizations need not be unique; however, they are
unique up to length and radical (Proposition 4.3). Factorizations into homogeneous
elements are unique precisely when the homogeneous elements in question are pri-
mary (Theorem 4.5). Also, we show that every nonunit element of M can be factored
into almost primary elements if and only if for every nonunit x ∈ M with div(x) ≥ 2,
there exist nonunit y, z ∈ M such that x = yz and div(x) = div(y) + div(z) (or, in
other words, div(·) : M \M× → N+

0 is as close to a semigroup homomorphism as we
can hope–cf. Theorem 4.4).

2. Preliminary results

Proposition 2.1. Let M be a monoid and let x, y ∈ M . Then div(xy) ≤ div(x)+
div(y).
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Proof. Let S ⊆ M with xy‖S. There exist subsets Sx, Sy ⊆ S such that x‖Sx and
y‖Sy. Since xy|Sx ∪ Sy, we must have S = Sx ∪ Sy. Therefore,

div(x) + div(y) ≥ |Sx|+ |Sy| ≥ |Sx ∪ Sy| = |S|,

and div(xy) ≤ div(x) + div(y). �

If x or y is a unit, we have equality in Proposition 2.1. Otherwise, equality is rare
– in fact, for x ∈ M \M× and n ∈ N, div(xn) = div(x) < n · div(x), as shown in the
following lemma.

Lemma 2.2. Suppose S = {s1, s2, · · · , sk} and x ∈ M . Then:

(1) x|S if and only if
√

s1M ∩
√

s2M ∩ · · · ∩
√

skM ⊆
√

xM .

(2) x‖S if
√

s1M ∩
√

s2M ∩ · · · ∩
√

skM ⊆
√

xM and if any
√

siM is omitted for

1 ≤ i ≤ k, then the intersection is no longer contained in
√

xM .

(3) If x‖S, then
√

siM and
√

sjM are incomparable for each i 6= j.

(4) For all m ∈ N, x‖S if and only if xm‖S. Consequently, div(x) = div(xm).

Proof. We have x|{s1, s2, · · · , sk} if and only if xr = (s1s2 · · · sk)t for some r ∈ M

and t ∈ N, which is equivalent to s1s2 · · · sk ∈
√

xM , which is also equivalent to√
s1s2 · · · skM =

√
s1M ∩

√
s2M ∩ · · · ∩

√
skM ⊆

√
xM.

Thus, statement 1 is proved.
We see that 2 follows from 1 and the fact that

√
siM can be omitted (for some i)

if and only if x|S \ {si}.
We see that 3 follows directly from 2.
Finally, 4 follows from 2, the fact that

√
xM =

√
xmM , and the definition of

diversity. �

Proposition 2.3. Let M be a monoid and let x ∈ M . Then:

(1) If x‖S, then the elements of S are pairwise nonassociate, containing no units.

(2) div(x) = 0 if and only if x ∈ M×.

(3) div(x) = 1 if and only if x is an almost primary nonunit.

(4) If x‖S and y ∈ S, then neither x nor y divides S \ {y}.
(5) If x‖S and {y, z} ⊆ S, then x‖S ∪ {yz} \ {y, z}.
(6) If x|R and (

∏
R)|S, then x|S.

Proof. We will prove 3; the remaining parts are straightforward.
First, suppose that x is an almost primary nonunit, and x‖S. Write S =

{s1, s2, · · · , sk}. k > 0 since x is a nonunit. Pick r ∈ M and t ∈ N such that
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xr = (s1s2 · · · sk)t = st
1s

t
2 · · · st

k. Since x is almost primary, we have x|(st
i)

m for some
i, m ∈ N. But then x|{si}, implying that k = 1 and div(x) = 1.

