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Abstract

In this paper we will fully characterize all types of winning moves in the “take-
away” game of Fibonacci Nim. We prove the known winning algorithm as a corollary
of the general winning algorithm and then show that no other winning algorithms exist.
As a by-product of our investigation of the game, we will develop useful properties of
Fibonacci numbers. We conclude with an exploration of the probability that unskilled
player may beat a skilled player and show that as the number of tokens increase, this
probability goes to zero exponentially.

1 Introduction

We begin with a brief introduction to the idea of “take-away” games. Schwenk defined
“take-away” games to be a two-person game in which the players alternately diminish
an original stock of tokens subject to various restrictions, with the player who removes
the last token being the winner [5].

In the generalized take-away game, τ(k) = η(k−1)−η(k) where η(k) is the number
of tokens remaining after the kth turn so that τ(k) is the number of tokens removed on
the kth turn. Additionally, for all k ∈ N, k 6= 1, we have τ(k) ≤ mk, where mk is some
function of τ(k− 1). Specifically in Fibonacci Nim, we have mk = 2τ(k) for k > 1. We
will immediately move away from this notation and develop additional notation as it
is required. We provide a simple example to familiarize the reader with the game.

Example 1. Let n = 10. Player one may remove 1 through 9 tokens. Suppose player
one removes 3 tokens. Then, player two may now remove 1 through 2(3)=6 tokens.
Play continues until one of the players removes the last token.

We will rely heavily on results from the original Lekkerkerker paper [4], specifically
the Zeckendorff Representation of natural numbers as a sum of Fibonacci Numbers.

The Fibonacci numbers are the positive integers generated by the recursion Fk =
Fk−1 +Fk−2, where F1 = 1 = F2 and k ∈ N. Let F = {F2, F3, ...Fk, ...} = {1, 2, 3, 5, ...}.
This is the subset of Fibonacci numbers we will reference throughout this paper. We
now present The Zeckendorf Representation theorem without proof. A proof of this
theorem may be found in [2].
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Theorem 1 (Zeckendorff Representation Theorem). Let n ∈ N. For i, r ∈ N we have
n = Fir + Fir−1 + · · ·+ Fi1 where ir − (r − 1) > ir−1 − (r − 2) > · · · > i2 − 1 > i1 ≥ 2.
Further, this representation is unique.

The Zeckendorff Representation Theorem states that every positive integer can be
written as a sum of non-consecutive Fibonacci numbers from the set F and that this
representation is unique. It follows that Fir > Fir−1 > ... > Fi1 . We will refer to the
Zeckendorff Representation theorem frequently, therefore we abbreviate this by ZRT.

Example 2. 12 = (1)F6 + (0)F5 + (1)F4 + (0)F3 + (1)F2 = 8 + 3 + 1.

Corollary 1. If Fk+1 > n ≥ Fk, then Fk is the largest number in the Zeckendorff
representation of n.

Proof. If Fk+1 > n ≥ Fk then by Zeckendorff’s theorem we can write (n − Fk) =
Fd + · · · + Fi1 . We claim k − 1 > d. Suppose not, then d ≥ (k − 1), thus n =
Fk + Fd + · · · + Fi1 ≥ Fk + Fd ≥ Fk + Fk−1 = Fk+1. However, Fk+1 > n ≥ Fk+1 is a
contradiction. Thus, k − 1 > d so that n = Fk + Fd + · · ·+ Fi1 is a valid and thus the
only representation of n by ZRT.

The corollary above shows that for any n ∈ N where Fk+1 > n ≥ Fk, the Zeckendorff
Representation of n must contain Fk. Therefore, we iteratively may take the maximal
Fibonacci number less than n, say Fk, subtract it from n which yields n − Fk = n′ =
Fir′ + Fir−1′ + · · ·+ Fi1′ and repeat this process to find each Fibonacci number in the
representation of the original number, n.

Definition 1. Let n = Fir +Fir−1 + · · ·+Fi1 where r, i, n ∈ N. We define T (n) = Fi1 .
That is, T (n) is the smallest number in the Zeckendorff representation.

Definition 2. Let n = Fir + Fir−1 + · · · + Fi1 where r, i, n, j ∈ N. We now de-
fine the length j tail to be the specific sum of j consecutive* Fibonacci numbers in
the Zeckendorff representation of n beginning with the smallest number, Fi1 . We set
T1(n) = T (n) for consistency. Then, Tj(n) = T (n) + Ti−1(n− T (n)).

The consecutive* in definition (2) refers to the the subscripts ij , ij+1 for some j ∈ N.
By the above definitions, we see that the length j tail of n is Tj(n) = Fij +Fij−1+· · ·+Fi1

where r ≥ j ≥ 1.

Example 3. Consider 33 = F8 + F6 + F4 + F2 = 21 + 8 + 3 + 1 and 12 = F6 + F4 +
F2 = 8 + 3 + 1. Then, the length 3 tail T3(33) = F6 + F4 + F2 = 8 + 3 + 1 and
T3(12) = F6 + F4 + F2 = 8 + 3 + 1. Hence, 33 and 12 have the same length 3 tail.

Remark 1. By the definition of a length j tail, if Tj(n) = Tj(m), then for any j ≥ s ≥ 1,
we have Ts(n) = Ts(m).

Let n = Fir +Fir−1 +· · ·+Fi1 be the Zeckendorff representation where Fir > Fir−1 >
· · · > Fi1 . Suppose there are n tokens in the pile during the current turn. The known
winning algorithm for Fibonacci Nim has the current player take the length-1 tail of
n. That is, the player removes T (n) = Fi1 tokens. We will prove that this is a winning
algorithm in the next section.

