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Standard Notation

We consider arithmetic in certain (multiplicative)
submonoids of N.
As a tool, we also consider multiplication in Zn.

For any set S, we write:
S× for the units of S
S• for the non-units of S

irreducibles, elasticity ρ, valuation νp(x), etc.
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Nonstandard Notation

Let Γ ⊆ N, and let n ∈ N.
We let [ ]n : Z→ Zn be the natural epimorphism.

[Γ]n = {[x ]n ∈ Zn : x ∈ Γ•} ⊆ Zn

〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1} ⊆ N

Γn = {gcd(x ,n) : x ∈ Γ•} ⊆ [1,n]

= {gcd(x ,n) : [x ] ∈ [Γ]n}
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Monoids Defined

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Trivial: Γ ⊆ 〈Γ〉n ⊆ 〈Γ〉k , for any k |n.

If 〈Γ〉n is closed, we call 〈Γ〉n a congruence monoid.
If also |[Γ]n| = 1, 〈Γ〉n is an arithmetic congruence monoid.
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Arithmetic Congruence Monoid Classification

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

For ACM: |[Γ]n| = |Γn| = 1. Γn = {d}, d = gcd(m,n)

[Γ]n = {[m]}, and [m][m] = [m]. (in Zn)

1. [Γ]n = [Γ]×n . “regular” Note: must have [m] = [1].
2. [Γ]n = [Γ]•n. “singular”

2.1 [m] = [0]. “Ma,a”. Here 〈Γ〉n = (nN) ∪ {1}
2.2 d = pα for α,p ∈ N, p prime. “local”
2.3 d is not a prime power. “global”
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ACM Results: Regular

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Regular ACM: [Γ]n = [Γ]×n = {[1]}
e.g. Hilbert monoid 1 + 4N0.

Very nice behavior: 〈Γ〉n is saturated in N, and hence Krull.
There exists a transfer homomorphism φ : 〈Γ〉n → B(Z×

n ),
the block monoid on the (multiplicative) group Z×

n .
(well-studied arithmetic)
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ACM Results: Singular Ma,a Local

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Singular ACM: [Γ]n = [Γ]•n = {[m]}
Ma,a local: m = n = d = pα

νp : 〈Γ〉n → 〈α, α + 1, . . . ,2α− 1〉 is a transfer
homomorphism into N0 under addition.

ρ = 2α−1
α , accepted, no primes

If α = 1, half-factorial
If α > 1, not half-factorial, not fully elastic, ∆ = {1}.
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ACM Results: Singular Ma,a Global

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Singular ACM: [Γ]n = [Γ]•n = {[m]}
Ma,a global: m = n = d = pα1

1 · · · p
αk
k

There is a natural transfer homomorphism
φ : 〈Γ〉n → (α1, . . . , αk ) + Nk

0, a submonoid of Nk
0 under

addition.

Each element is product of two irreducibles “bifurcus”.
no primes, ρ =∞, not fully elastic, ∆ = {1}.
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ACM Results: Intermezzo

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

ACM: [Γ]n = [Γ]•n = {[m]}, Γn = {d}

Theorem: 〈Γ〉•n = (dN) ∩ 〈Γ〉•n/d where

〈dN〉d is a singular Ma,a ACM
〈Γ〉n/d is a regular ACM
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ACM Results: Singular Local

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Singular Local ACM: [Γ]n = {[m]}, Γn = {d} where d = pα

There exists minimal β ≥ α such that pβ ∈ 〈Γ〉n.

ρ = α+β−1
α , half-factorial if α = β = 1, ∆ a known interval.

