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Arithmetic Congruence Monoids

Fix a,b ∈ N with a2 ≡ a (mod b).
Set S = {x ∈ N : x ≡ a (mod b)} ∪ {1}.
S is a multiplicative submonoid of N called an ACM.
Famous example: a = 1,b = 4, “Hilbert monoid”

Several recent papers have studied ACM arithmetic.
This work considers one property, in the one class not yet
understood, called “local”.
gcd(a,b) = pα

i.e. a = pαξ,b = pαn, with gcd(ξ,n) = gcd(p,n) = 1.
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Accepted Elasticity

For ACM S, and x ∈ S \ {1}, we may write x = x1 · · · xk ,
where xk are irreducible.

We call k the length of this factorization into irreducibles.

We call the elasticity of x the ratio of the maximum
possible length to the minimum possible length.

We say S has accepted elasticity if there is some x ∈ S
whose elasticity is maximal, over all elements of S.

Does a given ACM have accepted elasticity?
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General Approach

Recall S = {x ∈ N : x ≡ pαξ (mod pαn)} ∪ {1}.

It is very useful to consider the group of units (Z/nZ)×.

What are p, pα congruent to? How big is α?
What is α congruent to, modulo φ(n)?

Note: pαξ ≡ 1 (mod n), so ξ is vestigial.
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Main Theorem

Recall S = {x ∈ N : x ≡ pαξ (mod pαn)} ∪ {1}.
This has accepted elasticity for all p and for all sufficiently
large α if:
1. n ∈ {1,2,8,12}, or
2. One of {qrs,4qr ,8q} divides n, or
3. n ∈ {qsr t ,2qsr t} with gcd(q − 1, r − 1) > 2.

(q, r , s odd primes)

Otherwise,∞ many p have accepted elasticity for all suff.
large α, and∞ many p do not, for∞ many α.
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