Math 254 Fall 2014 Exam 6 Solutions

1. Carefully state the definition of "polynomial space" $P(t)$. Give two different bases for $P_{1}(t)$.
The polynomial space $P(t)$ consists of all polynomials, with real coefficients, in the variable t. Two bases for $P_{1}(t)$ are $\{1, t\}$ and $\{1+t, 1-t\}$.
2. Let V denote the set of all symmetric 2×2 matrices. Set $E=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. Prove that E is a basis for V.
We first prove that E is independent: If $a e_{1}+b e_{2}+c e_{3}=0$, then $\left(\begin{array}{cc}a & b \\ b & c\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, so $a=b=c=0$. Hence no nondegenerate linear combination yields 0 .
Solution 1: Let $\left(\begin{array}{cc}a & b \\ b & d\end{array}\right) \in V$. We take $a e_{1}+b e_{2}+c e_{3}$, and see that it equals the desired matrix. Hence E is spanning, and hence E is a basis.
Solution 2: $V \neq M_{2,2}$ so $\operatorname{dim}(V) \leq 3$. But E is independent and $|E|=3$, so E is maximal spanning, and is thus a basis.
The remaining three problems concern the vector space $V=\left\{\left(\begin{array}{cc}a & b \\ b & d\end{array}\right): a, b, d \in \mathbb{R}\right\}$ and its basis $E=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
3. Set $B=\left\{\left(\begin{array}{cc}0 & -2 \\ -2 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}=\left\{b_{1}, b_{2}, b_{3}\right\}$. Compute $\left[b_{1}\right]_{E},\left[b_{2}\right]_{E},\left[b_{3}\right]_{E}$, and use these to prove that B is a basis for V.
We have $\left[b_{1}\right]_{E}=(0,-2,1),\left[b_{2}\right]_{E}=(0,1,0),\left[b_{3}\right]_{E}=(1,0,-1)$. Putting these as rows, we get $\left(\begin{array}{ccc}0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right)$. After $R_{1}+2 R_{2} \rightarrow R_{1}, R_{1} \leftrightarrow R_{3}$, we get $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. This is in row echelon form, and has 3 pivots, so the rowspace of the original matrix is 3-dimensional. Hence $\operatorname{dim}(\operatorname{Span}(B))=3=\operatorname{dim}(V)$, and thus $\operatorname{Span}(B)=V$, and B is a basis for V.
4. Set $C=\left\{\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right),\left(\begin{array}{ll}2 & 6 \\ 6 & 4\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}5 & 3 \\ 3 & 4\end{array}\right)\right\}=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Compute $\left[c_{1}\right]_{E},\left[c_{2}\right]_{E},\left[c_{3}\right]_{E},\left[c_{4}\right]_{E}$, and use these to find a basis for $\operatorname{Span}(C)$.
We have $\left[c_{1}\right]_{E}=(1,3,2),\left[c_{2}\right]_{E}=(2,6,4),\left[c_{3}\right]_{E}=(1,1,1),\left[c_{4}\right]_{E}=(5,3,4)$. Putting these as rows, we get $\left(\begin{array}{lll}1 & 3 & 2 \\ 2 & 6 & 4 \\ 1 & 1 & 1 \\ 5 & 3 & 4\end{array}\right)$, which has row echelon form $\left(\begin{array}{lll}1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Hence $\operatorname{Span}(C)$ has basis $\left\{\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 2 & 1\end{array}\right)\right\}$.
5. For B as in (3), calculate $Q_{B E}$, and use this to compute $\left[\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)\right]_{B}$.

We now put the $\left[b_{1}\right]_{E},\left[b_{2}\right]_{E},\left[b_{3}\right]_{E}$ as columns, to get $Q_{E B}$. We calculate $Q_{B E}=Q_{E B}^{-1}=$ $\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & 0\end{array}\right)$. Since $\left[\left(\begin{array}{cc}1 & 2 \\ 2 & 3\end{array}\right)\right]_{E}=(1,2,3)^{T}$, we calculate $\left[\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 3\end{array}\right)\right]_{B}=Q_{B E}(1,2,3)^{T}=(4,10,1)^{T}$.
That is, $\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)=4 b_{1}+10 b_{2}+1 b_{3}$, which is easily double-checked if desired.

