Math 524 Final Exam 11: 12/16/8

Please read the exam instructions.

Notes, books, papers, calculators and electronic aids are all forbidden for this exam. Please write your answers on **separate paper**, indicate clearly what work goes with which problem, and put your name on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Keep this list of problems for your records. Show all necessary work in your solutions; if you are unsure, show it. Each problem is worth 10 points. You have approximately 120 minutes.

- 1. Carefully define the term "vector space".
- 2. Carefully define the term "complex inner product".
- 3. Carefully define the term "power vector" (generalized eigenvector).
- 4. Carefully state Thm 3.7, the Dimension Theorem.
- 5. Carefully state Thm 7.2, concerning representation of the adjoint of an operator.

6. Solve the system of difference equations $\begin{cases} x(n)=2y(n-1) \\ y(n)=3x(n-1)+y(n-1) \end{cases}$ with x(0) = 1, y(0) = 0.

For the next two problems, let $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 2 & 2 & 4 \end{pmatrix}$.

- 7. Find all eigenvalues of A; give a basis for each eigenspace. HINT: column sums
- 8. Find the kernel and image of the linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ defined by multiplication by A; that is, L(x) = Ax. Is L one-to-one? onto?

For the next four problems, consider the vector space $\mathbb{R}_2[t]$, real polynomials of degree at most 2, with the real inner product $\langle f|g \rangle = \int_0^1 f(t)g(t)dt$. Set $u(t) = t - 1, v(t) = t^2 - 1$, and $V = \text{Span}(u, v) = \{at^2 + bt - (a+b)\} = \{p(t) : p(1) = 0\}.$

- 9. Pick any $w \notin V$, and set $B = \{u, v, w\}$. Prove that B is a basis for $\mathbb{R}_2[t]$, and calculate $[1 + 2t + 3t^2]_B$.
- 10. Let $W = \{at : a \in \mathbb{R}\}$. Prove that $\mathbb{R}_2[t]$ is the internal direct sum of V, W.
- 11. Let L be the linear operator that projects onto V. Find a representation of the adjoint $[L^{\dagger}]_B$, for B a basis of your choice. Is L symmetric? orthogonal?
- 12. Let $B = \{u, v\}$, a basis for V. Calculate two bases for V^* by specifying their action on each element of V. (1) the dual basis $\{\phi_1, \phi_2\}$, (2) the bra basis $\{\langle u|, \langle v|\}$.

Consider the Markov chain pictured at right. If the initial distribution is starting in A, i.e. $(1,0,0)^T$, find (approximately) the

13. distribution after 12 time steps. You may use the approximation that $(0.9)^{12} \approx 2/7$.

- 14. Find a linear operator, on the vector space of your choice, that has two eigenvalues: $\lambda = 3$, with algebraic multiplicity 5 and geometric multiplicity 3, and $\lambda = 4$, with algebraic multiplicity 3 and geometric multiplicity 1.
- 15. Find all 2×2 complex matrices that are simultaneously anti-symmetric and unitary.
- 16. (extra credit) Prove that every probability matrix has eigenvalue $\lambda = 1$.