In what follows, we will extend the known winning algorithm to include tails that
satisfy certain criteria for some given n. We then will prove that this is a complete
collection of winning moves and that no others exist. We end this paper by introducing
a losing position strategy and then derive an upperbound on the probability that an
unskilled player may beat a skilled player.
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2 Fibonacci Nim Strategy

We begin this section by discussing how to win Fibonacci Nim. In the remainder of
this paper, we use n = Fir + Fir−1 + · · · + Fi1 with n, r, i ∈ N as the Zeckendorff
representation for some n.

Assume there are n tokens in a given turn which the player whose turn it is may
remove from. Let 2p denote the maximum number of tokens this player may remove
from the n tokens. We can denote this postion by (n, 2p). Note, this implies that the
previous player removed precisely p tokens.

Definition 3. A losing position is such that given the position (n, 2p), T (n) > 2p. A
winning position is any non-losing position. A winning move is such that it results in
the next position being a losing position. A losing move is any non-winning move.

We see by definition (3) that we always want to leave our opponent in a losing
position where T (n) > 2p. That is, a position where our opponent cannot remove any
length j tail, Tj(n). As an immediate consequence, if our opponent cannot remove a
tail of n, certainly he cannot remove all of n to win since n ≥ Tj(n) ≥ T (n) > 2p.
Therefore, if we can successively give our opponent a losing position, we can ensure we
win.

Lemma 1. For every i ∈ N where i ≥ 3, 2Fi−1 ≥ Fi and Fi+1 > 2Fi−1

Proof. We have 2(F2) = 2(1) = 2 = F3 and F4 = 3 > 2 = 2(1) = 2(F2). Assume
2Fi−1 ≥ Fi and Fi+1 > 2Fi−1. We have 2(Fi) = 2(Fi−1 + Fi−2) ≥ 2Fi−1 + Fi−2 =
Fi + Fi−1 = Fi+1 since for each for j ∈ N, Fj ≥ 1. Similarly, Fi+2 = Fi+1 + Fi =
(Fi + Fi−1) + (Fi−1 + Fi−2) > Fi + (Fi−1 + Fi−2) = 2Fi.

Lemma (2) below implies that if on a given turn our opponent has a losing position
to play from, regardless of how he plays, our next play will be from a a winning position.

Lemma 2. Let n ∈ N. For any p with T (n) > p, (n− p, 2p) is a winning position.

Proof. Let n ∈ N. Assume T (n) > p. We have, n − p = Fir + · · · + Fi1 − p. Define
m = T (n)−p = Fi′r +· · ·+Fi′1

. Suppose (n−p, 2p) is a losing position. Then, T (n−p) >
2p and by lemma (1), 2Fi′1−1 ≥ Fi′1

> 2p. Hence, the Zeckendorff representation of
p does not include Fi′1−1, thus p = Fi′′r + ... + Fi′′1

where Fi′1−1 > Fi′′r . But then,
n = Fir + · · ·+Fi2 +Fi′r + · · ·+Fi′1

+Fi′′r + · · ·+Fi′′1
is a valid Zeckendorff representation

of n. This is a contradiction since Zeckendorff representations are unique. Hence, we
must have 2p ≥ T (n−p). Since Fi2 > T (n) > T (n)−p, then, n−p = Fir + · · ·+Fi2 +m
is a valid Zeckendorff representation of n− p and hence the only representation. Thus,
the next position, (n − p, 2p) has 2p ≥ T (n − p) so that (n − p, 2p) is a winning
position.

Lemma (3) below paired with Lemma (2) proves the known winning strategy. That
is, if we take the length one tail of n, T (n), the next position is a losing position.
Successively implementing this lemma results in winning the game in a finite number
of moves.

Lemma 3. Let n ∈ N. Set p = T (n). Then (n− p, 2p) is a losing position.
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Proof. Let n ∈ N. Set p = T (n). Suppose for some k ∈ N, Fk = T (n) = Fi1 . By
theorem (1), Fi2 ≥ Fk+2. Then, by lemma (1), Fi2 ≥ Fk+2 > 2Fk = 2p. By uniqueness
of ZRT, n − p = Fir + · · · + Fi2 and (n − p, 2p) has T (n − p) = Fi2 > 2p. Hence,
(n− p, 2p) is a losing position.

For now, we state that not every tail may always be taken from n to produce a
losing position. In the following subsections, we will prove this rigorously and derive
results which show exactly which tails may be removed to put our opponent in a losing
position. Theorem (2) is this section’s main result. Namely, it proves that removing
length j tails of n are the only winning moves for n ∈ N.

Theorem 2 (Fundamental Theorem of Fibonacci Nim). Let n ∈ N. For any p /∈
{Tr−1(n), Tr−2(n), ..., T (n)}, (n− p, 2p) is a winning position.

Proof. Let n ∈ N and suppose our opponent has removed p tokens. Then the current
position is (n− p, 2p). Assume T (n− p) > 2p, that is, (n− p, 2p) is a losing position.
If p = Tj(n) for some r > j ≥ 1, then p ∈ {Tr−1(n), Tr−2(n), ..., T (n)}. This leaves two
cases to examine: (1) p is a ‘sum’ of terms Fit where r ≥ t ≥ 1 and p 6= Tj(n) for some
r > j ≥ 1 or (2) p 6= Tj(n) for some r > j ≥ 1 and p is not of the form given in case
(1).

