MATH 521A: Abstract Algebra

Homework 9: Due Nov. 29

1. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}+4 x+1\right)$.
2. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}+3 x+1\right)$.
3. Calculate the multiplication table for $\mathbb{Z}_{5}[x] /\left(x^{2}\right)$.
4. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}+2\right)$.
5. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}-2\right)$.
6. Calculate the multiplication table for $\mathbb{Q}[x] /\left(x^{2}-1\right)$.
7. * For each of the rings in problems 1-6, calculate the (multiplicative) inverse of $[x-1]$, or prove it does not exist.
8. Let $f(x), g(x), p(x) \in F[x]$, where all three polynomials are nonconstants. Suppose that $f(x) g(x)=p(x)$. Prove that $[f(x)]$ is a zero divisor in $F[x] /(p(x))$.
9. Let $f(x), p(x) \in F[x]$, where both polynomials are nonconstants. Set $g(x)=\operatorname{gcd}(f(x), p(x))$. Prove that $[f(x)]$ is a unit in $F[x] /(p(x))$, if and only if $g(x)$ is a constant polynomial.
10. Determine, with proof, which of the rings in problems 1-6 are integral domains, and which are fields.
