The First Obstacle

Distinct Solutions

Closing Thoughts

Checkbooks, Cookbooks, and Matchbooks

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

Sam Houston State University August 24, 2011

http://www-rohan.sdsu.edu/~vadim/checkbooks.pdf

The First Obstacle

Distinct Solutions

Closing Thoughts

Shameless advertising

Please encourage your students to apply to the

San Diego State University Mathematics REU.

http://www.sci.sdsu.edu/math-reu/index.html

This work was done jointly with undergraduate Ryan Rosenbaum, graduate students Donald Adams and Andreas Philipp, and postdoc David Grynkiewicz.

The First Obstacle

Distinct Solutions

Closing Thoughts

Ground Rules

This talk is all natural: $\{0, 1, 2, \ldots\}$.

Congruences: $a \equiv b \pmod{n}$ means n > 0 and $n \mid (a - b)$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Ground Rules

This talk is all natural: $\{0, 1, 2, \ldots\}$.

Congruences: $a \equiv b \pmod{n}$ means n > 0 and $n \mid (a - b)$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Routing Numbers

DONALD E. KNUTH COMPUTER SCIENCE DEPARTMENT	11-3167/1210 01	505
STANFORD UNIVERSITY STANFORD, CA 94305-9045	Date 8 Mar 99	
Pay to the	\$ 2.56	
Two and	- 56 /100 Dollars E	an technic in technic Culture or hart
AMERICA CALIFORNIA BANK 200 E Campo Rea + Páto Alto, CA 94034	Aut 1	
For J. 579	lauld hot	MP
1129131673:0505 011458	906"	

Routing number: 129131673

 $x_1 = 1, x_2 = 2, x_3 = 9, \dots, x_9 = 3$ satisfy: $3x_1 + 7x_2 + x_3 + 3x_4 + 7x_5 + x_6 + 3x_7 + 7x_8 + x_9 \equiv 0$ (mod 10)

The First Obstacle

Distinct Solutions

Closing Thoughts

Routing Numbers

11-3167/1210 01	505
Date 8 Mw 99	
	56
- 56 /100 Dolla	rs Interverse
land hut	MP
906.	
	Date 8 May 99 Date 8 May 99 \$ 2. - 56 /100 Dalla Laulet Mort

Routing number: 129131673

$$x_1 = 1, x_2 = 2, x_3 = 9, \dots, x_9 = 3$$
 satisfy:
 $3x_1 + 7x_2 + x_3 + 3x_4 + 7x_5 + x_6 + 3x_7 + 7x_8 + x_9 \equiv 0$
(mod 10)

The First Obstacle

Distinct Solutions

Closing Thoughts

ISBN codes

ISBN10: 3126754953 ISBN13: 9783126754958

ISBN10 satisfies $10x_1 + 9x_2 + 8x_3 + 7x_4 + 6x_5 + 5x_6 + 4x_7 + 3x_8 + 2x_9 + x_{10} \equiv 0$ (mod 11)

ISBN13 satisfies $x_1 + 3x_2 + x_3 + 3x_4 + \dots + 3x_{10} + x_{11} \equiv 0$ (mod 10)

The First Obstacle

Distinct Solutions

Closing Thoughts

ISBN codes

ISBN10: 3126754953 ISBN13: 9783126754958

ISBN10 satisfies $10x_1 + 9x_2 + 8x_3 + 7x_4 + 6x_5 + 5x_6 + 4x_7 + 3x_8 + 2x_9 + x_{10} \equiv 0$ (mod 11)

ISBN13 satisfies $x_1 + 3x_2 + x_3 + 3x_4 + \dots + 3x_{10} + x_{11} \equiv 0 \pmod{10}$

The First Obstacle

Distinct Solutions

Closing Thoughts

UPC Numbers

UPC number: 639382000393

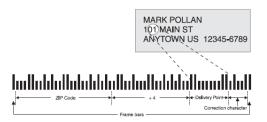
Satisfies $3x_1 + x_2 + 3x_3 + 1x_4 + \dots + 3x_{11} + x_{12} \equiv 0 \pmod{10}$

