ACMs (background)

Congruence Monoids

Bibliography

Arithmetic of Congruence Monoids

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

Joint Math Meetings January 10, 2013

http://www-rohan.sdsu.edu/~vadim/cm.pdf

ACMs (background

Congruence Monoids

Bibliography

Shameless advertising

Please encourage your students to apply to the

San Diego State University Mathematics REU.

http://www.sci.sdsu.edu/math-reu/index.html

This work was done in Summer 2012, jointly with undergraduates Arielle Fujiwara, Joseph Gibson, Matthew Jenssen, Daniel Montealegre, Ari Tenzer.

Introduction •oo ACMs (background

Congruence Monoids

Bibliography

Standard Notation

We consider arithmetic in certain (multiplicative) submonoids of \mathbb{N} . As a tool, we also consider multiplication in \mathbb{Z}_n .

For any set *S*, we write: S^{\times} for the units of *S S*[•] for the non-units of *S*

irreducibles, elasticity ρ , valuation $\nu_{\rho}(x)$, etc.

Introduction •oo ACMs (background

Congruence Monoids

Bibliography

Standard Notation

We consider arithmetic in certain (multiplicative) submonoids of \mathbb{N} .

As a tool, we also consider multiplication in \mathbb{Z}_n .

For any set *S*, we write: S^{\times} for the units of *S* S^{\bullet} for the non-units of *S*

irreducibles, elasticity ρ , valuation $\nu_{\rho}(x)$, etc.

Introduction •oo ACMs (background

Congruence Monoids

Bibliography

Standard Notation

We consider arithmetic in certain (multiplicative) submonoids of \mathbb{N} .

As a tool, we also consider multiplication in \mathbb{Z}_n .

For any set *S*, we write:

- \mathcal{S}^{\times} for the units of \mathcal{S}
- S^{\bullet} for the non-units of S

irreducibles, elasticity ρ , valuation $\nu_{\rho}(x)$, etc.

ACMs (background)

Congruence Monoids

Bibliography

Nonstandard Notation

Let $\Gamma \subseteq \mathbb{N}$, and let $n \in \mathbb{N}$. We let $[]_n : \mathbb{Z} \to \mathbb{Z}_n$ be the natural epimorphism.

 $[\Gamma]_n = \{ [x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet} \} \subseteq \mathbb{Z}_n \\ \langle \Gamma \rangle_n = \{ x \in \mathbb{N} : [x]_n \in [\Gamma]_n \} \cup \{ 1 \} \subseteq \mathbb{N}$

 $\Gamma_n = \{ \gcd(x, n) : x \in \Gamma^{\bullet} \} \subseteq [1, n] \\= \{ \gcd(x, n) : [x] \in [\Gamma]_n \}$

Nonstandard Notation

Let $\Gamma \subseteq \mathbb{N}$, and let $n \in \mathbb{N}$. We let $[]_n : \mathbb{Z} \to \mathbb{Z}_n$ be the natural epimorphism.

$$[\Gamma]_n = \{ [x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet} \} \subseteq \mathbb{Z}_n \\ \langle \Gamma \rangle_n = \{ x \in \mathbb{N} : [x]_n \in [\Gamma]_n \} \cup \{ 1 \} \subseteq \mathbb{N}$$

$$\Gamma_n = \{ \gcd(x, n) : x \in \Gamma^{\bullet} \} \subseteq [1, n] \\= \{ \gcd(x, n) : [x] \in [\Gamma]_n \}$$

ACMs (background)

Congruence Monoids

Bibliography

Monoids Defined

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Trivial: $\Gamma \subseteq \langle \Gamma \rangle_n \subseteq \langle \Gamma \rangle_k$, for any k | n.

If $\langle \Gamma \rangle_n$ is closed, we call $\langle \Gamma \rangle_n$ a *congruence monoid*. If also $|[\Gamma]_n| = 1$, $\langle \Gamma \rangle_n$ is an *arithmetic congruence monoid*.

