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If Z represents the integers and Q the rationals, then let

Int(Z) = {
f (X)

∣∣ f (X) ∈ Q[X] with f (z) ∈ Z for all z ∈ Z
}

represent the much studied ring of integer-valued polynomials. Given f ∈ Int(Z), we denote the image
set of f on Z as f (Z) = { f (x) | x ∈ Z}, the leading coefficient of f as lc( f ) and the degree of f (X)

as deg( f (X)). We also denote the set of nonnegative integers as N0 and the set of positive integers
as N. For n ∈ N0, let

(X
n

) = X(X−1)···(X−n+1)
n! represent the nth element of the well-known binomial

basis of Int(Z) over Z. The purpose of this note is to characterize the pairs of polynomials ( f , g) in
Int(Z) such that f (Z) = g(Z). Clearly, if f (X) = z1 and g(X) = z2 in Int(Z) are constant polynomials,
then f (Z) = g(Z) if and only if z1 = z2. If f (X) in Int(Z) is not constant, then the image set f (Z) is
unbounded. Moreover, if deg( f (X)) and deg(g(X)) have opposite parity (i.e., one even and the other
odd), then f (Z) �= g(Z).
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Our work is motivated by several papers by McQuillan [8,9] and Gilmer [7] which explore proper-
ties related to the rings

Int(S, D) = {
f (X)

∣∣ f (X) ∈ K [X] with f (s) ∈ D for all s ∈ S
}

where D is an integral domain with quotient field K . Particular interest in Int(S, D) has appeared
in the recent literature for the case where D = Z and S = P is the set of prime numbers in Z (see
[4,5]). Good general references for rings of integer-valued polynomials determined by subsets are the
monograph of Cahen and Chabert [1] or their succeeding survey paper [2]. There is also a connection
between the question we explore here and the notions of an interpolation domain (considered in
[6,3]) and the parameterization of integral values of polynomials (considered in [10]).

We begin by defining an equivalence relation on Int(Z), setting f ∼ g (for f , g ∈ Int(Z)) if there is
some n ∈ Z such that for all X ∈ Z either f (X) = g(X − n) or f (X) = g(−X − n). Certainly if f ∼ g
then f (Z) = g(Z). The converse does not hold, as demonstrated by Lemma 1.

Lemma 1. Let f ∈ Int(Z) be such that f (−X) = f (X − k) for some odd integer k, and set h(X) = f (2X).
Then h(Z) = f (Z).

Proof. Let x ∈ Z. Then

f (x) =
{

h( x
2 ) if x is even,

h(−x−k
2 ) if x is odd

and hence f (x) ∈ h(Z) so f (Z) ⊆ h(Z). The reverse containment is trivial. �
Note that the condition f (−X) = f (X −k) in Lemma 1 is equivalent to the condition that f (X − k

2 )

be an even function, which in turn implies that deg( f ) is even. This condition applies to all even
binomial polynomials

( X
2n

) = x(x−1)(x−2)···(x−2n+1)
(2n)! .

Our main result is that the equivalence relation ∼ together with the phenomenon from Lemma 1
suffice to provide a converse.

Theorem 2. Let f , g ∈ Int(Z), with |lc( f )| � |lc(g)|. Then f (Z) = g(Z) if and only if one of the following
holds:

(1) f ∼ g, or
(2) f (−X) = f (X − k) for some odd integer k, and g ∼ h where h(X) = f (2X).

The remainder of this note is dedicated to the proof of this theorem. In both cases above,
deg( f ) = deg(g). By the comments following Lemma 1, in case (2) this degree must be even. Fur-
ther, in case (1), |lc( f )| = |lc(g)|; whereas in case (2), |lc( f )| < |lc(g)| (provided deg( f ) > 0).

We assume henceforth that f (Z), for f (X) ∈ Int(Z), is unbounded above. In particular we exclude
constant polynomials f . If deg( f ) > 0, then | f (Z)| is infinite. If f (Z) were bounded above, then it
must be unbounded below, so to compare { f , g} we instead compare {− f ,−g}, because (− f )(Z) =
(−g)(Z) is unbounded above. Hence the function

σ(x) = min
{

y: y ∈ f (Z), y > x
}

is well defined. By taking f (−X) ∼ f (X) if necessary, we may also assume that lc( f ) > 0. With this
notation and assumptions, we make the following definitions.
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Definition 3. Let f ∈ Int(Z).