The First Obstacle

Distinct Solutions

Closing Thoughts

Postnet Barcodes



Postnet number: 123456789014

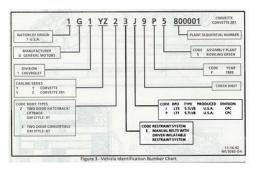
Satisfies $x_1 + x_2 + x_3 + \cdots + x_{12} \equiv 0 \pmod{10}$

The First Obstacle

Distinct Solutions

Closing Thoughts

VIN codes



VIN (translated): 17189231975800001

Satisfies $8x_1 + 7x_2 + 6x_3 + 5x_4 + 4x_5 + 3x_6 + 2x_7 + 10x_8 + 10x_9 + 9x_{10} + 8x_{11} + 7x_{12} + 6x_{13} + 5x_{14} + 4x_{15} + 3x_{16} + 2x_{17} \equiv 0$ (mod 11) SALDEROSTATE

・ロット (雪) ・ (日) ・ (日)

The First Obstacle

Distinct Solutions

Closing Thoughts

Okay, enough examples already!

A multilinear modular equation consists of constants $\{r, a_i, b, n\}$ and variables $\{x_i\}$, where $a_1x_1 + a_2x_2 + \cdots + a_rx_r \equiv b \pmod{n}$

Question 1: Does it have a solution? Question 2: Does it have a distinct solution? Note: A solution is distinct if $x_i \neq x_j \pmod{n}$ for all $i \neq j$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Okay, enough examples already!

A multilinear modular equation consists of constants $\{r, a_i, b, n\}$ and variables $\{x_i\}$, where $a_1x_1 + a_2x_2 + \cdots + a_rx_r \equiv b \pmod{n}$

Question 1: Does it have a solution? Question 2: Does it have a distinct solution? Note: A solution is distinct if $x_i \neq x_j \pmod{n}$ for all $i \neq j$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Two Simple Examples

$4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{6}$

LHS is $2(2x_1 + x_2 + x_3)$, even. RHS is odd. LHS-RHS is odd, so 6 cannot divide.

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{5}$ No problem: $x_1 = 0, x_2 = 1, x_3 = 2$ works.

The First Obstacle

Distinct Solutions

Closing Thoughts

Two Simple Examples

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{6}$ LHS is $2(2x_1 + x_2 + x_3)$, even. RHS is odd. LHS-RHS is odd, so 6 cannot divide.

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{5}$ No problem: $x_1 = 0, x_2 = 1, x_3 = 2$ works.

The First Obstacle

Distinct Solutions

Closing Thoughts

Two Simple Examples

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{6}$ LHS is $2(2x_1 + x_2 + x_3)$, even. RHS is odd. LHS-RHS is odd, so 6 cannot divide.

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{5}$

No problem: $x_1 = 0, x_2 = 1, x_3 = 2$ works.

The First Obstacle

Distinct Solutions

Closing Thoughts

Two Simple Examples

 $4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{6}$ LHS is $2(2x_1 + x_2 + x_3)$, even. RHS is odd. LHS-RHS is odd, so 6 cannot divide.

$$4x_1 + 2x_2 + 2x_3 \equiv 1 \pmod{5}$$

No problem: $x_1 = 0, x_2 = 1, x_3 = 2$ works.

The First Obstacle

Distinct Solutions

Closing Thoughts

What's The Problem?

If $gcd(a_1, a_2, \ldots, a_r, n)$ does not divide *b*, no solution.

We call this the Subgroup Obstacle.

If each a_i lies in some subgroup of $\mathbb{Z}/n\mathbb{Z}$, then every linear combination does too.

e.g. $2(\mathbb{Z}/6\mathbb{Z}) = \{0, 2, 4\} \leq (\mathbb{Z}/6\mathbb{Z})$

The First Obstacle

Distinct Solutions

Closing Thoughts

What's The Problem?