On the other hand, suppose that div(x) = 1. If we have a, b ∈ M with x|ab, then
x|{a, b}, therefore x|{a} or x|{b}, and hence x|am or x|bm for some m ∈ N. Therefore
x is almost primary, and a nonunit since div(x) > 0. �

Theorem 2.4. Let M be a monoid, and let A be a generating set of M . Then,

for all x ∈ M , div(x) = sup{|S| : S ⊆ A with x‖S}.

Proof. Set α(x) = sup {|S| : S ⊆ A with x‖S}. By Definition 1.1, div(x) ≥ α(x),
and if x ∈ M×, then div(x) = α(x) = 0. Suppose now that x /∈ M×. Now choose
S = {s1, s2, . . . , sk} ⊆ M with x‖S. Proposition 2.3 yields that S ∩M× is empty.
For each i for 1 ≤ i ≤ k, write si = ai1ai2 · · · aini

, where ni ∈ N and each aij ∈ A.
Then, setting T = {aij | 1 ≤ i ≤ k, 1 ≤ j ≤ ni}, we see that x|T . Therefore there
exists U ⊆ T such that x‖U .

We claim that for each i with 1 ≤ i ≤ m, there exists some j with 1 ≤ j ≤ ni

such that aij ∈ U . To see why this claim is true, suppose (without loss of generality)
that a1j /∈ U for all 1 ≤ j ≤ n1. Then, x|{aij | 2 ≤ i ≤ k, 1 ≤ j ≤ ni}, implying
that x|{s2, s3, · · · , sk}, a contradiction. Therefore α(x) ≥ |U | ≥ k. By considering
all such S, we have α(x) ≥ div(x) and hence div(x) = α(x). �

Corollary 2.5. Let M be an atomic monoid. Then, for all x ∈ M , div(x) =
sup{|S| : S ⊆ A(M) with x‖S}.

Proof. Since M is atomic, M = [A(M) ∪ M×]. We combine Theorem 2.4 and
Proposition 2.3.1. �

We now relate diversity to some other monoid invariants, beginning with the ω

invariant introduced in [2].

Definition 2.6. Let M be a monoid. For a, b ∈ M , let ω(a, b) denote the smallest
N ∈ N0 ∪ {∞} with the following property: for all n ∈ N0 and a1, a2, · · · , an ∈ M ,
if a = a1a2 · · · an and if b|a, then there exists a subset Ω ⊆ {1, 2, · · · , n} such that
|Ω| ≤ N and b|

∏
i∈Ω ai. For b ∈ M , we define

ω(M, b) = sup{ω(a, b) | a ∈ M} ∈ N0 ∪ {∞}.

Proposition 2.7. Let M be a monoid, and let x ∈ M . Then div(x) ≤ ω(M,x).

Proof. Let x‖{s1, s2, · · · , sk}. Then there exists t ∈ N and r ∈ M such that xr =
(s1s2 · · · sk)t. Therefore x divides a product of kt elements of M . If ω(M,x) <

k, then x would divide a proper subset of {s1, s2, · · · , sk}, a contradiction. Thus,
ω(M,x) ≥ k, implying that div(x) ≤ ω(M,x). �
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It should be noted that if M is a v-Noetherian monoid, as defined in [3] (in par-
ticular, the multiplicative monoid of a Noetherian or Krull domain is a v-Noetherian
monoid), then ω(M,x) < ∞ for all x ∈ M (cf. Lemma 3.5 of [4]). Also, if M is
atomic and if π is a non-prime atom of M , then ω(M,π) ≤ t(M,π), where t(M,π)
denotes the tame degree of M with respect to π, as defined in [3]. This proves the
following corollary.

Corollary 2.8. Let M be an atomic monoid. Then:

(1) For every non-prime atom π ∈ M , div(π) ≤ t(M,π).
(2) If M is not factorial, then diva(M) ≤ t(M,A(M)), where t(M,A(M)) =

sup{t(M,π) : π ∈ A(M)}.
(3) If M is a v-Noetherian monoid, then div(x) < ∞ for every x ∈ M .

