Please recall the following:
\[C^\times = \{ x \in \mathbb{C} : x \neq 0 \} \text{ and } \mathbb{R}^\times = \{ x \in \mathbb{R} : x \neq 0 \} \text{ are groups under multiplication. } \mathbb{R}, \mathbb{Q}, \mathbb{Z} \text{ are groups under addition. } S_n \text{ is the symmetric group on } [n], \text{ and } A_n \leq S_n \text{ is the alternating group on } [n] \text{ that consists of even permutations. } A \times B \text{ denotes the external direct product } \{(a, b) : a \in A, b \in B\}. \]

If \(A, B \) are groups then so is \(A \times B \) with group operation \((a, b)(a', b') = (aa', bb')\).

1. Set \(G = \{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)\}\). Calculate the Cayley table for \(S_4/G \).

2. Set \(G = \{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)\}\). Prove that \(G \leq A_4 \), and calculate the Cayley table for \(A_4/G \).

3. Fix \(H = \langle(1 2 3)\rangle \leq S_3 \). Prove that \(H \leq S_3 \), and find a familiar group isomorphic to \(S_3/H \).

For problems 4-7, let \(G = \{(a b) : a, b, d \in \mathbb{R}, ad \neq 0\} \), and \(N = \{(\frac{1}{b} 1) : b \in \mathbb{R}\} \).

4. Prove that \(N \leq G \).

5. For each \((\frac{a}{b} \frac{c}{d}) = x \in G \), determine explicitly all \(y \in G \) with \(x \equiv y \) (mod \(N \)).

6. Prove that \(N \cong \mathbb{R} \).

7. Prove that \(G/N \cong \mathbb{R}^\times \times \mathbb{R}^\times \).

For problems 8-9, define \(U \leq C^\times \) via \(U = \{a + bi : a^2 + b^2 = 1\}\).

8. Prove that \(C^\times/U \cong \mathbb{R}^\times \).

9. Prove that \(\mathbb{R}/\mathbb{Z} \cong U \).

10. Fix a finite group \(G \), with \(N \leq G \). Set \(m = |G : N| \). Prove that \(a^m \in N \), for all \(a \in G \).

11. Fix abelian group \(G \), with \(|G| = 2k \), and \(k \) odd. Prove that \(G \) has exactly one element \(g \) with \(|g| = 2 \).

12. Let \(p \) be an odd prime, and let \(G \) be a nonabelian group with \(|G| = 2p \). Prove that \(G \) contains an element of order \(p \).

13. Fix abelian group \(G \). Set \(K = \{g \in G : |g| \leq 2\} \), \(H = \{x^2 : x \in G\} \). Prove that \(K \leq G \), \(H \leq G \), and that \(G/K \cong H \).

14. Let \(f : G \to H \) be an onto homomorphism. Suppose \(N \leq G \). Prove that \(f(N) \leq H \).

15. Fix groups \(G, H \), and suppose \(M \leq G \) and \(N \leq H \). Prove that \((M \times N) \leq (G \times H) \).

16. Fix groups \(G, H \), and suppose \(M \leq G \) and \(N \leq H \). Prove that \((G/M) \times (H/N) \cong (G \times H)/(M \times N) \).

17. Fix a finite group \(G \), and some \(s \in \mathbb{N} \). Set \(T = \{K : |K| = s, K \leq G\} \), the set of all subgroups of order \(s \), and assume \(|T| \geq 1\). Set \(N = \bigcap T \). Prove that \(N \leq G \).

18. Fix \(n \geq 5 \). Set \(T = \{(r s t)\} \subseteq S_n \), the set of all permutations that consist of a single cycle of length three. Prove that \(A_n = (T) \).

19. Fix \(n \geq 5 \) and \(N \leq A_n \). Set \(T = \{(r s t)\} \subseteq S_n \), the set of all permutations consisting of just a cycle of length three. If \(N \cap T \neq \emptyset \), prove that \(N = A_n \).

20. Fix a group \(G \), and suppose \(N \trianglelefteq G \). Suppose \(N \) is maximal normal, i.e. there is no \(M \) with \(N < M < G \). Prove that \(G/N \) is simple.