Case 1 : Our opponent removes p = arFir + ar−1Fir−1 + · · · + a1Fi1 where each
aj ∈ {0, 1} for j ∈ [1, ir] and there exists at least one pair (aj , aj+1) such that aj = 0
and aj+1 = 1 in the representation of p. Then, p 6= Tj(n) for some r > j ≥ 1. WLOG,
let (aj , aj+1) be the minimal pair such that aj = 0 and aj+1 = 1 in the representation of
p. Define n′ = (Fir−arFir)+ · · ·+(Fij+1−aj+1Fij+1)+(Fij−1−aj−1Fij−1)+ · · ·+(Fi1−
a1Fi1). Then, n−p = Fir +Fir−1 + · · ·+Fi1−(arFir +ar−1Fir−1 + · · ·+a1Fi1) = n′+Fij

which is a valid Zeckendorff representation and hence the only representation of n− p.
Since (aj , aj+1) is minimal, T (n − p) = Fij . We have, 2p > Fij+1 > T (n − p), thus
(n− p, 2p) is a winning position and we have reached a contradiction.

Case 2 : Our opponent removes p tokens such that p 6= arFir +ar−1Fir−1 +...+a1Fi1

where each aj ∈ {0, 1}. Since (n − p, 2p) is a losing position, by lemma (2) we must
have p > T (n). WLOG, let Tj(n) for r > j ≥ 1 be the minimal tail such that
p > Tj(n). By assumption, p 6= Tj(n). We have Fij+1 + Tj(n) > p > Tj(n) so that
Fij+1 > p−Tj(n) > 0. Define δp = p−Tj(n) so that p = Tj(n)+δp. Let m = n−Tj(n).
Then, n − p = m + Tj(n) − (Tj(n) + δp) = m − δp. Since T (m) > δp, by lemma (2)
and the uniqueness of Zeckendorff representations, (m− δp, 2δp) is a winning position.
It follows that 2p > 2δp ≥ T (m− δp) = T (n− p). Therefore, (n− p, 2p) is a winning
position and we have reached a contradiction.

Hence, removing some p 6= Tj(n) for some r > j ≥ 1 results in a winning position.
Since there is only one other possible move, removing some tail Fj(n), it follows that
if (n− p, 2p) is a losing move, then p = Tj(n) for some r > j ≥ 1.

Remark 2. By definition (3) and theorem (2), removing Tj(n) tokens where r > j ≥ 1
will force an immediate losing position to our opponent when Fij+1 > 2Tj(n).

In section (2) we have shown that the only possible winning moves in Fibonacci Nim
are those that are partial consecutive* sums or, tails of the Zeckendorff representation
of the number of tokens in that turn. In the next section, we determine which tails
force losing positions and how to identify these tails based soley on the Zeckendorff
representation for a given n.
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3 Winning Tails

In this Section, we will show how to take the result from remark (2): removing Tj(n)
tokens where r > j ≥ 1 will force an immediate losing position to our opponent when
Fij+1 > 2Tj(n) and identify which tails satisfy this condition. Existence of winning
moves was proved for Dynamic One-Pile Nim in a paper by Holshouser, Reiter and
Rudzinski [3]; Fibonacci Nim is classified as a dynamic one-pile nim game in their
paper. Below, we validate the existence of these moves as well as carefully show exactly
how to find these winning moves. In addition, we have included a table at the end of
this paper to present these results for the first 90 positive integers.

We are concerned with which tails can be taken and which cannot. That is, if
n = Fir + Fir−1 + · · · + Fi1 , when is Fij+1 > 2Tj(n) for r > j ≥ 1? We accomplish
this by looking at an arbitrary tail of n, Tj(n). We classify exactly when taking Tj(n)
results in leaving a losing position to our opponent.

We begin by setting aj+1 = ij+1 − ij and aj = ij − ij−1. Then, aj+1 and aj are
the differences in the subscripts of consecutive* Fibonacci numbers in a Zeckendorff
representation of n. In this section we will show that for any Fij , by considering
the ’gaps’ around it, where the gaps are the differences above, we can determine if
removing Tij (n) tokens give our opponent a losing position. For us to do this, we must
first introduce the gap-vector.

Definition 4. Let n = Fir + Fir−1 + · · · + Fi1 . We define the gap-vector of n to be
G(n) = (ar, ar−1, ..., a2; a1) where ar = ir − ir−1, ar−1 = ir−1 − ir−2, ... ,a2 = i2 − i1
and a1 = i1. We also define |G(n)| = r, where r is the number of summands in the
Zeckendorf representation of n.

Example 4. Let n = 129 = F11+F9+F5+F2. Then, G(129) = (11−9, 9−5, 5−2; 2) =
(2, 4, 3; 2) and |G(129)| = 4.

The gap-vector of n shows the difference of the subscripts of the consecutive* Fi-
bonacci numbers in the Zeckendorff representation of n (again, consecutive* refers to
the the subscripts ij , ij+1 for some j ∈ N ). The last coordinate of the gap-vector is the
subscript of the smallest Fibonacci number present in the Zeckendorff representation
of n. It follows, that we can reconstruct n by using the gap-vector of n.

Example 5. Let G(n) = (2, 4, 3; 2). Then, F2 is the first Fibonacci number in the
representation of n. From here, we can build the rest of the numbers: 2+3 = 5, so F5

is the next number; 4+5 = 9, so F9 is the third number and 9+2=11, so F11 is the last
number in the representation of n. Hence, n = F11 + F9 + F5 + F2 = 129.

It is worth mentioning that by ZRT each aj ≥ 2 for j ∈ N. We now begin to
examine which tails provide winning moves. Consider p = Tj(n) for some n, j ∈ N. We
will classify exactly when Tj(n) is a winning move and hence leaves the opponent the
losing position (n− p, 2p).

Notational remark : For the following lemmas, we introduce the symbol (k : 2) such
that (k : 2) ∈ {2, 3} where (k : 2) ≡ k mod 2. Similarly, (k : 3) ∈ {2, 3, 4} where
(k : 3) ≡ k mod 3. For example, F8 + ...+ Fk:2 = F8 + ...+ F2 since (k : 2) ≡ 8 mod 2
and (k : 2) ∈ {2, 3}.