Note that if π is a prime element of M , then t(M,π) = 0 and div(π) = 1. To
show that the hypothesis of Corollary 2.8.3 is necessary, we produce an example of
a monoid with an element with infinite diversity.

Example 2.9. Let A be a countably infinite set with A = {x} ∪ {yij | i, j ∈ N0, 0 ≤
j ≤ i}. Let F be the free monoid on this set, and let M be the monoid that results
from modding F out by the following relations for all n ∈ N:

xn+1 = yn0yn1 · · · ynn.

Then, A = A(M) and M is atomic and half-factorial. However, for each n ∈ N, we
have x‖{yn0, yn1, · · · , ynn}. Therefore div(x) = ∞ (and M is not v-Noetherian).

The next two examples show that the diversity of a monoid is, in general, inde-
pendent of the catenary degree (as defined in [3]). Also, the first example shows that
we need not have equality in Proposition 2.7.

Example 2.10. Consider the following multiplicative submonoid of N, known as the
Hilbert monoid: H = 1 + 4N0. The atoms of H are either rational primes congruent
to 1 mod 4 (these atoms are prime in H) or of the form pq where p and q are rational
primes congruent to 3 mod 4 (these are the non-prime atoms of H). Given an atom
pq of the latter type, it is easy to see that div(pq) is 2 if p 6= q, and 1 otherwise.
Therefore diva(H) = 2.

Given distinct rational primes p1, p2, · · · , p2n, each congruent to 3 mod 4, we have
p1p2 · · · p2n‖{p2

1, p
2
2, · · · , p2

2n}, whence div(H) = ∞. However c(H), the catenary
degree of H, is 2 (cf. [3]).

Further, if p is a rational prime congruent to 3 mod 4, then it is routine to check
that p2 is almost primary. If q is a rational prime other than p that is congruent to
3 mod 4, then p2|(pq)(pq), but p2 - pq. Therefore ω(H, p2) ≥ 2 > 1 = div(p2).
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Example 2.11. Let M = [2, 3] be the additive submonoid of N0 generated by 2 and
3. For all x ∈ M , x|{3}, thus div(M) = 1. However, c(M) = 3 (cf. [3]).

3. Homogeneous and strongly homogeneous elements

Diversity, as an invariant, cannot alone differentiate among prime, primary, or
almost primary elements, since div(x) = 1 for all three. However, it can differentiate
between almost primary and primary elements by the following criterion: if x, y ∈
M \ M× with y primary, then x|{y} implies that y|{x}. However, such symmetry
need not hold for almost primary elements.

Example 3.1. Let M = {2a3b : a ∈ N, b ∈ N0}∪ {1} be a multiplicative submonoid
of N. For any x ∈ M , x|{6}, whence div(M) = 1. Also, 2|{6}, but 6 - {2}, as no
power of 2 is a multiple (in N) of 3.

The ability of y to divide {x} whenever x divides {y} will be of great concern to us,
so we establish some notation concerning this relation. This relation was previously
used by Halter-Koch for primary elements in [5].

Definition 3.2. Let M be a monoid and let x, y ∈ M . We say that y is related to
x, denoted by y ∼ x, if x|{y}.

Clearly, y ∼ x if and only if
√

yM ⊆
√

xM . Also, it is easy to see that ∼ is a
reflexive and transitive relation on M . As noted above, ∼ need not be symmetric.
We wish to study nonunits for which ∼ is symmetric, and also to generalize this
notion.

Definition 3.3. Let M be a monoid, and let x ∈ M .

(1) We say that x is homogeneous if div(x) = 1 and if for all y ∈ M , y|{x}
implies that x|{y} (or, equivalently, if x ∼ y, then y ∼ x).

(2) We say that x is strongly homogeneous if div(x) = 1 and if for all y ∈ M

and S ⊆ M with x ∈ S, we have y‖S implies x|{y}.

Corollary 3.4. Let M be a monoid. The relation ∼ is an equivalence relation on

the set of homogeneous elements of M .

