Distinct Solution to a Linear Congruence

Donald G. Adams
 Arizona State University

Vadim Ponomarenko ${ }^{\dagger}$
 San Diego State University

\dagger Corresponding author.

1 Linear Congruence

Given $n, k \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{Z}_{n}$, it is known classically (e.g. [4, 5]) that the linear congruence

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=1 \quad\left(\text { in } \mathbb{Z}_{n}\right) \tag{*}
\end{equation*}
$$

has a solution if and only if $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}_{n}^{\times}$, the group of units of \mathbb{Z}_{n}. We ask when such a solution exists with distinct $x_{i} \in \mathbb{Z}_{n}$, a question that appears to have been overlooked in the literature. In general, some additional conditions are necessary; for example, $1 x_{1}+1 x_{2}+1 x_{3}=1$ does not have a solution with distinct $x_{i} \in \mathbb{Z}_{3}$.

Our partial solution has a stronger coefficient condition, and another restriction involving $\phi(n)$, the Euler totient. The general case remains open.

Theorem 1. If $k \leq \phi(n)$ and $a_{i} \in \mathbb{Z}_{n}^{\times}(1 \leq i \leq k)$, then there exist distinct $x_{i} \in \mathbb{Z}_{n}$ satisfying (*).

Proof. We first construct $y_{1}, y_{2}, \ldots y_{k}$ iteratively, as will be explained. For notational convenience, for $i<j$ we set $y_{i, j}=y_{i}\left(1-a_{i+1} y_{i+1}\right)\left(1-a_{i+2} y_{i+2}\right) \cdots(1-$ $\left.a_{j-1} y_{j-1}\right)$ (note that $y_{i, i+1}=y_{i}$). We set $y_{1}=a_{1}^{-1}$; for $j>1$ we let y_{j} be any element chosen from $S_{j} \backslash T_{j}$, where $S_{j}=\left\{y \in \mathbb{Z}_{n}: 1-a_{j} y \in \mathbb{Z}_{n}^{\times}\right\}$, and $T_{j}=\left\{y \in \mathbb{Z}_{n}: y\left(1+a_{j} y_{i, j}\right)=y_{i, j}\right.$, for some i with $\left.1 \leq i<j\right\}$. Note that the defining property of S_{j} ensures that $1-a_{j} y_{j}$ is invertible, and that T_{j} ensures that $y_{j} \neq y_{i, j}\left(1-a_{j} y_{j}\right)=y_{i, j+1}$ for all $i<j$.

Now, set $x_{i}=y_{i, k+1}$, for $1 \leq i \leq k$. Note that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}$ conveniently telescopes to 1 , because $a_{1} y_{1}=1$. Suppose that $x_{i}=x_{j}$ (for $i<j$). Then $y_{i, k+1}=y_{j, k+1}$. We may cancel the common terms, because they were constructed to be invertible, to get $y_{i, j+1}=y_{j, j+1}=y_{j}$, which contradicts our construction of y_{j}. Hence the x_{i} are distinct, and a solution to (*).

It remains to prove that $S_{j} \backslash T_{j}$ is nonempty. We first prove that $\left|S_{j}\right|=$ $\left|\mathbb{Z}_{n}^{\times}\right|=\phi(n)$, by showing that $f(y)=1-a_{j} y$ is a bijection on \mathbb{Z}_{n}, and thus $f\left(S_{j}\right)=\mathbb{Z}_{n}^{\times}$. If $f(y)=f\left(y^{\prime}\right)$, then $1-a_{j} y=1-a_{j} y^{\prime}$ and $a_{j}\left(y-y^{\prime}\right)=0$, but a_{j} is invertible, hence $y=y^{\prime}$. So f is injective on a finite set and hence bijective. Finally, we prove that $\left|T_{j}\right| \leq j-1 \leq k-1<k \leq \phi(n)$, by showing that
$y\left(1+a_{j} y_{i, j}\right)=y_{i, j}$ has at most one solution y. If $\left(1+a_{j} y_{i, j}\right)$ is invertible, then $y=\left(1+a_{j} y_{i, j}\right)^{-1} y_{i, j}$ is unique. If not, then there is some $m>1$ with $m \mid n$ and $m \mid\left(1+a_{j} y_{i, j}\right)$. If there is a solution y then also $m \mid y_{i, j}$, so $m \mid\left(1+a_{j} y_{i, j}\right)-a_{j} y_{i, j}=$ 1 , a contradiction.

If n is prime, we can do better, solving the problem completely. Clearly it is necessary that $k \leq n$, and that not all a_{i} are zero, i.e. $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}_{n}^{\times}$.