ACMs (background)

Congruence Monoids

Bibliography

Monoids Defined

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^\bullet\}$

Trivial: $\Gamma \subseteq \langle \Gamma \rangle_n \subseteq \langle \Gamma \rangle_k$, for any k | n.

If $\langle \Gamma \rangle_n$ is closed, we call $\langle \Gamma \rangle_n$ a congruence monoid. If also $|[\Gamma]_n| = 1$, $\langle \Gamma \rangle_n$ is an *arithmetic congruence monoid*.

Arithmetic Congruence Monoid Classification

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

For ACM: $|[\Gamma]_n| = |\Gamma_n| = 1$. $\Gamma_n = \{d\}, d = gcd(m, n)$ $[\Gamma]_n = \{[m]\}, and [m][m] = [m]$. (in \mathbb{Z}_n)

1. $[\Gamma]_n = [\Gamma]_n^{\times}$. "regular" Note: must have [m] = [1]. 2. $[\Gamma]_n = [\Gamma]_n^{\circ}$. "singular" 2.1 [m] = [0]. " $M_{a,a}$ ". Here $\langle \Gamma \rangle_n = (n\mathbb{N}) \cup \{1\}$ 2.2 $d = p^{\alpha}$ for $\alpha, p \in \mathbb{N}, p$ prime. "local" 2.3 *d* is not a prime power. "global"

Arithmetic Congruence Monoid Classification

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

For ACM: $|[\Gamma]_n| = |\Gamma_n| = 1$. $\Gamma_n = \{d\}, d = gcd(m, n)$ $[\Gamma]_n = \{[m]\}, and [m][m] = [m]$. (in \mathbb{Z}_n)

1. $[\Gamma]_n = [\Gamma]_n^{\times}$. "regular" Note: must have [m] = [1]. 2. $[\Gamma]_n = [\Gamma]_n^{\bullet}$. "singular" 2.1 [m] = [0]. " $M_{a,a}$ ". Here $\langle \Gamma \rangle_n = (n\mathbb{N}) \cup \{1\}$ 2.2 $d = p^{\alpha}$ for $\alpha, p \in \mathbb{N}, p$ prime. "local" 2.3 *d* is not a prime power. "global"

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Regular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Regular ACM: $[\Gamma]_n = [\Gamma]_n^{\times} = \{[1]\}$ e.g. Hilbert monoid $1 + 4\mathbb{N}_0$.

Very nice behavior: $\langle \Gamma \rangle_n$ is saturated in \mathbb{N} , and hence Krull. There exists a transfer homomorphism $\phi : \langle \Gamma \rangle_n \to \mathcal{B}(\mathbb{Z}_n^{\times})$, the block monoid on the (multiplicative) group \mathbb{Z}_n^{\times} . (well-studied arithmetic)

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Regular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Regular ACM: $[\Gamma]_n = [\Gamma]_n^{\times} = \{[1]\}$ e.g. Hilbert monoid $1 + 4\mathbb{N}_0$.

Very nice behavior: $\langle \Gamma \rangle_n$ is saturated in \mathbb{N} , and hence Krull. There exists a transfer homomorphism $\phi : \langle \Gamma \rangle_n \to \mathcal{B}(\mathbb{Z}_n^{\times})$, the block monoid on the (multiplicative) group \mathbb{Z}_n^{\times} . (well-studied arithmetic)

SAN DIEGO STATE UNIVERSITY

・ コット (雪) (小田) (コット 日)

ACM Results: Singular M_{a,a} Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

Singular ACM: $[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}$ $M_{a,a}$ local: $m = n = d = p^{\alpha}$

 $\nu_{\rho}: \langle \Gamma \rangle_n \rightarrow \langle \alpha, \alpha + 1, \dots, 2\alpha - 1 \rangle$ is a transfer homomorphism into \mathbb{N}_0 under addition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ACM Results: Singular M_{a,a} Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

Singular ACM: $[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}$ $M_{a,a}$ local: $m = n = d = p^{\alpha}$

 $\nu_p : \langle \Gamma \rangle_n \rightarrow \langle \alpha, \alpha + 1, \dots, 2\alpha - 1 \rangle$ is a transfer homomorphism into \mathbb{N}_0 under addition.

$$\rho = \frac{2\alpha - 1}{\alpha}$$
, accepted, no primes
If $\alpha = 1$, half-factorial
If $\alpha > 1$, not half-factorial, not fully elastic, $\Delta = \{1\}$.