Proposition 3.5. Let M be a monoid and x ∈ M a nonunit. Then the following

implications hold for properties of x:

primary ⇒ strongly homogeneous ⇒ homogeneous ⇒ almost primary

Proof. Let x be primary and pick y ∈ M and S ⊆ M with x ∈ S and y‖S. Then
there exists t ∈ N and r ∈ M with yr = (

∏
S)t, and so xt|yr. As xt is primary and

xt - r (or else y|S \ {x}), we see that xt|ym for some m ∈ N. Therefore x|{y} and x

is strongly homogeneous. The other implications are clear. �
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We now give examples to show that none of the implications above are reversible.
In Example 3.1 above, the element 6 is almost primary but not homogeneous.

Example 3.6. (An example of a strongly homogeneous element that is not primary.)
Let M = Z \ {0,−1} (under multiplication). The atoms of M are of the form ±p,
where p is a prime natural number. Note that no atom of M is primary. To see why,
if p and q are rational primes with |p| 6= |q|, then p|(−p)q. However, p - −p and p

divides no power of q, implying that p is not primary.
We will now show that every atom of M is strongly homogeneous. Let p ∈ M be

an atom, and suppose that p|ab. Then, without loss of generality, we have p|a in N,
hence p|a2 in M , and p is almost primary.

Suppose now we have y ∈ M \M× with y‖S and p ∈ S. Choose r ∈ M and t ∈ N
such that yr = (

∏
S)t. We have pt|yr. As above, if p|y in N, then p|y2 in M , hence

p|{y}. However, if p - y in N, then pt|r in N. The only way to avoid pt dividing r in
M (and hence y|S \ {p}) is for r = −pt. But then r2 = p2t, implying that y2 – and
hence y – divides S \ {p}.

Therefore every atom of M is strongly homogeneous, but not primary.

Example 3.7. (An example of an element that is homogeneous, but not strongly
homogeneous.) Consider the following multiplicative submonoid of N:

M = [{p1p2 | p1, p2 ∈ N are distinct odd primes}] ∪ 6N.

First, we observe that M contains no power of any rational prime. With this, we will
show that 6 is homogeneous, but not strongly homogeneous. If 6|ab (for a, b ∈ M),
then (without loss of generality) a is even, hence 6 divides a in N. Writing a = 6m

(m ∈ N), we see that a2 = 6(6m2) and 6|a2 (in M), implying that 6 is almost
primary.

Also, if y ∈ M \M× with y|{6}, then pick r ∈ M , t ∈ N such that yr = 6t. As
above, if y is even, then 6|{y}. If y is odd, then, in N, we must have 2t|r, and it must
follow that, in N, y|3t. However, y is then a power of 3, a contradiction. Therefore
6|{y} and 6 is homogeneous.

To see why 6 is not strongly homogeneous, note that 15|{6, 35}, since (6 · 35)2 =
15·(6·490). However, 15 - {6} (as no power of 6 is a multiple, in N, of 5) and 15 - {35}
(as no power of 35 can be a multiple, in N, of 3). Thus 15‖{6, 35}. However, 6 - {15}
(as no power of 15 is even). Therefore 6 is not strongly homogeneous.

Theorem 3.8. Let M be a monoid, let x ∈ M . Then:

(1) For all y ∈ M , x ∼ y if and only if
√

xM ⊆
√

yM .

(2) Suppose that x is homogeneous. For all homogeneous y ∈ M , x ∼ y if and

only if
√

xM =
√

yM .
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(3) x is homogeneous if and only if
√

xM is both a prime ideal and maximal

amongst radicals of proper principal ideals.

(4) x is strongly homogeneous if and only if div(x) = 1 and for all y, z ∈ M , we

have y‖{x, z} implies x|{y}.
(5) If x is homogeneous (resp. strongly homogeneous), then xn is homogeneous

(resp. strongly homogeneous) for all n ∈ N.