(a) If there exists an A ∈ R such that f (x + 1) = σ( f (x)) for all x ∈ Z with x > A, then f is of type 1.
(b) If there exists an A ∈ R such that f (x+1) = σ 2( f (x)) for all x ∈ Z with x > A, then f is of type 2.

Before proceeding to a proof of Theorem 2, Lemmas 5 and 6 will offer a proof of the following
(under the above assumptions).

Proposition 4. Each f ∈ Int(Z) is of type 1 or 2.

Because the conditions of Definition 3 are mutually exclusive, no f ∈ Int(Z) can be of both type 1
and type 2. Note that if f ∼ g , then f , g are of the same type. Our first lemma considers polynomials
of odd degree.

Lemma 5. Let f ∈ Int(Z) be of odd degree. Then f is of type 1.

Proof. Recall that we assume lc( f ) > 0, and hence limx→+∞ f ′(x) = +∞. We choose B > 0 with
f ′(x) > 0 for all x � B . Because limx→+∞ f (x) = +∞ and limx→−∞ f (x) = −∞, we may choose A > B
satisfying f (x) < f (A) for all x < A and f (x) > f (A) for all x > A. Let x ∈ Z with x > A. Because
f ′ > 0 on [B,+∞) ⊇ [A,+∞), f (x+1) > f (x). If there were some y ∈ Z with f (x+1) > f (y) > f (x),
then y > A by choice of A, but then x < y < x + 1 by choice of B , which is impossible as x, y ∈ Z.
Hence f (x + 1) = σ( f (x)) and f is of type 1. �

We now consider polynomials of even degree.

Lemma 6. Let f ∈ Int(Z) be of even degree. Then f is of type 1 or 2. It is of type 1 if and only if there is
some k ∈ Z with f (X − k) = f (−X). Lastly, if f is of type 2 then there is some k ∈ Z with f (x + 1) =
σ( f (−x − k)) = σ 2( f (x)) for all x > A − k.

Proof. Let f be of even degree. As in Lemma 5, there is a constant B so that for all x > B , f (x) <

f (x + 1). However, these might not be consecutive in f (Z).
Suppose first that for some k ∈ Z, f (−X) = f (X − k). Then f ([B − k,+∞)) = f ((−∞,−B]). Thus

the only values that can be between f (x) and f (x + 1) for x > N are f ((−B, B − k)). As this set of
potential exceptions is finite and limx→+∞ f (x) = +∞, there is some A > B such that, for all x > A,
f (x + 1) = σ( f (x)). Hence f is of type 1.

Suppose on the other hand that there is no k ∈ Z such that f (−X) = f (X − k). We will show
that f is of type 2 (and hence not of type 1). Write f = aXn + b Xn−1 + O (Xn−2), with n even.
We set gt(X) = f (X − t) − f (−X) = (2b − ant)Xn−1 + O (Xn−2), and set c = 2b

an . For t �= c, we have
lc(gt) = 2b − ant . Hence lc(gt) > 0 for t < c and lc(gt) < 0 for t > c. We claim there exists k ∈ Z such
that lc(gk−1) > 0 and lc(gk) < 0. If c /∈ Z, then choose k = 1 + �c�. If c ∈ Z, then by our hypothesis gc

is not the zero polynomial so lc(gc) �= 0. If lc(gc) < 0 choose k = c, otherwise choose k = c + 1.
It follows that there is an integer constant C > B so that, for all x � C , gk−1(x) > 0 and gk(x) < 0,

that is f (x − k + 1) > f (−x) > f (x − k). Applying these inequalities repeatedly yields f (C − k) <

f (−C) < f (C − k + 1) < f (−C − 1) < f (C − k + 2) < · · · . Only f ((−C, C − k)) does not appear here.
As this list is finite, there is some constant A > C so that for all x > A, f (x + 1) = σ 2( f (x)). Hence f
is of type 2. �

We are now ready to consider the case of f , g ∈ Int(Z) with f (Z) = g(Z). In Lemma 7 we will
show that if f , g are of the same type then f ∼ g . We will then show in Lemma 8 that if f is of
type 1 and g is of type 2, then f � g and in fact g(X) ∼ f (2X).