ACM Results: Singular $M_{a,a}$ Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

Singular ACM: $[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}$ $M_{a,a}$ global: $m = n = d = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$

There is a natural transfer homomorphism $\phi : \langle \Gamma \rangle_n \to (\alpha_1, \dots, \alpha_k) + \mathbb{N}_0^k$, a submonoid of \mathbb{N}_0^k under addition.

Each element is product of two irreducibles "bifurcus". no primes, $\rho = \infty$, not fully elastic, $\Delta = \{1\}$.

ACM Results: Singular M_{a,a} Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^\bullet\}$

Singular ACM: $[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}$ $M_{a,a}$ global: $m = n = d = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$

There is a natural transfer homomorphism $\phi : \langle \Gamma \rangle_n \to (\alpha_1, \dots, \alpha_k) + \mathbb{N}_0^k$, a submonoid of \mathbb{N}_0^k under addition.

Each element is product of two irreducibles "bifurcus". no primes, $\rho = \infty$, not fully elastic, $\Delta = \{1\}$.

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Intermezzo

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

ACM: $[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}, \Gamma_n = \{d\}$

Theorem: $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$ where

 $\langle d\mathbb{N} \rangle_d$ is a singular $M_{a,a}$ ACM $\langle \Gamma \rangle_{n/d}$ is a regular ACM

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Intermezzo

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

ACM:
$$[\Gamma]_n = [\Gamma]_n^{\bullet} = \{[m]\}, \Gamma_n = \{d\}$$

Theorem: $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$ where

 $\langle d\mathbb{N} \rangle_d$ is a singular $M_{a,a}$ ACM $\langle \Gamma \rangle_{n/d}$ is a regular ACM

ACMs (background)

Congruence Monoids

ACM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Singular Local ACM: $[\Gamma]_n = \{[m]\}, \Gamma_n = \{d\}$ where $d = p^{\alpha}$

There exists minimal $\beta \geq \alpha$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

 $\rho = \frac{\alpha + \beta - 1}{\alpha}$, half-factorial if $\alpha = \beta = 1$, Δ a known interval. Accepted? sometimes. Full? sometimes.

ACMs (background)

Congruence Monoids

ACM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Singular Local ACM: $[\Gamma]_n = \{[m]\}, \Gamma_n = \{d\}$ where $d = p^{\alpha}$

There exists minimal $\beta \geq \alpha$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

 $\rho = \frac{\alpha + \beta - 1}{\alpha}$, half-factorial if $\alpha = \beta = 1$, Δ a known interval. Accepted? sometimes. Full? sometimes.

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Singular Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^\bullet\}$

Singular global ACM: $[\Gamma]_n = \{[m]\}, \Gamma_n = \{d\}, d = p^{\alpha}r$

Each element is the product of at most λ irreducibles. no primes, $\rho = \infty$, not fully elastic, $\Delta \subseteq [1, \lambda - 2]$.

ACMs (background)

Congruence Monoids

Bibliography

ACM Results: Singular Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^\bullet\}$

Singular global ACM: $[\Gamma]_n = \{[m]\}, \Gamma_n = \{d\}, d = p^{\alpha}r$

Each element is the product of at most λ irreducibles. no primes, $\rho = \infty$, not fully elastic, $\Delta \subseteq [1, \lambda - 2]$.