For the remainder of this section, we will give a lemma and then a corollary. The
lemma provides properties of particular Fibonacci series. The corollaries tie the lemma
into Fibonacci Nim.
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Lemma 4. For k ≥ 5, Fk > 2(Fk−3 + Fk−5 + · · ·+ Fk:2).

Proof. Let k = 5, then F5 = 5 > 2(1) = 2(F2). Let k = 6, then F6 = 8 > 4 = 2(2) =
2(F3). Suppose Fk > 2(Fk−3 + Fk−5 + · · · + Fk:2). Then by induction hypothesis,
2Fk−1 + Fk > 2Fk−1 + 2(Fk−3 + Fk−5 + · · · + Fk:2) = 2(Fk−1 + ... + Fk:2). But,
Fk+2 = Fk+1 +Fk > 2Fk−1 +Fk by lemma (1). Hence, Fk+2 > 2(Fk−1 + · · ·+Fk:2).

Corollary 2. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 1 and aj ≥ 2 for r ≥ j > 1.
If aq+1 ≥ 3 for some r > q > 1, then for p = Tq(n), (n− p, 2p) is a losing position.

Proof. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 1 and aj ≥ 2 for r ≥ j > 1. Suppose
aq+1 ≥ 3 for some r > q > 1 and set p = Tq(n). Then iq+1 ≥ iq + 3. By lemma (4),
we have Fiq+1 > 2(Fiq + · · ·+ Fi1) = 2Tq(n). We have, n− p = Fir + ...+ Fiq+1 by the
uniqueness of Zeckendorff representations, hence T (n− p) = Fiq+1 > 2Tq(n) = 2p and
(n− p, 2p) is a losing position.

We see by the above corollary that if G(n) = (ar, ..., a2; a1) contains coordinates
aj ≥ 2 and some aq+1 ≥ 3 we can always remove the tail beginning with the Fibonacci
number Fiq . But notice, by ZRT, every representation will have aj ≥ 2 for r ≥ j ≥ 2.
Hence, we have just shown by corollary (2) that given some n = Fir + · · · + Fij+1 +
Fij + · · ·+ Fi1 , if ij+1 − 3 ≥ ij , then removing p = Tj(n) results in (n− p, 2p) being a
losing position. Therefore it follows that we need only to consider when ij+1 − 2 = ij
to classify the remainder of winning tails.

Lemma 5. For k ≥ 8, Fk > 2(Fk−2 + Fk−6 + Fk−8 + · · ·+ Fk:2).

Proof. Let k = 8, then F8 = 21 > 2(8 + 1) = 2(F6 + F2). Let k = 9, then F9 = 34 >
30 = 2(13 + 2) = 2(F7 + F3). Assume Fk > 2(Fk−2 + Fk−6 + Fk−8 + · · · + Fk:2). By
induction hypothesis we have, Fk+2 = Fk+1 +Fk > Fk+1 +2Fk−2 +2(Fk−6 + · · ·+Fk:2).
But, Fk+1 + 2Fk−2 = Fk + Fk−1 + 2Fk−3 + 2Fk−4. By lemma (1), 2Fk−3 > Fk−2.
Hence, Fk+1 + 2Fk−2 > Fk + Fk−1 + Fk−2 + 2Fk−4 = 2(Fk + Fk−4). Then, Fk+2 >
2(Fk + Fk−4 + Fk−6 + · · ·+ Fk:2).

Corollary 3. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 2 and aj ≥ 2 for r ≥ j > 1.
If aq ≥ 4 and aq+1 = 2 for some r ≥ q > 1, then for p = Tq(n), (n− p, 2p) is a losing
position.

Proof. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 1 and aj ≥ 2 for r ≥ j > 1. Suppose
aq ≥ 4 for some r ≥ q > 1 and set p = Tq(n). Then iq+1−2 = iq ≥ iq−1 + 4. By lemma
(5), we have Fiq+1 > 2(Fiq + · · ·+ Fi1) = 2Tq(n). We have, n− p = Fir + ...+ Fiq+1 by
the uniqueness of Zeckendorff representations, hence T (n − p) = Fiq+1 > 2Tq(n) = 2p
and (n− p, 2p) is a losing position.

We see by corollary (3) that if G(n) = (ar, ..., a2; a1) contains coordinates aj ≥ 2
and some aq ≥ 4 and aq+1 = 2, we can always remove the tail beginning with the
Fibonacci number Fiq . Hence, we have just shown that given some n = Fir + · · · +
Fij+1 + Fij + · · · + Fi1 , if iq+1 − 2 = iq ≥ iq−1 + 4, then removing p = Tj(n) results
in (n − p, 2p) being a losing position. By corollaries (2) and (3), we have just shown
that if we have aq+1 ≥ 3 or, if aq+1 = 2 and aq ≥ 4, then p = Tq(n) is a winning move,
that is, (n − p, 2p) is a losing position. Thus, what remains to examine are the cases
aq+1 = 2 = aq and aq+1 = 2 and aq = 3. We begin with the former.
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Lemma 6. For k ≥ 6, Fk ≤ 2(Fk−2 + Fk−4)

Proof. Let k = 6. Then, F6 = 8 = 2(3 + 1) = 2(F4 + F2). For any k > 6, we have
Fk = 2Fk−2 + Fk−3. By lemma (2), 2Fk−4 ≥ Fk−3. Hence, Fk = 2Fk−2 + Fk−3 ≤
2(Fk−2 + Fk−4).

Corollary 4. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 2 and aj ≥ 2 for r ≥ j > 1.
If aq+1 = 2 = aq for some r ≥ q > 1, then for p = Tq(n), (n − p, 2p) is a winning
position.

