MATH 521B: Abstract Algebra

Homework 3: Due Feb. 9

1. In our definition of a group G, we assumed there is a unique group element $i d$ such that $i d \circ a=a \circ i d=a$ for all $a \in G$. Suppose we change just this definition, and have two (possibly different) identities, $i d_{1}$ and $i d_{2}$, that satisfy $i d_{1} \circ a=a \circ i d_{1}=a$ for all $a \in G$, and also $i d_{2} \circ a=a \circ i d_{2}=a$ for all $a \in G$. Prove that, in fact, $i d_{1}=i d_{2}$.
2. In our definition of a group G, we assumed that there is a group element $i d$ such that $i d \circ a=a \circ i d=a$ for all $a \in G$. Suppose we change just this definition, and instead have two (possibly different) identities, $i d_{L}$ and $i d_{R}$, that satisfy $i d_{L} \circ a=a$ and $a \circ i d_{R}=a$ for all $a \in G$. Prove that, in fact, $i d_{L}=i d_{R}$.
3. In our definition of a group G, we assumed that for every $a \in G$ there is a unique inverse a^{-1} such that $a \circ a^{-1}=a^{-1} \circ a=i d$. Suppose we change just this definition, and instead for each $a \in G$ have two (possibly different) inverses, a_{1}^{-1} and a_{2}^{-1}, that satisfy $a_{1}^{-1} \circ a=a \circ a_{1}^{-1}=i d$, and also $a_{2}^{-1} \circ a=a \circ a_{2}^{-1}=i d$. Prove that for all $a \in G$, in fact, $a_{1}^{-1}=a_{2}^{-1}$.
4. In our definition of a group G, we assumed that for every $a \in G$ there is an inverse a^{-1} such that $a \circ a^{-1}=a^{-1} \circ a=i d$. Suppose we change just this definition, and instead for each $a \in G$ have two (possibly different) inverses, a_{L}^{-1} and a_{R}^{-1}, that satisfy $a_{L}^{-1} \circ a=i d=a \circ a_{R}^{-1}$. Prove that for all $a \in G$, in fact, $a_{L}^{-1}=a_{R}^{-1}$.
5. Let G be a group. Prove that it is left cancellative, i.e. for all $a, b, c \in G$, if $a \circ b=a \circ c$, then $b=c$.
6. Let G be a group. Prove that it is right cancellative, i.e. for all $a, b, c \in G$, if $b \circ a=c \circ a$, then $b=c$.
7. Let G be a group, and let $a, b \in G$. Prove that $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.
8. Let G be a group, and let $a \in G$. Prove that $\left(a^{-1}\right)^{-1}=a$.
9. Let G be a group. Prove that $G \cong G$.
10. Let G, H be groups, and suppose that $G \cong H$. Prove that $H \cong G$.
11. Let F, G, H be groups, and suppose that $F \cong G$ and $G \cong H$. Prove that $F \cong H$.
12. Let G, H be groups, and suppose that $G \cong H$ via $f: G \rightarrow H$. Suppose that K is a subgroup of G. Prove that $f(K)=\{f(k): k \in K\}$ is a subgroup of H.
13. Let G, H be groups, and suppose that $G \cong H$ via $f: G \rightarrow H$. For every $a \in G$, prove that $|a|=|f(a)|$, i.e. the order of a in G equals the order of $f(a)$ in H.
14. Find an example of two groups G, H such that G is a subgroup of $H, G \neq H$, and yet $G \cong H$. Hint: G, H must be infinite.
