Math 522 Exam 5 Solutions

1. Prove or disprove: $29^{76} \equiv 76^{29}(\bmod 35)$.

Easy way: Statement holds if and only if $29^{76} \equiv 76^{29}(\bmod 5)$ AND $29^{76} \equiv 76^{29}$ ($\bmod 7$). Note that, modulo $5,29 \equiv-1$ and $76 \equiv 1$. Also, modulo 7, $29 \equiv 1$ and $76 \equiv-1$. The first equation therefore simplifies to $(-1)^{76} \equiv(1)^{29}(\bmod 5)$, which is true since $(-1)^{76}=1$. The second equation, however, simplifies to $(1)^{76} \equiv(-1)^{29}$ ($\bmod 7)$, which is false. Hence the statement does not hold.
Note: It was not necessary to check modulo 5, I did this for completeness.
Hard way: Working modulo 35, we see that $29 \equiv-6$ and $76 \equiv 6$. Further, $29^{76} \equiv$ $(-6)^{76} \equiv\left((-6)^{2}\right)^{38} \equiv 6^{76}$. On the other hand, $76^{29} \equiv 6^{29}$. Hence, the problem is equivalent to $6^{76} \equiv 6^{29}(\bmod 35)$. Let's calculate powers of 6 , modulo 35. Imediately we see that $6^{2} \equiv 1$. Hence $6^{28} \equiv\left(6^{2}\right)^{14} \equiv 1$. But then $6^{29}=6^{28} 6^{1} \equiv 6 \not \equiv 1 \equiv\left(6^{2}\right)^{38}=6^{76}$.
Completely mechanical way: We first calculate powers of 29, modulo 35. We immediately see that $29^{2} \equiv 1$, and hence $29^{76}=\left(29^{2}\right)^{37} \equiv 1$. We now calculate powers of 76, modulo 35. We again find the extremely lucky situation that $76^{2} \equiv 1$, and hence $76^{29} \equiv\left(76^{2}\right)^{14} 76^{1} \equiv 76$. It remains to check whether $1 \equiv 76(\bmod 35)$, which is false.
2. Recall that $a \equiv b(\bmod c)$ means that $(a-b) / c$ is an integer. Recall also that $\lfloor\alpha\rfloor$ is the greatest integer less than or equal to α. For real numbers $x, y(y>0)$ define $f(x, y)=x-y\lfloor x / y\rfloor$.
(a) Prove that $f(x, y) \equiv x(\bmod y)$.

We calculate $(f(x, y)-x) / y=(x-y\lfloor x / y\rfloor-x) / y=-y\lfloor x / y\rfloor / y=-\lfloor x / y\rfloor$. But this is an integer, by the definition of $\lfloor\alpha\rfloor$.
(b) Prove that $0 \leq f(x, y)<y$ The key fact is that $\alpha-1<\lfloor\alpha\rfloor \leq \alpha$, for any real number α. Because $\lfloor\alpha\rfloor \leq \alpha$, we have $-\lfloor\alpha\rfloor \geq-\alpha$. Hence $f(x, y)=x-y\lfloor x / y\rfloor \geq x-y^{x} / y=x-x=0$. On the other hand, $y-f(x, y)=y-x+y\lfloor x / y\rfloor>y-x+y(x / y-1)=y-x+x-y=0$.

Alternate solution: Use the similar fact, that $\alpha-\lfloor\alpha\rfloor=\beta$, for some $0 \leq \beta<1$. Hence $\lfloor x / y\rfloor=x / y-\beta$. We substitute this into $f(x, y)=x-y(x / y-\beta)=y \beta$. Since $0 \leq \beta<1$ and $y>0$, the desired results follow.
3. Exam grades: $100,95,94,93,87,84,81,76,72,68,65,63,52$