(6) If x is homogeneous (resp. strongly homogeneous), then every nonunit divisor

of x is homogeneous (resp. strongly homogeneous).

(7) If M is atomic with diva(M) = 1, then x is homogeneous if and only if x is

strongly homogeneous.

Proof. 1. This follows from the definitions.
2. This follows from (1) and Definition 3.3.
3. If x is homogeneous, then x is almost primary, whence

√
xM is prime. If√

xM ⊆
√

yM for some y ∈ M , then x ∈
√

yM implying that y|{x}. Thus x|{y}
and

√
xM =

√
yM . The argument is reversible.

4. Assume that there exists z ∈ M with z‖T , x ∈ T , and |T | ≥ 3. Writing
T = {x, t1, t2, · · · , tk}, we see that z‖{x, t1t2 · · · tk}, and thus, by hypothesis, x|{z}.
Thus x is strongly homogeneous. The other implication is obvious.

5. The homogeneous statement follows from (3) and the fact that
√

xM =
√

xnM .
The strongly homogeneous statement follows from (4) via the sequence y‖{xn, z}
implies y‖{x, z} implies x|{y} implies xn|{y}.

6. Pick any nonunit z with z|x. Choose y ∈ M \M× with y|{z}, and assume that
x is homogeneous. Then y divides a power of z, hence y divides a power of x and
y|{x}. Therefore x|{y} so z|{y}.

Now, assume that x is strongly homogeneous. Let y‖S with z ∈ S. Set S′ =
S ∪ {x} \ {z}. Now y|S′, and there is T ⊆ S′ with y‖T . If x /∈ T , then y|S \ {z}, a
contradiction. Hence x|{y} and so z|{y}.

7. Let x be homogeneous. Pick y ∈ M with y‖S and x ∈ S. We observe that
every irreducible dividing y must also divide a singleton subset of S, and in fact,
there must be some irreducible divisor π of y such that π|{x} (otherwise, if every
irreducible divisor of y divides S \ {x}, then y|S \ {x}, a contradiction). As x is
homogeneous, we have x|{π}, hence x divides a power of y and x|{y}. Therefore x

is strongly homogeneous. The other implication is obvious. �

Lemma 3.9. Let M be an monoid, let x ∈ M , and suppose that x‖S and x|T .

If there exists s ∈ S that is strongly homogeneous, then there exists t ∈ T and a

subset S′ of S \ {s} such that x‖S′ ∪ {t}.

Proof. Writing S = {s, s1, s2, · · · , sk}, we see that x‖S implies that s|{x}. Since
x|T , we see that s|T , and (since div(s) = 1), s|{t} for some t ∈ T . Pick a ∈ N and
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r ∈ M such that sr = ta, and pick α ∈ M and b ∈ N with,

xα = (ss1s2 · · · sk)b. Then, xαrb = tab(s1s2 · · · sk)b,

implying that x|{t, s1, s2, · · · , sk}. Thus, there exists R ⊆ {t, s1, s2, · · · , sk} such
that x‖R. We must have t ∈ R, otherwise x|S \ {s}, a contradiction. Therefore,
R = S′ ∪ {t} for some subset S′ of S. �

Corollary 3.10. Let M be a monoid and let x ∈ M . If x‖S, and if each element

of S is strongly homogeneous, then div(x) = |S|.

Proof. Suppose x‖T . We write S = {s1, s2, · · · , sk} and T = {t1, t2, · · · , tm}. Sup-
pose that k ≤ m. Repeatedly applying Lemma 3.9, we find T ′ ⊆ T such that
|T ′| ≤ |S| and x‖T ′. Since x‖T , we must, in fact, have T = T ′, and therefore m ≤ k,
implying that div(x) = k. �

We now give an example to show that “strongly homogeneous” cannot be replaced
by “homogeneous” in Lemma 3.9 or Corollary 3.10.