Congruence Monoid Classification

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Set $d = \operatorname{lcm}(\Gamma_n)$, $\delta = \operatorname{gcd}(\Gamma_n)$

1. If $d = \delta$ then $|\Gamma_n| = 1$. "J-monoid" 2. $[\Gamma]_n = [\Gamma]_n^{\times}$. "regular" i.e. $\Gamma_n = \{1\}$ 3. $[\Gamma]_n = [\Gamma]_n^{\bullet}$. "singular" i.e. $1 \notin \Gamma_n$ $d = p^{\alpha}$ "local" $d = p^{\alpha}r$ "global" 4. $[\Gamma]_n^{\times}, [\Gamma]_n^{\bullet}$ each nonempty. "semi-singular"

Congruence Monoid Classification

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Set $d = \operatorname{lcm}(\Gamma_n)$, $\delta = \operatorname{gcd}(\Gamma_n)$

1. If
$$d = \delta$$
 then $|\Gamma_n| = 1$. "J-monoid"
2. $[\Gamma]_n = [\Gamma]_n^{\times}$. "regular" i.e. $\Gamma_n = \{1\}$
3. $[\Gamma]_n = [\Gamma]_n^{\bullet}$. "singular" i.e. $1 \notin \Gamma_n$
 $d = p^{\alpha}$ "local" $d = p^{\alpha}r$ "global"
4. $[\Gamma]_n^{\times}, [\Gamma]_n^{\bullet}$ each nonempty. "semi-singular"

Congruence Monoid General Result

Recall that
$$\Gamma \subseteq \mathbb{N}$$
, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$,
 $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$
 $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$

Thm: $\langle \Gamma \rangle_{n/d}$ is a regular CM and $[\Gamma]_{n/d} \leq \mathbb{Z}_{n/d}^{\times}$

ACMs (background)

Congruence Monoids

Bibliography

CM Results: Regular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$

Regular CM: $[\Gamma]_n = [\Gamma]_n^{\times}$ d = 1 $[\Gamma]_n \leq \mathbb{Z}_n^{\times}$

Lemma: $\langle \Gamma \rangle_n$ is saturated in \mathbb{N} (hence Krull) Pf: Let $x, y \in \mathbb{N}^{\bullet}$ with $x, xy \in \langle \Gamma \rangle_n$. Then $[x]_n \in [\Gamma]_n \leq \mathbb{Z}_n^{\times}$. Let $z \in \mathbb{N}$ with $[z]_n[x]_n = [1]_n$. $zxy \in \langle \Gamma \rangle_n$, so $[zxy]_n = [z]_n[x]_n[y]_n = [y]_n \in [\Gamma]_n$. Hence $y \in \langle \Gamma \rangle_n$.

ACMs (background)

Congruence Monoids

Bibliography

CM Results: Regular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$

Regular CM:
$$[\Gamma]_n = [\Gamma]_n^{\times}$$
 $d = 1$, hence $[\Gamma]_n \leq \mathbb{Z}_n^{\times}$

There is a transfer homomorphism $\phi : \langle \Gamma \rangle_n \to \mathcal{B}(\mathbb{Z}_n^{\times}/[\Gamma]_n)$, the block monoid on the quotient group $\mathbb{Z}_n^{\times}/[\Gamma]_n$. (well-studied arithmetic)

ACMs (background

Congruence Monoids

CM Results: Intermezzo

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$

Theorem:
$$(d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet} \subseteq \langle \Gamma \rangle_{n}^{\bullet} \subseteq (\delta\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$$

Note 1: Recall that $\langle \Gamma \rangle_{n/d}$ is a regular CM Note 2: If $d = \delta$ "J-monoid" $(d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet} = \langle \Gamma \rangle_{n}^{\bullet}$

J-monoids Group Structure

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ J-monoid: $\Gamma_n = \{d\}$ $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$

Theorem: $[\Gamma]_n$ has a group structure under multiplication

Example: $\Gamma = \{4, 16, 24, 36, 44, 56, 64, 76, 84, 96\},\$ $n = 100, d = 4. [\Gamma]_{100} \cong \mathbb{Z}_{10}.$ The identity is... 76. The $\phi(10) = 4$ generators are... 4, 44, 64, and 84.