If $gcd(a_1, a_2, \ldots, a_r, n)$ does not divide *b*, no solution.

We call this the Subgroup Obstacle.

If each a_i lies in some subgroup of $\mathbb{Z}/n\mathbb{Z}$, then every linear combination does too.

e.g. $2(\mathbb{Z}/6\mathbb{Z})=\{0,2,4\}\leq (\mathbb{Z}/6\mathbb{Z})$

The First Obstacle

Distinct Solutions

Closing Thoughts

Finally, a Theorem

Thm: [folklore]

A multilinear modular equation has a solution if and only if the subgroup obstacle does not hold.

Proof: Suppose that $gcd(a_1, ..., a_r, n)|b$. Choose $\{x_i\}$ so that $a_1x_1 + \cdots + a_rx_r = gcd(a_1, ..., a_r)$. Let c > 0 with $c gcd(a_1, ..., a_r) \equiv gcd(a_1, ..., a_r, n) \pmod{n}$. Let d > 0 with $d gcd(a_1, ..., a_r, n) = b$. Then $a_1(cdx_1) + a_2(cdx_2) + \cdots + a_r(cdx_r) \equiv b \pmod{n}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Finally, a Theorem

Thm: [folklore]

A multilinear modular equation has a solution if and only if the subgroup obstacle does not hold.

Proof: Suppose that $gcd(a_1, ..., a_r, n)|b$. Choose $\{x_i\}$ so that $a_1x_1 + \cdots + a_rx_r = gcd(a_1, ..., a_r)$. Let c > 0 with $c gcd(a_1, ..., a_r) \equiv gcd(a_1, ..., a_r, n) \pmod{n}$. Let d > 0 with $d gcd(a_1, ..., a_r, n) = b$. Then $a_1(cdx_1) + a_2(cdx_2) + \cdots + a_r(cdx_r) \equiv b \pmod{n}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Another Obstacle

We focus henceforth on finding distinct solutions.

 $x_1 - x_2 \equiv 0 \pmod{n}$ has no solutions.

We call this the Bivariate Obstacle.

The First Obstacle

Distinct Solutions

Closing Thoughts

Another Obstacle

We focus henceforth on finding distinct solutions.

 $x_1 - x_2 \equiv 0 \pmod{n}$ has no solutions.

We call this the **Bivariate Obstacle**.

The First Obstacle

Distinct Solutions

Closing Thoughts

A New Perspective

By taking some $a_i = 0$ if needed, we henceforth assume that r = n.

Then $\{x_i\}$ is a permutation of $\{0, 1, ..., n-1\}$.

Set $S = x_1 + x_2 + \dots + x_n = 0 + 1 + \dots + (n - 1) = \frac{(n - 1)n}{2}$. Note that either $S \equiv 0 \pmod{n}$ or $S \equiv \frac{n}{2} \pmod{n}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

A New Perspective

By taking some $a_i = 0$ if needed, we henceforth assume that r = n.

Then $\{x_i\}$ is a permutation of $\{0, 1, \ldots, n-1\}$.

Set $S = x_1 + x_2 + \dots + x_n = 0 + 1 + \dots + (n-1) = \frac{(n-1)n}{2}$. Note that either $S \equiv 0 \pmod{n}$ or $S \equiv \frac{n}{2} \pmod{n}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

A New Perspective

By taking some $a_i = 0$ if needed, we henceforth assume that r = n.

Then $\{x_i\}$ is a permutation of $\{0, 1, \ldots, n-1\}$.

Set $S = x_1 + x_2 + \dots + x_n = 0 + 1 + \dots + (n - 1) = \frac{(n - 1)n}{2}$. Note that either $S \equiv 0 \pmod{n}$ or $S \equiv \frac{n}{2} \pmod{n}$.

Fix k. Suppose there are a'_i, b' with $a_i \equiv a'_i + k \pmod{n}$, $b \equiv b' + kS \pmod{n}$.