Example 3.11. Consider the following multiplicative subsemigroups of N:

A = [2, 3, 5, 7, 2 · 3 · 11, 5 · 7 · 13], and B = 2 · 3 · 5 · 7 N,

and let M = A∪B. Note that M is atomic, so for computing diversity, we need only
consider subsets of A(M).

We first show that div(2 · 3 · 11) = 1. Let 2 · 3 · 11‖S. Then, some s ∈ S ∩A(M) is
a multiple (in N) of 11. If s = 2 · 3 · 11, then S = {s}, otherwise, s ∈ B, and hence
s = 2 · 3 · 5 · 7 · 11 · y for some y ∈ N. But then S = {s} again, since

(2 · 3 · 11)(2 · 3 · 5 · 7 · 11 · 5 · 7 · y2) = s2,

and 2 · 3 · 11|s2. Therefore, div(2 · 3 · 11) = 1. A similar argument shows that
div(5 · 7 · 13) = 1.

Further, we claim that 2 · 3 · 11 is homogeneous. Let x‖{2 · 3 · 11} for some
x ∈ M \ {1}. Then xr = (2 · 3 · 11)k for some r ∈ M and k ∈ N. However (2 · 3 · 11)k

has unique factorization in M , since only atoms 2, 3, 2 ·3 ·11 divide as integers, but in
fact we must have k copies of 2 · 3 · 11 since that is the only source of rational prime
11. Hence x = (2 · 3 · 11)j for some j ∈ N, 2 · 3 · 11|x, and in particular 2 · 3 · 11|{x}.
Thus, 2 · 3 · 11 is homogeneous, and, similarly, so is 5 · 7 · 13.

We next observe that div(2 ·3 ·5 ·7) ≥ 4, as 2 ·3 ·5 ·7‖{2, 3, 5, 7}. However, we also
have 2 ·3 ·5 ·7‖{2 ·3 ·11, 5 ·7 ·13}. Thus, the conclusion of Corollary 3.10 does not hold
for M . Further, 2·3·5·7 divides none of {2, 2·3·11}, {3, 2·3·11}, {5, 2·3·11}, {7, 2·3·11}
and hence the conclusion of Lemma 3.9 does not hold for M .
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Proposition 3.12. Let S, T be subsets of M consisting of strongly homogeneous

elements. Suppose that x‖S and x‖T . Then |S| = |T | and {
√

sM : s ∈ S} = {
√

tM :
t ∈ T}.

Proof. By Corollary 3.10, |S| = div(x) = |T |. Choose s ∈ S. We have s|{x} (since
x‖S and s is strongly homogeneous) and x|T . As div(s) = 1, we have s|{t} for some
t ∈ T . Therefore,

√
tM ⊆

√
sM , and by Theorem 3.8,

√
tM =

√
sM . �

Corollary 3.13. Let M be atomic. Then the following are equivalent:

(1) Every atom of M is homogeneous.

(2) For every x ∈ M and for sets S = {π1, π2, · · · , πn} and T = {ξ1, ξ2, · · · , ξm}
of pairwise nonassociate atoms of M , if x‖S and x‖T then |S| = |T | and for

each 1 ≤ i ≤ n, there exists a permutation σ such that
√

πiM =
√

ξσ(i)M .

Proof. Suppose first that every atom of M is homogeneous. Then every atom of M

is strongly homogeneous by Theorem 3.8.5. The conclusion follows from Proposition
3.12.

Suppose now that the second condition holds. Choose π ∈ A(M). Taking S = {π},
the hypothesis implies that π is almost primary and thus div(x) = 1. Now choose
y ∈ M \M× with y|{π}. Factor y into atoms as y = ξ1 · · · ξk. Since y|{ξ1, . . . , ξk},
by hypothesis there is some ξi with

√
πM =

√
ξiM and hence

√
πM ⊇

√
ξiM . By

Theorem 3.8.1, π|{ξi} and so π|{y}. Hence π is homogeneous. �

4. Factorization into almost primary elements

Proposition 4.1. Let M be a monoid and let x ∈ M . Let x = y1y2 · · · yn for

yi ∈ M . Then x is homogeneous (respectively strongly homogeneous) if and only if

each yi is homogeneous (respectively strongly homogeneous) and the yi are pairwise

related (or equivalently,
√

yiM =
√

yjM for all 1 ≤ i ≤ j ≤ n).

