MATH 521B: Abstract Algebra Homework 1: Due Jan. 26

An isometry (also called a symmetry) of an object A in \mathbb{R}^n is a function $f : \mathbb{R}^n \to \mathbb{R}^n$ satisfying two properties:

- 1. For all $v \in A$, $f(v) \in A$, and
- 2. For all $v, u \in \mathbb{R}^n$, |f(v) f(u)| = |v u|.

We say that f preserves A (property 1), and f preserves distances (property 2). Note: v, u above are vectors.

A key property of isometries is that they preserve structure. An isometry maps a corner of A to a corner of A, of the same degree. It maps an edge of A to an edge of A, of the same length, and the same degrees at the ends. It maps a face of A to a face of A, with the same number of sides and the same area.

- 1. Explicitly write down four different isometries of $A = \{(0,0)\}$ in \mathbb{R}^2 . Example: f(x,y) = (y,x).
- 2. Explicitly write down some $f : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves $A = \{(0,0)\}$ but does NOT preserve distances.
- 3. Explicitly write down some $f : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves distances but does NOT preserve $A = \{(0,0)\}.$
- 4. Explicitly write down all the isometries in \mathbb{R}^2 for A the line segment between (-1,0) and (1,0). Justify why your list is complete.
- 5. Explicitly write down all the isometries in \mathbb{R}^2 for A the line segment between (-1,0) and (2,0). Justify why your list is complete.
- 6. Explicitly write down all the isometries in \mathbb{R}^2 for A the triangle with vertices (-1, 0), (1, 0), (0, 1). Justify why your list is complete.
- 7. How many isometries are there in \mathbb{R}^2 for A the triangle with vertices (-1,0), (1,0), $(0,\sqrt{3})$. Justify why your list is complete. Why is the answer different from the previous problem?
- 8. Explicitly write down all the isometries in \mathbb{R}^2 for A the unit circle $x^2 + y^2 = 1$. Justify why your list is complete. Hint: polar coordinates.
- 9. Explicitly write down all the isometries in \mathbb{R}^3 for A the line segment between (0, 0, -1) and (0, 0, 1). Justify why your list is complete. Hint: cylindrical coordinates.