Theorem 2. Let n be an odd prime, $k \leq n$, and $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}_{n}^{\times}$. Then there exist distinct $x_{i} \in \mathbb{Z}_{n}$ satisfying ($*$), if and only if either (a) $k<n$, or (b) not all of the a_{i} are equal.

Proof. The nonzero a_{i} are in \mathbb{Z}_{n}^{\times}, and $\phi(n)=n-1$, so unless there are n nonzero a_{i}, we can apply Theorem 1 , and arbitrarily assign leftover distinct elements from \mathbb{Z}_{n} to those x_{i} where $a_{i}=0$. If $k=n$ and $a_{1}=\cdots=a_{k}=t$, then there is only one possible solution, and it fails because $t(0+1+\cdots+n)=\operatorname{tn} \frac{n+1}{2}=0$ in \mathbb{Z}_{n}.

Remaining is the case where $k=n$, the a_{i} are all nonzero and not all equal. Set $a_{i}^{\prime}=a_{i}-a_{1}$. More than zero, but less than n, of the a_{i}^{\prime} are nonzero, so we can find distinct $x_{i} \in \mathbb{Z}_{n}$ with $a_{1}^{\prime} x_{1}+\cdots a_{n}^{\prime} x_{n}=1$. But now $a_{1} x_{1}+\cdots+a_{n} x_{n}=$ $\left(a_{1}^{\prime}+a_{1}\right) x_{1}+\cdots+\left(a_{n}^{\prime}+a_{1}\right) x_{n}=\left(a_{1}^{\prime} x_{1}+\cdots+a_{n}^{\prime} x_{1}\right)+a_{1}\left(x_{1}+\cdots+x_{n}\right)=$ $1+a_{1}(0+1+\cdots+n)=1+a_{1} n \frac{n+1}{2}=1$ in \mathbb{Z}_{n}.

In fact, we believe that a similar result holds for composite n; this is supported by preliminary computer calculations. For example, consider $n=6, k=$ $5,\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,2,2,3,3)$. Neither of the strong conditions of Theorem 1 are met; however $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,4,5,0,1)$ satisfies $(*)$.

Conjecture 3. Let $k<n$ and $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots a_{k}\right) \in \mathbb{Z}_{n}^{\times}$. Then there exist distinct $x_{i} \in \mathbb{Z}_{n}$ satisfying (*).

2 Application

Fix the finite abelian group $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$. We consider multisets ${ }^{1}$ of elements such that their sum is zero; we call these zero-sum multisets. They have a rich literature and history (see [3]), arising from fundamental number theoretic questions about nonunique factorization.

It is well-known that the largest minimal (i.e. containing no other nontrivial zero-sum multiset) zero-sum multiset is of size $2 n-1$. Recently it has been shown (see [2]) that any zero-sum multiset of this size contains some element of multiplicity $n-1$. In [1] it was shown that the remaining multiplicities $a_{1}, a_{2}, \ldots a_{k}$ (where $a_{1}+a_{2}+\cdots+a_{k}=n$) must admit a solution to ($*$) in distinct elements of \mathbb{Z}_{n}, leaving open the question of when this occurs.

[^0]Corollary 4. Let $n>0, k \leq \phi(n)$, and $a_{i} \in \mathbb{N}$ with $a_{1}+\cdots+a_{k}=n$ and $\operatorname{gcd}\left(a_{i}, n\right)=1$. Then there is an irreducible zero-sum multiset in $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ whose elements have multiplicities $n-1, a_{1}, a_{2}, \ldots, a_{k}$.

Corollary 5. Let $n>0$ be prime, $k \leq n$, and $a_{i} \in \mathbb{N}$ with $a_{1}+\cdots+a_{k}=n$ and $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}, n\right)=1$. Then there is an irreducible zero-sum multiset in $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ whose elements have multiplicities $n-1, a_{1}, a_{2}, \ldots, a_{k}$ if and only if $1<k<n$.

References

[1] Weidong Gao and Alfred Geroldinger. On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus$ $\mathbb{Z} / n \mathbb{Z}$. Integers, 3:A8, 45 pp. (electronic), 2003.
[2] Weidong Gao, Alfred Geroldinger, and David J. Grynkiewicz. Inverse zerosum problems. III. Acta Arith., 141(2):103-152, 2010.
[3] Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations, volume 278 of Pure and Applied Mathematics (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory.
[4] J. V. Uspensky and M. A. Heaslet. Elementary Number Theory. McGrawHill Book Company, Inc., New York, 1939.
[5] H. S. Vandiver. Questions and Discussions: Discussions: On Algorithms for the Solution of the Linear Congruence. Amer. Math. Monthly, 31(3):137140, 1924.

[^0]: ${ }^{1}$ For historical reasons these are called sequences in the literature, although the elements are not ordered.