Proof. If x is homogeneous (resp. strongly homogeneous), then each yi is homoge-
neous (resp. strongly homogeneous) by Theorem 3.8.4. Also, for each 1 ≤ i ≤ n,
xM ⊆ yiM , implying that

√
xM ⊆

√
yiM . By Theorem 3.8.1,

√
xM =

√
yiM .

On the other hand, if each yi is homogeneous and if
√

yiM =
√

yjM for each
1 ≤ i ≤ j ≤ n, then

√
xM =

√
y1y2 · · · ynM =

√
y1M ∩

√
y2M ∩ · · · ∩

√
ynM =

√
y1M.

So,
√

xM is prime and maximal amongst radicals of principal ideals, whence x is
homogeneous by Theorem 3.8.2.

Now, assume that each yi is strongly homogeneous and pairwise related. Then,√
xM =

√
yiM for each i. Letting z ∈ M \M× with z‖S and S = {x, s1, s2, · · · , sk},

11



the fact that
√

xM =
√

yiM implies that x|{yi}, whence z|{yi, s1, s2, · · · , sk}. So,
yi|{z} for each i, implying that x|{z}. Therefore x is strongly homogeneous. �

Definition 4.2. Let M be a monoid, let x ∈ M , and suppose that

x = q1q2 · · · qn,

where each qi is almost primary. If
√

qiM and
√

qjM are incomparable for all i 6= j,
we say that the above factorization is a reduced factorization of x into almost
primary elements.

Clearly, if a nonunit element x of a monoid M can be factored into almost primary
elements, then we may find a reduced factorization of x into almost primary elements,
merely by consolidating almost primary divisors of x whose radicals are comparable.

In Theorem 1.5 of [5], Halter-Koch showed that reduced factorizations into primary
elements are unique up to associates. In other words, if

q1q2 · · · qn = r1r2 · · · rm

are reduced factorizations of some nonunit x into primary elements, then n = m and
there exists σ ∈ Sn such that qi is associate to rσ(i).

If we consider factorizations into almost primary elements, then we need not have
uniqueness. For example, consider Example 3.6. For distinct rational primes p, q ∈ N,
there are two reduced factorizations of pq = (p)(q) = (−p)(−q). However, reduced
factorizations into almost primary elements are unique up to length and radicals, as
shown in the following.

Proposition 4.3. Let M be a monoid, let x ∈ M , and suppose that

q1q2 · · · qn = r1r2 · · · rm

are two reduced factorizations of x into almost primary elements. Then div(x) =
n = m and there exists σ ∈ Sn such that

√
qiM =

√
rσ(i)M .

Proof. As q1 is almost primary, we have (without loss of generality) that q1|rk
1 for

some k ∈ N. Thus,
√

r1M ⊆
√

q1M . However, r1 is almost primary, whence r1|qt
i

for some i, 1 ≤ i ≤ n. However, we then have
√

qiM ⊆
√

r1M ⊆
√

q1M , forcing
i = 1 (as our factorizations of x are reduced). Therefore

√
q1M =

√
r1M . Applying

induction, we see that m = n and that we may pair up the q’s and r’s by radicals.
To show that div(x) = n, we first note that div(x) ≤

∑n
i=1 div(qi) = n. Also,

x|{q1, q2, · · · , qn}, and if x|{q1, · · · , qi−1, qi+1, · · · , qn} for some 1 ≤ i ≤ n, then qi|qt
j

for some t ∈ N and j 6= i. However, this would imply that
√

qjM ⊆
√

qiM , a
contradiction. Therefore x‖{q1, q2, · · · , qn} and div(x) ≥ n. �
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This next theorem, informally speaking, considers conditions that are as close as
we can hope to div(·) : M \M× → N ∪ {∞} being a homomorphism of semigroups.

