Math 522 Exam 5 Solutions

1. Prove or disprove: $29^{76} \equiv 76^{29} \pmod{35}$.

Easy way: Statement holds if and only if $29^{76} \equiv 76^{29} \pmod{5}$ AND $29^{76} \equiv 76^{29} \pmod{7}$. mod 7). Note that, modulo 5, $29 \equiv -1$ and $76 \equiv 1$. Also, modulo 7, $29 \equiv 1$ and $76 \equiv -1$. The first equation therefore simplifies to $(-1)^{76} \equiv (1)^{29} \pmod{5}$, which is true since $(-1)^{76} \equiv 1$. The second equation, however, simplifies to $(1)^{76} \equiv (-1)^{29} \pmod{7}$, which is false. Hence the statement does not hold.

Note: It was not necessary to check modulo 5, I did this for completeness.

Hard way: Working modulo 35, we see that $29 \equiv -6$ and $76 \equiv 6$. Further, $29^{76} \equiv (-6)^{76} \equiv ((-6)^2)^{38} \equiv 6^{76}$. On the other hand, $76^{29} \equiv 6^{29}$. Hence, the problem is equivalent to $6^{76} \equiv 6^{29} \pmod{35}$. Let's calculate powers of 6, modulo 35. Imediately we see that $6^2 \equiv 1$. Hence $6^{28} \equiv (6^2)^{14} \equiv 1$. But then $6^{29} = 6^{28}6^1 \equiv 6 \neq 1 \equiv (6^2)^{38} = 6^{76}$.

Completely mechanical way: We first calculate powers of 29, modulo 35. We immediately see that $29^2 \equiv 1$, and hence $29^{76} = (29^2)^{37} \equiv 1$. We now calculate powers of 76, modulo 35. We again find the extremely lucky situation that $76^2 \equiv 1$, and hence $76^{29} \equiv (76^2)^{14}76^1 \equiv 76$. It remains to check whether $1 \equiv 76 \pmod{35}$, which is false.

- 2. Recall that $a \equiv b \pmod{c}$ means that (a b)/c is an integer. Recall also that $\lfloor \alpha \rfloor$ is the greatest integer less than or equal to α . For real numbers $x, y \ (y > 0)$ define $f(x, y) = x y \lfloor x/y \rfloor$.
 - (a) Prove that $f(x, y) \equiv x \pmod{y}$. We calculate $(f(x, y) - x)/y = (x - y\lfloor x/y \rfloor - x)/y = -y\lfloor x/y \rfloor/y = -\lfloor x/y \rfloor$. But this is an integer, by the definition of $\lfloor \alpha \rfloor$.
 - (b) Prove that $0 \le f(x, y) < y$ The key fact is that $\alpha - 1 < \lfloor \alpha \rfloor \le \alpha$, for any real number α . Because $\lfloor \alpha \rfloor \le \alpha$, we have $-\lfloor \alpha \rfloor \ge -\alpha$. Hence $f(x, y) = x - y \lfloor x/y \rfloor \ge x - y^{x/y} = x - x = 0$. On the other hand, $y - f(x, y) = y - x + y \lfloor x/y \rfloor > y - x + y(x/y - 1) = y - x + x - y = 0$.

Alternate solution: Use the similar fact, that $\alpha - \lfloor \alpha \rfloor = \beta$, for some $0 \leq \beta < 1$. Hence $\lfloor x/y \rfloor = x/y - \beta$. We substitute this into $f(x, y) = x - y(x/y - \beta) = y\beta$. Since $0 \leq \beta < 1$ and y > 0, the desired results follow.

3. Exam grades: 100, 95, 94, 93, 87, 84, 81, 76, 72, 68, 65, 63, 52