Proof. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 1 and aj ≥ 2 for r ≥ j > 1. Suppose
aq+1 = 2 = aq for some r ≥ q > 1 and set p = Tq(n). Then iq+1 − 2 = iq = iq−1 + 2.
By lemma (6), we have Fiq+1 ≤ 2(Fiq + Fiq−1) ≤ 2(Fiq + · · · + Fi1) = 2Tq(n). We
have, n − p = Fir + ... + Fiq+1 by the uniqueness of Zeckendorff representations, but
T (n− p) = Fiq+1 ≤ 2Tq(n) = 2p. Thus, (n− p, 2p) is a winning position.

We are now left with the case aq+1 = 2 and aq = 3. It turns out, this case is
slightly more complicated than the previous cases. We will show that given G(n) =
(ar, ar−1, ..., a2; a1) where r > 1 and aj ≥ 2 for r ≥ j > 1, if there exists some q such
that every ak ≥ 3 for r > q ≥ k > 1, then Tq(n) for r > q > 1 is a winning move. If
however, we have some ak = 2 for q ≥ k > 1, then Tq(n) for r > q > 1 is a losing move.
We begin with the former.

Lemma 7. For k ≥ 10, Fk − 2(Fk−2 + Fk−5 + Fk−8 + ...+ Fk:3) = q where q ∈ {1, 2}.

Proof. We prove the lemma in cases for Fk:3. Specifically for some m ∈ N and m ≥ 3,
Fk:3 = F2 when k = 3m + 1 since 3m + 1 − (2 + 3(m − 1)) = 2 and Fk:3 = F3 when
k = 3m + 2 since 3m + 2 − (2 + 3(m − 1)) = 3. Fk:3 = F4 when k = 3m since
3m− (2 + 3(m− 2)) = 4. Note, if we have 3m− (2 + 3(m− 1)) = 1, we will not have
a valid Zeckendorff representation, hence we must reduce our multiple by one, which
yields 3(m− 2) above.

Case 1: Let Fk:3 = F2 and let m = 3 so that k = 3m+1 = 10. Then F10−2(F8+F5+
F2) = 55−2(21+5+1) = 1. Let m > 3 so that k > 10 and assume F3m+1−2(F3m−1 +
F3m−4+F3m−7+...+F5+F2) = 1. Then, F3m+1+2F3m+2−2F3m+2−2(F3m−1+F3m−4+
...+F5+F2) = 1 by inductive hypothesis. But, F3(m+1)+1 = F3m+4 = F3m+3+F3m+2 =
2F3m+2 + F3m+1. Hence, F3m+4 − 2(F3m+2 + F3m−1 + F3m−4 + ...+ F5 + F2) = 1.

Case 2: Now let Fk:3 = F3 and let m = 3 so that k = 11. Then, F11 − 2(F9 + F6 +
F3) = 89− 2(34 + 8 + 2) = 1. Let m > 3 so that k > 11 and assume F3m+2 − 2(F3m +
F3m−3+F3m−6+ ...+F6+F3) = 1. Then F3m+2+2F3m+3−2F3m+3−2(F3m+F3m−3+
...+F6+F3) = 1 by inductive hypothesis. But, F3(m+1)+2 = F3m+5 = F3m+4+F3m+3 =
2F3m+3 + F3m+2. Hence, F3m+5 − 2(F3m+3 + F3m + F3m−3 + ...+ F6 + F3) = 1.

Case 3: Finally, let Fk:3 = F4 and let m = 4 so that k = 12. Then, F12 −
2(F10 + F7 + F4) = 144 − 2(55 + 13 + 3) = 2. Let m > 4 so that k > 12 and
assume that F3m − 2(F3m−2 + F3m−5 + F3m−8 + ... + F7 + F4) = 2. Then, F3m +
2F3m+1 − 2F3m+1 − 2(F3m−2 + F3m−5 + ... + F7 + F4) = 2 by inductive hypothesis.
But, F3(m+1) = F3m+3 = F3m+2 +F3m+1 = 2F3m+1 +F3m. Hence, F3m+3− 2(F3m+1 +
F3m−2 + F3m−5 + ...+ F7 + F4) = 2.

Hence, in each case we find that Fk − 2(Fk−2 + Fk−5 + Fk−8 + ...+ Fk:3) = q with
q ∈ {1, 2}.
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Remark 3. It should be clear from lemma (7) that for k ≥ 10, we have Fk > 2((Fk−2 +
Fk−5 + Fk−8 + ...+ Fk:3).

Corollary 5. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 2 and aj ≥ 2 for r ≥ j > 1. If
aq+1 = 2 and aj ≥ 3 for q ≥ j ≥ 1, then for p = Tq(n), (n− p, 2p) is a losing position.

Proof. Let G(n) = (ar, ar−1, ..., a2; a1) where r > 2 and aj ≥ 2 for r ≥ j > 1. Suppose
aq+1 = 2 and aj ≥ 3 for q ≥ j ≥ 1 and set p = Tq(n). Then iq+1 − 2 = iq and
ij+1 − 3 ≥ ij for every q > j ≥ 1. By lemma (7) and remark (3), we have Fiq+1 >
2(Fiq + · · · + Fi1) = 2Tq(n). We have, n − p = Fir + ... + Fiq+1 by the uniqueness of
Zeckendorff representations and T (n− p) = Fiq+1 > 2Tq(n) = 2p. Thus, (n− p, 2p) is
a losing position.

By corollary (5), if G(n) = (ar, ..., a2; a1) contains coordinates aj ≥ 2 and if for
some aq+1 = 2 we have for every q ≥ k ≥ 1, ak ≥ 3 then we may remove the tail
beggining with the Fibonacci number Fiq , that is, Tq(n). All that remains to show is
the case when at least one ak = 2.