 $a_1x_1 + \dots + a_nx_n \equiv (a'_1 + k)x_1 + \dots + (a'_n + k)x_n = k(x_1 + \dots + x_n) + (a'_1x_1 + \dots + a'_nx_n) = kS + a'_1x_1 + \dots + a'_nx_n.$

Hence $a_1x_1 + \cdots + a_nx_n \equiv b \pmod{n}$ if and only if $a'_1x_1 + \cdots + a'_nx_n \equiv b - kS \equiv b' \pmod{n}$.

Fix k. Suppose there are a'_i, b' with $a_i \equiv a'_i + k \pmod{n}$, $b \equiv b' + kS \pmod{n}$.

 $a_1x_1 + \dots + a_nx_n \equiv (a'_1 + k)x_1 + \dots + (a'_n + k)x_n = k(x_1 + \dots + x_n) + (a'_1x_1 + \dots + a'_nx_n) = kS + a'_1x_1 + \dots + a'_nx_n.$

Hence $a_1x_1 + \cdots + a_nx_n \equiv b \pmod{n}$ if and only if $a'_1x_1 + \cdots + a'_nx_n \equiv b - kS \equiv b' \pmod{n}$.

Fix k. Suppose there are a'_i, b' with $a_i \equiv a'_i + k \pmod{n}$, $b \equiv b' + kS \pmod{n}$. $a_1x_1 + \cdots + a_nx_n \equiv (a'_1 + k)x_1 + \cdots + (a'_n + k)x_n = b(x_1 + k) + (a'_1 + k) + (a$

 $k(x_1 + \cdots + x_n) + (a'_1x_1 + \cdots + a'_nx_n) = kS + a'_1x_1 + \cdots + a'_nx_n.$

Hence $a_1x_1 + \cdots + a_nx_n \equiv b \pmod{n}$ if and only if $a'_1x_1 + \cdots + a'_nx_n \equiv b - kS \equiv b' \pmod{n}$.

Fix k. Suppose there are a'_i, b' with $a_i \equiv a'_i + k \pmod{n}$, $b \equiv b' + kS \pmod{n}$. $a_1x_1 + \cdots + a_nx_n \equiv (a'_1 + k)x_1 + \cdots + (a'_n + k)x_n = k(x_1 + \cdots + x_n) + (a'_1x_1 + \cdots + a'_nx_n) = kS + a'_1x_1 + \cdots + a'_nx_n$.

Hence $a_1x_1 + \cdots + a_nx_n \equiv b \pmod{n}$ if and only if $a'_1x_1 + \cdots + a'_nx_n \equiv b - kS \equiv b' \pmod{n}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

An Example

$1x_1 + 1x_2 + 1x_3 + 3x_4 + 3x_5 + 5x_6 \equiv 2 \pmod{6}$

 $S = 15 \equiv 3 \pmod{6}$, so this is equivalent to $0x_1 + 0x_2 + 0x_3 + 2x_4 + 2x_5 + 4x_6 \equiv 5 \pmod{6}$, which has no solutions at all by the subgroup obstacle.

Note: $x_1 = 2, x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

An Example

$$1x_1 + 1x_2 + 1x_3 + 3x_4 + 3x_5 + 5x_6 \equiv 2 \pmod{6}$$

 $S = 15 \equiv 3 \pmod{6}$, so this is equivalent to $0x_1 + 0x_2 + 0x_3 + 2x_4 + 2x_5 + 4x_6 \equiv 5 \pmod{6}$, which has no solutions at all by the subgroup obstacle.

Note: $x_1 = 2, x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

An Example

$$1x_1 + 1x_2 + 1x_3 + 3x_4 + 3x_5 + 5x_6 \equiv 2 \pmod{6}$$

 $S = 15 \equiv 3 \pmod{6}$, so this is equivalent to $0x_1 + 0x_2 + 0x_3 + 2x_4 + 2x_5 + 4x_6 \equiv 5 \pmod{6}$, which has no solutions at all by the subgroup obstacle.