J-monoids Group Structure

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ J-monoid: $\Gamma_n = \{d\}$ $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$

Theorem: $[\Gamma]_n$ has a group structure under multiplication

Example: $\Gamma = \{4, 16, 24, 36, 44, 56, 64, 76, 84, 96\},\ n = 100, d = 4. [\Gamma]_{100} \cong \mathbb{Z}_{10}.$ The identity is... 76. The $\phi(10) = 4$ generators are... 4, 44, 64, and 84.

J-monoids Group Structure

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ J-monoid: $\Gamma_n = \{d\}$ $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$

Theorem: $[\Gamma]_n$ has a group structure under multiplication

Example: $\Gamma = \{4, 16, 24, 36, 44, 56, 64, 76, 84, 96\},\$ $n = 100, d = 4. \ [\Gamma]_{100} \cong \mathbb{Z}_{10}.$ The identity is... 76. The $\phi(10) = 4$ generators are... 4, 44, 64, and 84.

J-monoids Group Structure

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ J-monoid: $\Gamma_n = \{d\}$ $\langle \Gamma \rangle_n^{\bullet} = (d\mathbb{N}) \cap \langle \Gamma \rangle_{n/d}^{\bullet}$

Theorem: $[\Gamma]_n$ has a group structure under multiplication

Example: $\Gamma = \{4, 16, 24, 36, 44, 56, 64, 76, 84, 96\},\ n = 100, d = 4. \ [\Gamma]_{100} \cong \mathbb{Z}_{10}.$ The identity is... 76. The $\phi(10) = 4$ generators are... 4, 44, 64, and 84.

CM Results: Regular and Semi-Singular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Thm: Suppose $[\Gamma]_n^{\times} \neq \emptyset$. Then $\langle \Gamma \rangle_n$ has ∞ many primes. Pf: $[1] \in [\Gamma]_n$, Dirichlet's theorem on primes.

Note: If a CM is singular, then it has no primes.

Thm: Suppose $\langle \Gamma \rangle_n$ is semi-singular, and $[\Gamma]_n^{\bullet}$ is a global singular ACM. Then $\rho = \infty$ and the elasticity is *full*.

e.g. $\Gamma = \{1, 6\}, n = 6; \{1\} \rho = 1, \{6\} \rho = \infty$ not full

CM Results: Regular and Semi-Singular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Thm: Suppose $[\Gamma]_n^{\times} \neq \emptyset$. Then $\langle \Gamma \rangle_n$ has ∞ many primes. Pf: $[1] \in [\Gamma]_n$, Dirichlet's theorem on primes.

Note: If a CM is singular, then it has no primes.

Thm: Suppose $\langle \Gamma \rangle_n$ is semi-singular, and $[\Gamma]_n^{\bullet}$ is a global singular ACM. Then $\rho = \infty$ and the elasticity is *full*.

e.g. $\Gamma = \{1, 6\}, n = 6; \{1\} \ \rho = 1, \{6\} \ \rho = \infty$ not full

CM Results: Regular and Semi-Singular

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^\bullet\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^\bullet\}$

Thm: Suppose $[\Gamma]_n^{\times} \neq \emptyset$. Then $\langle \Gamma \rangle_n$ has ∞ many primes. Pf: $[1] \in [\Gamma]_n$, Dirichlet's theorem on primes.

Note: If a CM is singular, then it has no primes.

Thm: Suppose $\langle \Gamma \rangle_n$ is semi-singular, and $[\Gamma]_n^{\bullet}$ is a global singular ACM. Then $\rho = \infty$ and the elasticity is *full*.

e.g. $\Gamma = \{1, 6\}, n = 6; \{1\} \rho = 1, \{6\} \rho = \infty$ not full

CM Results: Regular and Semi-Singular

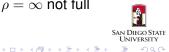
Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\operatorname{gcd}(x, n) : x \in \Gamma^{\bullet}\}$

Thm: Suppose $[\Gamma]_n^{\times} \neq \emptyset$. Then $\langle \Gamma \rangle_n$ has ∞ many primes. Pf: $[1] \in [\Gamma]_n$, Dirichlet's theorem on primes.

Note: If a CM is singular, then it has no primes.

