Accepted Elasticity in Local Arithmetic Congruence Monoids

Vadim Ponomarenko

Department of Mathematics and Statistics San Diego State University

Joint Math Meetings January 15, 2014

http://www-rohan.sdsu.edu/~vadim/ accepted-talk.pdf

Shameless advertising

Please encourage your students to apply to the

San Diego State University Mathematics REU.

http://www.sci.sdsu.edu/math-reu/index.html

This work was done in Summer 2012, jointly with undergraduates Lorin Crawford, Jason Steinberg, and Marla Williams.

Arithmetic Congruence Monoids

Fix $a, b \in \mathbb{N}$ with $a^2 \equiv a \pmod{b}$. Set $S = \{x \in \mathbb{N} : x \equiv a \pmod{b}\} \cup \{1\}$. *S* is a multiplicative submonoid of \mathbb{N} called an ACM. Famous example: a = 1, b = 4, "Hilbert monoid"

Several recent papers have studied ACM arithmetic. This work considers one property, in the one class not yet understood, called "local".

 $gcd(a, b) = p^{\alpha}$ i.e. $a = p^{\alpha}\xi, b = p^{\alpha}n$, with $gcd(\xi, n) = gcd(p, n) = 1$.

Arithmetic Congruence Monoids

Fix $a, b \in \mathbb{N}$ with $a^2 \equiv a \pmod{b}$. Set $S = \{x \in \mathbb{N} : x \equiv a \pmod{b}\} \cup \{1\}$. *S* is a multiplicative submonoid of \mathbb{N} called an ACM. Famous example: a = 1, b = 4, "Hilbert monoid"

Several recent papers have studied ACM arithmetic.

This work considers one property, in the one class not yet understood, called "local".

 $gcd(a, b) = p^{\alpha}$ i.e. $a = p^{\alpha}\xi, b = p^{\alpha}n$, with $gcd(\xi, n) = gcd(p, n) = 1$.

Accepted Elasticity

For ACM *S*, and $x \in S \setminus \{1\}$, we may write $x = x_1 \cdots x_k$, where x_k are irreducible.

We call *k* the *length* of this factorization into irreducibles.

We call the *elasticity* of x the ratio of the maximum possible length to the minimum possible length.

We say S has accepted elasticity if there is some $x \in S$ whose elasticity is maximal, over all elements of S.

Does a given ACM have accepted elasticity?

Accepted Elasticity

For ACM *S*, and $x \in S \setminus \{1\}$, we may write $x = x_1 \cdots x_k$, where x_k are irreducible.

We call *k* the *length* of this factorization into irreducibles.

We call the *elasticity* of x the ratio of the maximum possible length to the minimum possible length.

We say *S* has *accepted elasticity* if there is some $x \in S$ whose elasticity is maximal, over all elements of *S*.

Does a given ACM have accepted elasticity?

Accepted Elasticity

For ACM *S*, and $x \in S \setminus \{1\}$, we may write $x = x_1 \cdots x_k$, where x_k are irreducible.

We call *k* the *length* of this factorization into irreducibles.

We call the *elasticity* of x the ratio of the maximum possible length to the minimum possible length.

We say *S* has *accepted elasticity* if there is some $x \in S$ whose elasticity is maximal, over all elements of *S*.

Does a given ACM have accepted elasticity?

General Approach

Recall $S = \{x \in \mathbb{N} : x \equiv p^{\alpha} \xi \pmod{p^{\alpha} n} \} \cup \{1\}.$

It is very useful to consider the group of units $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

What are p, p^{α} congruent to? How big is α ? What is α congruent to, modulo $\phi(n)$?

Note: $p^{\alpha} \xi \equiv 1 \pmod{n}$, so ξ is vestigial.

Main Theorem

Recall $S = \{x \in \mathbb{N} : x \equiv p^{\alpha} \xi \pmod{p^{\alpha} n} \} \cup \{1\}.$

This has accepted elasticity for all *p* and for all sufficiently large α if:

- 1. $n \in \{1, 2, 8, 12\}$, or
- 2. One of $\{qrs, 4qr, 8q\}$ divides *n*, or
- 3. $n \in \{q^{s}r^{t}, 2q^{s}r^{t}\}$ with gcd(q-1, r-1) > 2. (*q*, *r*, *s* odd primes)

Otherwise, ∞ many *p* have accepted elasticity for all suff. large α , and ∞ many *p* do not, for ∞ many α .

Main Theorem

Recall $S = \{x \in \mathbb{N} : x \equiv p^{\alpha} \xi \pmod{p^{\alpha} n}\} \cup \{1\}.$

This has accepted elasticity for all *p* and for all sufficiently large α if:

- 1. $n \in \{1, 2, 8, 12\}$, or
- 2. One of $\{qrs, 4qr, 8q\}$ divides *n*, or
- 3. $n \in \{q^{s}r^{t}, 2q^{s}r^{t}\}$ with gcd(q 1, r 1) > 2.

(q, r, s odd primes)

Otherwise, ∞ many *p* have accepted elasticity for all suff. large α , and ∞ many *p* do not, for ∞ many α .

For Further Reading

- P. Baginski, S. Chapman Arithmetic Congruence Monoids: A Survey (under review)
- L. Crawford, VP, J. Steinberg, M. Wlliams Accepted Elasticity in Local ACMs (under review)
- M. Jenssen, D. Montealegre, VP Irreducible Factorization Lengths and the Elasticity Problem Within N, American Math Monthly 120 (4) 2013, pp. 322-328.
- A. Fujiwara, J. Gibson, M. Jenssen, D. Montealegre, VP, Ari Tenzer
 Arithmetic of Congruence Monoids (under review)
- C. Allen, VP, W. Radil, R. Rankin, H. Williams Full Elasticity in Local ACMs (in preparation)