Lemma 8. For k ≥ 6, Fk − (Fk−1 + Fk−4 + Fk−7 + · · ·+ Fk:3) > 1.

Proof. We prove the lemma in cases for Fk:3. Specifically for some m ∈ N and m ≥
2, Fk:3 = F2 when k = 3m since 3m − (1 + 3(m − 1)) = 2 and Fk:3 = F3 when
k = 3m + 1 since 3m + 2 − (1 + 3(m − 1)) = 3. Fk:3 = F4 when k = 3m + 2 since
3m+ 2− (1 + 3(m− 1)) = 4.

Case 1: Let m = 2 so that k = 6. Then, F6 − (F5 + F2) = 8 − (5 + 1) = 2.
Assume Fk − (Fk−1 + Fk−4 + Fk−7 + · · · + Fk:3) > 1 for m > 2. Then, by induction
hypothesis, we have F3m + F3m+2 − F3m+2 − (F3m−1 + F3m−4 + · · · + F2) > 1. But,
F3m+3 = F3m+2 + F3m+1 > F3m+2 + F3m and F3m+1 − F3m > 2 when m > 2 by
construction. Hence, F3m+3 − (F3m+2 + F3m−1 + · · ·+ F2) > 1.

In Case 2 we replace k = 3m with k = 3m + 1 and in Case 3 we replace k = 3m
with k = 3m+ 2. The arguments are then the same as that of Case 1.

Corollary 6. Let G(n) = (ar, ar−1, ..., a2; a1). If every aj = 3 for some r > j > 1 but
there exists at least one aq = 2 such that j > q ≥ 1, then for p = Tj(n), (n− p, 2p) is
a winning position.

Proof. Let G(n) = (ar, ar−1, ..., a2; a1). Suppose every aj = 3 for some r > j > 1
except for some aq = 2 such that j > q ≥ 1 and set p = Tj(n). Define G(n′) =
(br, br−1, ..., r2; r1) where each bj = 3 for r ≥ j > 1 and b1 = a1. Then, by definitions
(2) and (4), if Tq(n) = Fiq +Fiq−1 + · · ·+Fi1 then Tq(n) = Fiq−1 +Fiq−1−1 + · · ·+Fi1−1.
If i1 − 1 = 1, then Tq(n

′) terminates with Fi2−1, which will make no difference in the
following argument. By lemma (7), Fiq+1 − 2Tq(n

′) = g where g ∈ {1, 2}. By lemma
(8), Fiq+1 ≥ Tq(n′)+2. Therefore, Fiq+1−2Tq(n) ≤ Fiq+1−2(Tq(n

′)+2) = g−4. Since
g ∈ {1, 2}, g − 4 < 0. This immediately shows that T (n − p) = Fiq+1 ≤ 2Tq(n) = 2p
and hence (n− p, 2p) is a winning position.

We have now fully characterized when Tj(n) is a winning move based soley on the
gap− vectors of n. We present a table below to summarize this section’s findings. Let
n = Fir + Fir−1 + · · ·Fi1 . Then, G(n) = (ar, ar−1, ..., a2; a1). Recall, each aj ≥ 2 by
construction. Let the tail in question be Tj(n). Then the “gaps” that surround Fij are
precisely aj+1 and aj . We have the following:
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aj+1 aj Further Conditions Winning Move

≥ 3 ≥ 2 None Y es

2 ≥ 4 None Y es

2 2 None No

2 3 j ≥ q ≥ 1, aq ≥ 3 Y es

2 3 ∃q for j ≥ q ≥ 1, aq = 2 No

Thus, by knowing the Zeckendorff representation of n, we may now find all possible
winning moves, or moves that make (n− p, 2p) a losing position.

4 Skilled vs Unskilled Players and Probabilities

of an Unskilled Win

We begin this section by noting that in order for an unskilled player to win against
a skilled player, (1) the unskilled player must go first and always make a winning
move, or, (2) the skilled player must start from n = Fk for some n, k ∈ N. If not, the
skilled player will immediately gain control of the game and provided the skilled player
doesn’t make any mistakes, he will force a win over the nonskilled player. It is from
this perspective that we discuss probabilities of an unskilled win. For the remainder of
this section, we assume that the unskilled player removes tokens randomly and that the
skilled player is free from making errors. Further, we commit to the following strategy
for a skilled player in a losing position:

Losing Position Strategy: (LPS) if the skilled player is currently playing from
a losing position, then he removes one token.

Therefore, by definition (3) if the skilled player is given a position (n, 2p′) such that
T (n) > 2p′, then set p = 1 and give the opponent the position (n − 1, 2). Hence, the
unskilled player may take either one or two tokens on their next turn.

Lemma 9. Let the current position be (n, 2) to the unskilled player. Then for p ∈
{1, 2}, we have P [(n− p, 2p) = losing position] ≤ 1

2 .

Proof. Assume the unskilled player has position (n, 2) where n = Fir +Fir−1 + · · ·+Fi1 .
If Fi1 = 1 = F2, then p = 1 leaves n− 1 = Fir + Fir−1 + · · ·+ Fi2 but T (n− 1) ≥ F4 =
3 > 2(1) = 2p. Now, p = 2 leaves (n − 2, 4). Since 2 = p 6= Tj(n), by theorem (2),
(n− 2, 4) is a winning position. Now suppose Fi1 = 2 = F3, then the role of p = 1 and
p = 2 are the reverse of case 1. Finally, If Fi1 = m ≥ 3, then T (n) = Fi1 > 2 by ZRT.
Then, by lemma (2), (n− p, 2p) where p = 1 or p = 2 is a winning position. Hence, in
all three instances, P [(n− p, 2p) = losing position] ≤ 1

2 .