Thm: Suppose $\langle \Gamma \rangle_n$ is semi-singular, and $[\Gamma]_n^{\bullet}$ is a global singular ACM. Then $\rho = \infty$ and the elasticity is *full*.

e.g.
$$\Gamma = \{1, 6\}, n = 6; \{1\} \rho = 1, \{6\} \rho = \infty$$
 not full



CM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular Local CM: $d = p^{\alpha}, \delta = p^{\gamma}$

There exists minimal $\beta \geq \gamma$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

Thm: $\frac{\alpha+\beta-1}{c\gamma} \le \rho \le \frac{\alpha+\beta-1}{\gamma}$, for $c = \lceil (\alpha+\beta-1-\gamma)/\beta \rceil$

CM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular Local CM: $d = p^{\alpha}, \delta = p^{\gamma}$

There exists minimal $\beta \geq \gamma$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

Thm: $\frac{\alpha+\beta-1}{c\gamma} \leq \rho \leq \frac{\alpha+\beta-1}{\gamma}$, for $c = \lceil (\alpha+\beta-1-\gamma)/\beta \rceil$

CM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular Local CM: $d = p^{\alpha}, \delta = p^{\gamma}$

There exists minimal $\beta \geq \gamma$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

Thm: $\frac{\alpha+\beta-1}{c\gamma} \leq \rho \leq \frac{\alpha+\beta-1}{\gamma}$, for $c = \lceil (\alpha+\beta-1-\gamma)/\beta \rceil$

CM Results: Singular Local

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular Local CM: $d = p^{\alpha}, \delta = p^{\gamma}$

There exists minimal $\beta \geq \gamma$ such that $p^{\beta} \in \langle \Gamma \rangle_n$.

Thm:
$$\frac{\alpha+\beta-1}{c\gamma} \leq \rho \leq \frac{\alpha+\beta-1}{\gamma}$$
, for $c = \lceil (\alpha+\beta-1-\gamma)/\beta \rceil$

CM Results: Singular Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular global CM: $d = p^{\alpha}r$

Thm: Suppose d, δ share the same prime factors. Then each element is the product of at most λ irreducibles.

Note 1: If J-monoid, hypothesis is met Note 2: $\rho = \infty$, not fully elastic

CM Results: Singular Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular global CM: $d = p^{\alpha}r$

Thm: Suppose d, δ share the same prime factors. Then each element is the product of at most λ irreducibles.

Note 1: If J-monoid, hypothesis is met Note 2: $\rho = \infty$, not fully elastic

CM Results: Singular Global

Recall that $\Gamma \subseteq \mathbb{N}$, $n \in \mathbb{N}$, $[\Gamma]_n = \{[x]_n \in \mathbb{Z}_n : x \in \Gamma^{\bullet}\}$, $\langle \Gamma \rangle_n = \{x \in \mathbb{N} : [x]_n \in [\Gamma]_n\} \cup \{1\}, \Gamma_n = \{\gcd(x, n) : x \in \Gamma^{\bullet}\}$ $d = \operatorname{lcm}(\Gamma_n), \delta = \gcd(\Gamma_n)$ Singular global CM: $d = p^{\alpha}r$

Thm: Suppose d, δ share the same prime factors. Then each element is the product of at most λ irreducibles.

Note 1: If J-monoid, hypothesis is met Note 2: $\rho = \infty$, not fully elastic

Bibliography

For Further Reading

- P. Baginski, S. Chapman Arithmetic Congruence Monoids: A Survey (under review)
- L. Crawford, VP, J. Steinberg, M. Wlliams Accepted Elasticity in Local ACMs (under review)
- M. Jenssen, D. Montealegre, VP Irreducible Factorization Lengths and the Elasticity Problem Within ℕ (to appear in American Math Monthly)
- A. Fujiwara, J. Gibson, M. Jenssen, D. Montealegre, VP, Ari Tenzer
 Arithmetic of Congruence Monoids (in preparation)
- C. Allen, VP, W. Radil, R. Rankin, H. Williams Full Elasticity in Local ACMs (in preparation)