Note: $x_1 = 2, x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

Another Example

$1x_1 + 1x_2 + 1x_3 + 1x_4 + 2x_5 \equiv 3 \pmod{6}$

 $S \equiv 3$, so this is equivalent to $x_5 - x_6 \equiv 0 \pmod{6}$, which has no distinct solutions by the bivariate obstacle.

Note: $x_1 = 3$, $x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

Another Example

 $1x_1 + 1x_2 + 1x_3 + 1x_4 + 2x_5 \equiv 3 \pmod{6}$

 $S \equiv 3$, so this is equivalent to $x_5 - x_6 \equiv 0 \pmod{6}$, which has no distinct solutions by the bivariate obstacle.

Note: $x_1 = 3$, $x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

Another Example

$$1x_1 + 1x_2 + 1x_3 + 1x_4 + 2x_5 \equiv 3 \pmod{6}$$

 $S \equiv 3$, so this is equivalent to $x_5 - x_6 \equiv 0 \pmod{6}$, which has no distinct solutions by the bivariate obstacle.

Note: $x_1 = 3$, $x_2 = x_3 = x_4 = x_5 = x_6 = 0$ solves the non-distinct version.

The First Obstacle

Distinct Solutions

Closing Thoughts

Today's Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct solution if and only if, for all equivalent equations, neither the subgroup nor the bivariate obstacles hold.

Proof Strategy: Replace $\mathbb{Z}/n\mathbb{Z}$ with a general finite abelian group. One more obstacle arises, for Klein 4-group.

The First Obstacle

Distinct Solutions

Closing Thoughts

Today's Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct solution if and only if, for all equivalent equations, neither the subgroup nor the bivariate obstacles hold.

Proof Strategy: Replace $\mathbb{Z}/n\mathbb{Z}$ with a general finite abelian group. One more obstacle arises, for Klein 4-group.

The First Obstacle

Distinct Solutions

Closing Thoughts

Concrete Version

Thm: Consider $a_1x_1 + \cdots + a_nx_n \equiv b \pmod{n}$. This has a distinct solution, unless either:

- 1. $gcd(a_2 a_1, a_3 a_1, \dots, a_n a_1, n)$ does not divide $b a_1 S$ (subgroup obstacle), or
- 2. For some c, d, i, j, all of the following hold:
 - For all $k \notin \{i, j\}$, $a_k \equiv c \pmod{n}$
 - $a_i \equiv c + d \pmod{n}$
 - $a_j \equiv c d \pmod{n}$
 - $b \equiv cS \pmod{n}$
 - gcd(d, n) = 1

(bivariate obstacle)

The First Obstacle

Distinct Solutions

Closing Thoughts

Open Problems

Problem: What about distinct solutions to *systems* of multilinear modular equations?

e.g.
$$1x_1 + 2x_2 + 2x_3 + 1x_4 \equiv 2 \pmod{4}$$
,

 $1x_3 + 1x_4 \equiv 3 \pmod{4}$.

Easier Problem: What if the systems are decoupled? e.g. $1x_1 + 2x_2 \equiv 2 \pmod{4}, 1x_3 + 1x_4 \equiv 3 \pmod{4}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

Open Problems

Problem: What about distinct solutions to *systems* of multilinear modular equations?

e.g.
$$1x_1 + 2x_2 + 2x_3 + 1x_4 \equiv 2 \pmod{4}$$
,

$$1x_3 + 1x_4 \equiv 3 \pmod{4}$$
.

Easier Problem: What if the systems are decoupled? e.g. $1x_1 + 2x_2 \equiv 2 \pmod{4}, 1x_3 + 1x_4 \equiv 3 \pmod{4}$.

The First Obstacle

Distinct Solutions

Closing Thoughts

For Further Reading

D. Adams, P

Distinct Solutions to a Linear Congruence.

Involve 3 (3), 2010.

- D. Grynkiewicz, A. Philipp, P Arithmetic-Progression-Weighted Subsequence Sums. To appear in *Israel Math Journal*.
- Preprints available at:

http://www-rohan.sdsu.edu/~vadim/research.html