Lemma 10. Let n = Fir + Fir−1 + · · ·+ Fi1 , then |G(n)| ≤ b ir2 c.

Proof. Let n = Fir + Fir−1 + · · · + Fi1 and suppose Fir = Fk from some k. Define
n′ = Fir′ + Fir−1′ + · · · + Fi1′ such that Fir′ = Fk and G(n′) = (2, 2, ..., 2; 2). Let

k = 2m for some m ∈ N. Recall, every aj ≥ 2 by ZRT. Since there are 2m−2
2 + 1 =

m multiples of 2 ∈ [2, k], we have m = k
2 = |G(n′)|. Suppose r > m. Then by

corollary (1) and definition (4), r = |G(n)| > m implies that Fir > Fk which is a
contradiction. Now let k = 2m + 1. Note that bk2c = m. Let n′ be defined such
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that G(n′) = (ar′ , ar−1′ , ..., a2′ ; a1′) where Fir′ = Fk and each aj′ = 2 except for some

ak′ = 3 where r′ ≥ k′ ≥ 1′. Since there are b (2m+1)−2
2 + 1c = m multiples of 2 ∈ [2, k],

we have m = bk2c = |G(n′)|. Suppose r > m. Then by corollary (1) and definition (4),
r = |G(n)| > m implies that Fir > Fk which is a contradiction.

Lemma (10) gives an upperbound on the number of terms in the Zeckendorff rep-
resentation of some n.

Lemma 11. For k ≥ 5, Fk ≥ pk−0.1√
5

, where p =
√
5+1
2 .

Proof. The closed form of Fibonacci numbers is given by, Fk = pk−(−p)−k
√
5

, where

p =
√
5+1
2 , [1]. Then, we have (−p)−5 ≈ −0.09016994 and (−p)−6 ≈ 0.05572809. By

simple application of the derivative test from elementary calculus, we see that this is
a decreasing function for all k ≥ 5. Hence, we have that −0.1 ≤ (−p)−k ≤ 0.1 for all

k ≥ 5. Then for k ≥ 5, we have Fk ≥ pk−0.1√
5

.

Corollary 7. Let the current position be (n, n− 1) to the unskilled player where n ≥ 5

and Fk+1 > n ≥ Fk, then P [p = Tj(n)] ≤ k
√
5

2(pk−0.1) where 1 ≤ j ≤ k and p is the

unskilled players next move.

Proof. If n = Fk, then P [p = Tj(n)] = 0 since the only tail is Fk = n and the unskilled
player may remove at most n − 1 tokens. Let Fk+1 > n > Fk so that the number of
terms in the Zeckendorf representation of n is at most k

2 terms by lemma (10) and

hence at most k
2 possible tails. Then, since there are at least Fk possible choices for p,

by lemma (11) we have for 1 ≤ j ≤ k, P [p = Tj(n)] = k/2
pk−0.1√

5

= k
√
5

2(pk−0.1) .

Corollary (7) shows that if an unskilled player begins the game where n ≥ 5, then
the probability that the unskilled player chooses p such that p is a winning move is less
than 2

5 and by elementary calculus, the probability function P [p = Tj(n)] can be shown
to be a decreasing funtion for k ≥ 5 so that as n increases, the probability that an
unskilled player will choose a winning move from the beginning position (or any other
of the form (n, n− 1)) decreases exponentially. Note, if n = 3 then the first player will
lose and if n = 4, then only winning move the first player may take is p = 1, thus the
first player has a probability of 1

4 <
2
5 of correctly choosing a tail.

We now have everything in place to state the main result of this section. This up-
perbound is dependent on the first move of the unskilled player however, and therefore
cannot be calculated explicitly before the game begins.

Theorem 3. Let n > p and (n− p,m) be the first position to the skilled player where
m ∈ {n− 1, 2p}. Set n′ = n− p then using the LPS,

1. if n 6= Fk for some k ≥ 4 then P [Unskilled player wins] ≤ 1
5(2b−1)

where b = bn′3 c.

2. if n = Fk for some k ≥ 5, then P [Unskilled player wins] ≤ 1
2b

where b = bn′3 c.

Proof. There are two nontrivial cases needed to prove the result.
case 1: n 6= Fk for some n, k ∈ N. If the skilled player starts, he wins everytime.

Thus, skilled player receives the position (n − p, 2p) where n − 1 ≥ p ≥ 1. By LPS,
after the initial turn, the unskilled player will always receive (k, 2) for some k < n and
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by lemma (9), P [(n− p′, 2p′) = losing position] ≤ 1
2 where p′ ∈ {1, 2}. Hence, at most,

3 tokens are removed after one round of play. Let n′ = n − p, then there will be at
least bn′3 c rounds played from this point in the game. By corollary (7) and repeated
use of lemma (9), we find that P [Unskilled player wins] ≤ (25)( 1

2bn′/3c
) = 1

5(2b−1)
where

b = bn′3 c.
case 2: n = Fk for some n, k ∈ N. By lemma (2), removing p tokens make (n−p, 2p)

a winning position. Hence, the unskilled player loses if he goes first. Now assume the
skilled player begins and by LPS, takes 1 < T (n) token. By lemma (2), (n − 1, 2) is
a winning position. Thus, this position is that of case 1, where the unskilled player
doesn’t have the free move (n,n-1). Hence, P [Unskilled player wins] ≤ 1

2bn′/3c
= 1

2b

where b = bn′3 c.

5 Final Remarks

In this paper we have characterized all winning algorithms for the game Fibonacci
Nim. We have shown that the known winning algorithm is just a particular case of
the generalized wining algorithm. In addition, we have shown an upperbound on the
probability that an unskilled player may beat a skilled player if our unskilled player
guesses randomly and our skilled player plays according to our losing position strategy.