Theorem 4.4. Let M be a monoid. For x ∈ M \M×, the following are equivalent:

(1) If div(x) ≥ 2, then there exist y, z ∈ M \ M× with x = yz and div(x) =
div(y) + div(z).

(2) x can be written as a product of div(x) almost primary elements.

(3) There exists a reduced factorization of x into almost primary elements.

Additionally, if M is atomic, then diva(M) = 1 if and only if 1-3 hold for every

x ∈ M \M×.

Proof. (1⇒ 2): If div(x) = 1, there is nothing to prove. If div(x) = n ≥ 2, we may
repeatedly apply 1 to obtain x = y1y2 · · · yn with div(yi) = 1. It then follows that
each yi is almost primary.

(2⇒3): Write x as a product of div(x) almost primary elements and, if necessary,
group factors with comparable radicals together.

(3⇒1): Suppose that x = q1q2 · · · qn is such a reduced factorization and that
n ≥ 2. By Proposition 4.3, div(x) = n =

∑n
i=1 div(qi).

Now suppose 1-3 hold for all x ∈ M \M×. Let x ∈ M with div(x) ≥ 2. By condi-
tion 1, x is reducible, hence diva(M) = 1. On the other hand, suppose diva(M) = 1.
Then every atom of M is almost primary. Hence every x ∈ M \ M× can be fac-
tored into almost primary elements, and thus has a reduced factorization into almost
primary elements. �

Theorem 4.5. Let M be a monoid. Then, the following are equivalent.

(1) Every nonunit element of M has a reduced factorization into primary ele-

ments (i.e. M is a WFM).

(2) Given x ∈ M \M×, there exist homogeneous q1, q2, · · · , qn (each with distinct

radicals) such that x = q1q2 · · · qn, where this factorization into homogeneous

elements is unique in the sense that if x = q′1q
′
2 · · · q′n is any reduced factor-

ization of x into almost primary elements, then there exists σ ∈ Sn such that

qi is associate to q′σ(i).

Proof. (1⇒ 2): This follows from Theorem 1.5 of [5].
(2⇒ 1): It suffices to show that every homogeneous element is primary. Let q ∈ M

be homogeneous, and suppose that q|ab for some a, b ∈ M . We may assume that a

and b are nonunits of M (otherwise q|a or q|b). By the hypothesis, we have reduced
factorizations

a = a1a2 · · · am and b = b1b2 · · · bn

of a and b into homogeneous elements. Since q is almost primary, q|{ai} for some i

or q|{bi} for some j, i.e. either ai ∼ q or bj ∼ q. If q|{ai} and q|{bj} for some i and
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j, then we are done, for q divides a power of a and a power of b. So, without loss of
generality, assume that a1 ∼ q and each bj is unrelated to q. Since ∼ is an equivalence
relation on homogeneous elements and the factorization of a is reduced, a1 and q

are unrelated to all the bj and all the other ai. When we reduce the factorization
a1a2 · · · amb1b2 · · · bn of ab, we combine related elements, so a1 is untouched. In other
words, a1c1c2 · · · ct is a reduced factorization of ab into almost primary elements, for
some almost primary elements ck.

Write ab = qr. If r ∈ M×, then by hypothesis, q is an associate of a1 and
all the ci are units, a contradiction. Therefore, we have a reduced factorization of
r1r2 · · · rs of r into homogeneous elements. Since no more than one of the ri can
share the same radical as q, either qr1r2 · · · rs is a reduced factorization of ab into
almost primary elements, or (without loss of generality) q ∼ r1 and (qr1)r2 · · · rs is
a reduced factorization of ab into almost primary elements. By the hypothesis, we
have a1 an associate of either q or qr1. In either case q|a1 and thus q|a.

We conclude that q is primary, and therefore M is weakly factorial. �
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