Lemma 7. Let f , g ∈ Int(Z) be of the same type with f (Z) = g(Z). Then f ∼ g.
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Proof. Suppose first that f , g are of type 1, with corresponding constants A f , Ag . Let x ∈ Z be chosen
with x > max(A f , Ag). Assume without loss that f (x) � g(x). Since x > Ag and f (x) ∈ g(Z), it follows
that f (x) = σ n(g(x)) = g(x + n) for some n ∈ N0. But now f (x + j) = σ j( f (x)) = σ n+ j(g(x)) = g(x +
n + j) for all j ∈ N0. Hence f (X) = g(X + n) and thus f ∼ g .

Suppose now that f , g are of type 2, with corresponding constants A f , Ag . There are integers
x,k, y,h ∈ Z so that f (x) < f (−x − k) < f (x + 1) < f (−x − k − 1) < · · · , these being consecutive
values of f , and g(y) < g(−y − h) < g(y + 1) < g(−y − h − 1) < · · · , these being consecutive values
of g . As f (Z) = g(Z), we can arrange x and y to be such that either f (x) = g(y) or f (x) = g(−y −h),
the values of both lists agreeing from then on. In the first case, let n = y − x. Then, f (X) and g(X +n)

agree on x, x + 1, . . . and thus f (X) = g(X + n). In the second case, let n = y + h − x. Then f (X) and
g(−X − n) agree on x, x + 1, . . . and thus f (X) = g(−X − n). In both cases f ∼ g . �
Lemma 8. Let f , g ∈ Int(Z) with f (Z) = g(Z). Suppose that f is of type 1 and g is of type 2. Then f (−X) =
f (X − k) for some odd integer k, and g ∼ h where h(X) = f (2X).

Proof. Let x, y,k ∈ Z be such that f (x) < f (x + 1) < f (x + 2) < · · · , these being consecutive values
of f , and g(y) < g(−y −k) < g(y + 1) < g(−y −k − 1) < · · · , these being consecutive values of g . Let
h(X) = f (2X). We arrange the lists so that either h(x) = g(y) or h(x) = g(−y − k). In the first case,
for all j ∈ N0 we have that h(x + j) = f (2x + 2 j) = σ 2 j( f (2x)) = σ 2 j(h(x)) = σ 2 j(g(y)) = g(y + j)
and hence h(X) = g(Y ). In the second case, for all j ∈ N0, h(x + j) = f (2x + 2 j) = σ 2 j( f (2x)) =
σ 2 j(h(x)) = σ 2 j(g(−y − k)) = g(−y − k − j) and hence h(X) = g(−Y − k). In either case, h ∼ g .

As g is of type 2, deg(g) is even. Since h ∼ g , deg(h) must be even. Finally deg( f ) = deg(h), so
deg( f ) is even. As f is of type 1, by Lemma 6 there is some k ∈ Z with f (X − k) = f (−X). Now h
satisfies h(−X) = h(X − k

2 ). But h is of type 2 since h ∼ g . Hence, by Lemma 6, k
2 is not an integer

and hence k is odd. �
By Lemma 6 we know that all type 1 even-degree polynomials f satisfy f (X − k) = f (−X) for

some k ∈ Z. By Lemma 8 we know that if such a polynomial shares an image set with a type 2
polynomial, then k must be odd. Lemma 1 gives the converse of this statement and completes the
proof of Theorem 2.

We note that our proofs did not use the full power of f (Z) = g(Z), rather the intersection of each
image set with some ray [C,+∞). This raises the question of what other infinite subsets of Z might
be used instead of such a ray. Also, if we replace (Z,Q) with some other pair of domains, a natural
question is to characterize when f , g have the same image on the subdomain.
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