Accepted? sometimes. Full? sometimes.
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ACM Results: Singular Global

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Singular global ACM: [Γ]n = {[m]}, Γn = {d}, d = pαr

Each element is the product of at most λ irreducibles.
no primes, ρ =∞, not fully elastic, ∆ ⊆ [1, λ− 2].
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Congruence Monoid Classification

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Set d = lcm(Γn), δ = gcd(Γn)

1. If d = δ then |Γn| = 1. “J-monoid”
2. [Γ]n = [Γ]×n . “regular” i.e. Γn = {1}
3. [Γ]n = [Γ]•n. “singular” i.e. 1 /∈ Γn

d = pα “local” d = pαr “global”
4. [Γ]×n , [Γ]•n each nonempty. “semi-singular”
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Congruence Monoid General Result

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Thm: 〈Γ〉n/d is a regular CM and [Γ]n/d ≤ Z×
n/d
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CM Results: Regular

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Regular CM: [Γ]n = [Γ]×n d = 1 [Γ]n ≤ Z×
n

Lemma: 〈Γ〉n is saturated in N (hence Krull)
Pf: Let x , y ∈ N• with x , xy ∈ 〈Γ〉n. Then [x ]n ∈ [Γ]n ≤ Z×

n .
Let z ∈ N with [z]n[x ]n = [1]n. zxy ∈ 〈Γ〉n, so
[zxy ]n = [z]n[x ]n[y ]n = [y ]n ∈ [Γ]n. Hence y ∈ 〈Γ〉n.
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CM Results: Regular

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Regular CM: [Γ]n = [Γ]×n d = 1, hence [Γ]n ≤ Z×
n

There is a transfer homomorphism φ : 〈Γ〉n → B(Z×
n /[Γ]n),

the block monoid on the quotient group Z×
n /[Γ]n.

(well-studied arithmetic)
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CM Results: Intermezzo

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Theorem: (dN) ∩ 〈Γ〉•n/d ⊆ 〈Γ〉
•
n ⊆ (δN) ∩ 〈Γ〉•n/d

Note 1: Recall that 〈Γ〉n/d is a regular CM
Note 2: If d = δ “J-monoid” (dN) ∩ 〈Γ〉•n/d = 〈Γ〉•n
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J-monoids Group Structure

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
J-monoid: Γn = {d} 〈Γ〉•n = (dN) ∩ 〈Γ〉•n/d

Theorem: [Γ]n has a group structure under multiplication

Example: Γ = {4,16,24,36,44,56,64,76,84,96},
n = 100,d = 4. [Γ]100

∼= Z10. The identity is. . . 76.
The φ(10) = 4 generators are. . . 4, 44, 64, and 84.
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CM Results: Regular and Semi-Singular

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}

Thm: Suppose [Γ]×n 6= ∅. Then 〈Γ〉n has∞ many primes.
Pf: [1] ∈ [Γ]n, Dirichlet’s theorem on primes.

Note: If a CM is singular, then it has no primes.

Thm: Suppose 〈Γ〉n is semi-singular, and [Γ]•n is a global
singular ACM. Then ρ =∞ and the elasticity is full.
e.g. Γ = {1,6},n = 6; {1} ρ = 1, {6} ρ =∞ not full
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CM Results: Singular Local

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Singular Local CM: d = pα, δ = pγ

There exists minimal β ≥ γ such that pβ ∈ 〈Γ〉n.

Thm: α+β−1
cγ ≤ ρ ≤ α+β−1

γ , for c = d(α + β − 1− γ)/βe

Note 1: If J-monoid, then c = 1, α = γ, and equality
Note 2: Half-factorial if α = β = γ = 1
Accepted? sometimes. Full? sometimes.
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CM Results: Singular Global

Recall that Γ ⊆ N, n ∈ N, [Γ]n = {[x ]n ∈ Zn : x ∈ Γ•},
〈Γ〉n = {x ∈ N : [x ]n ∈ [Γ]n} ∪ {1}, Γn = {gcd(x ,n) : x ∈ Γ•}
d = lcm(Γn), δ = gcd(Γn)

Singular global CM: d = pαr

Thm: Suppose d , δ share the same prime factors. Then
each element is the product of at most λ irreducibles.

Note 1: If J-monoid, hypothesis is met
Note 2: ρ =∞, not fully elastic
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