Future research may look into different losing position strategies as well as different
types of unskilled players. For example, as a second losing position strategy, by taking
more than one token from a losing position, we may find a tighter upperbound on
the probability that the unskilled player wins. Additionally, we could introduce a
semi-skilled player, one whose guesses are not random but are based on some rule.
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6 Appendix

We now present these results for n ∈ [1, 90] ⊂ N. First, recall the first 11 Fibonacci
numbers: F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21,
F9 = 34, F10 = 55, F11 = 89. The column ‘Zeck.’ gives the Zeckendorf representation
in binary form, where the rightmost number is the coeficient of F2, for example, 17 =
F7 + F4 + F2 = (100101). The ‘Moves’ lists the sum of each winning tail. Continuing
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with n = 17, we have G(17) = (3, 2; 2) and by the table above, we see that taking
F2 = 1 and F4 + F2 = 3 + 1 = 4 are both winning moves.

Fibonacci Nim Winning moves for n ∈ [1,90] ⊂ N

n Zeck. G(n) Moves n Zeck. G(n) Moves
1 1 (2) none 51 10100101 (2, 3, 2; 2) 1; 4
2 10 (3) none 52 10101000 (2, 2; 5) 5
3 100 (4) none 53 10101001 (2, 2, 3; 2) 1; 6
4 101 (2; 2) 1 54 10101010 (2, 2, 2; 3) 2
5 1000 (5) none 55 100000000 (10) none
6 1001 (3; 2) 1 56 100000001 (8; 2) 1
7 1010 (2; 3) 2 57 100000010 (7; 3) 2
8 10000 (6) none 58 100000100 (6; 4) 3
9 10001 (4; 2) 1 59 100000101 (6, 2; 2) 1; 4
10 10010 (3; 3) 2 60 100001000 (5; 5) 5
11 10100 (2; 4) 3 61 100001001 (5, 3; 2) 1; 6
12 10101 (2, 2; 2) 1 62 100001010 (5, 2; 3) 2; 7
13 100000 (7) 13 63 100010000 (4; 6) 8
14 100001 (5; 2) 1 64 100010001 (4, 4; 2) 1; 9
15 100010 (4; 3) 2 65 100010010 (4, 3; 3) 2; 10
16 100100 (3; 4) 3 66 100010100 (4, 2; 4) 3; 11
17 100101 (3, 2; 2) 1; 4 67 100010101 (4, 2, 2; 2) 1; 12
18 101000 (2; 5) 5 68 100100000 (3; 7) 13
19 101001 (2, 3; 2) 1; 6 69 100100001 (3, 5; 2) 1; 14
20 101010 (2, 2; 3) 2 70 100100010 (3, 4; 3) 2; 15
21 1000000 (8) none 71 100100100 (3, 3; 4) 3; 16
22 1000001 (6; 2) 1 72 100100101 (3, 3, 2; 2) 1; 4; 17
23 1000010 (5; 3) 2 73 100101000 (3, 2; 5) 5; 18
24 1000100 (4; 4) 3 74 100101001 (3, 2, 3; 2) 1; 6; 19
25 1000101 (4, 2; 2) 1; 4 75 100101010 (3, 2, 2; 3) 2; 20
26 1001000 (3; 5) 5 76 101000000 (2; 8) 21
27 1001001 (3, 3; 2) 5; 6 77 101000001 (2, 6; 2) 1; 22
28 1001010 (3, 2; 3) 2; 7 78 101000010 (2, 5; 3) 2; 23
29 1010000 (2; 6) 8 79 101000100 (2, 4; 4) 3; 24
30 1010001 (2, 4; 2) 1; 9 80 101000101 (2, 4, 2; 2) 1; 4; 25
31 1010010 (2, 3; 3) 2; 10 81 101001000 (2, 3; 5) 5; 26
32 1010100 (2, 2; 4) 3 82 101001001 (2, 3, 3; 2) 1; 6; 27
33 1010101 (2, 2, 2; 2) 1 83 101001010 (2, 3, 2; 3) 2; 7
34 10000000 (9) none 84 101010000 (2, 2; 6) 8
35 10000001 (7; 2) 1 85 101010001 (2, 2, 4; 2) 1; 9
36 10000010 (6; 3) 2 86 101010010 (2, 2, 3; 3) 2; 10
37 10000100 (5; 4) 3 87 101010100 (2, 2, 2; 4) 3
38 10000101 (5, 2; 2) 1; 4 88 101010101 (2, 2, 2, 2; 2) 1
39 10001000 (4; 5) 5 89 1000000000 (11) none
40 10001001 (4, 3; 2) 1; 6 90 1000000001 (9; 2) 1
41 10001010 (4, 2; 3) 2; 7 91 1000000010 (8; 3) 2
42 10010000 (3; 6) 8 92 1000000100 (7; 4) 3
43 10010001 (3, 4; 2) 1; 9 93 1000000101 (7, 2; 2) 1; 4
44 10010010 (3, 3; 3) 2; 10 94 1000001000 (6; 5) 5
45 10010100 (3, 2; 4) 3; 11 95 1000001001 (6, 3; 2) 1; 6
46 10010101 (3, 2, 2; 2) 1; 12 96 1000001010 (6, 2; 3) 2; 7
47 10100000 (2; 7) 13 97 1000010000 (5; 6) 8
48 10100001 (2, 5; 2) 1; 14 98 1000010001 (5, 4; 2) 1; 9
49 10100010 (2, 4; 3) 2; 15 99 1000010010 (5, 3; 3) 2; 10
50 10100100 (2, 3; 4) 3; 16 100 1000010100 (5, 2; 4) 3; 11
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