Math 254 Fall 2014 Exam 6 Solutions

1. Carefully state the definition of "polynomial space" P(t). Give two different bases for $P_1(t)$.

The polynomial space P(t) consists of all polynomials, with real coefficients, in the variable t. Two bases for $P_1(t)$ are $\{1, t\}$ and $\{1 + t, 1 - t\}$.

2. Let V denote the set of all symmetric 2×2 matrices. Set $E = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$. Prove that E is a basis for V.

We first prove that E is independent: If $ae_1 + be_2 + ce_3 = 0$, then $\begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, so a = b = c = 0. Hence no nondegenerate linear combination yields 0.

Solution 1: Let $\begin{pmatrix} a & b \\ b & d \end{pmatrix} \in V$. We take $ae_1 + be_2 + ce_3$, and see that it equals the desired matrix. Hence E is spanning, and hence E is a basis.

Solution 2: $V \neq M_{2,2}$ so $dim(V) \leq 3$. But *E* is independent and |E| = 3, so *E* is maximal spanning, and is thus a basis.

The remaining three problems concern the vector space $V = \{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} : a, b, d \in \mathbb{R} \}$ and its basis $E = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}.$

3. Set $B = \{ \begin{pmatrix} 0 & -2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \} = \{ b_1, b_2, b_3 \}$. Compute $[b_1]_E, [b_2]_E, [b_3]_E$, and use these to prove that B is a basis for V.

We have $[b_1]_E = (0, -2, 1), [b_2]_E = (0, 1, 0), [b_3]_E = (1, 0, -1)$. Putting these as rows, we get $\begin{pmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$. After $R_1 + 2R_2 \rightarrow R_1, R_1 \leftrightarrow R_3$, we get $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. This is in row echelon form, and has 3 pivots, so the rowspace of the original matrix is 3-dimensional. Hence dim(Span(B)) = 3 = dim(V), and thus Span(B) = V, and B is a basis for V.

4. Set $C = \{ \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 6 \\ 6 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 5 & 3 \\ 3 & 4 \end{pmatrix} \} = \{c_1, c_2, c_3, c_4\}$. Compute $[c_1]_E, [c_2]_E, [c_3]_E, [c_4]_E$, and use these to find a basis for Span(C).

We have $[c_1]_E = (1,3,2), [c_2]_E = (2,6,4), [c_3]_E = (1,1,1), [c_4]_E = (5,3,4).$ Putting these as rows, we get $\begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ 1 & 1 & 1 \\ 5 & 3 & 4 \end{pmatrix}$, which has row echelon form $\begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Hence Span(C) has basis $\{\begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 1 \\ 1 & 3 \end{pmatrix}\}$.

5. For *B* as in (3), calculate Q_{BE} , and use this to compute $[(\frac{1}{2}, \frac{2}{3})]_B$. We now put the $[b_1]_E$, $[b_2]_E$, $[b_3]_E$ as columns, to get Q_{EB} . We calculate $Q_{BE} = Q_{EB}^{-1} = \begin{pmatrix} \frac{1}{2}, \frac{0}{1}, \frac{1}{2}\\ 1, 0, 0 \end{pmatrix}$. Since $[(\frac{1}{2}, \frac{2}{3})]_E = (1, 2, 3)^T$, we calculate $[(\frac{1}{2}, \frac{2}{3})]_B = Q_{BE}(1, 2, 3)^T = (4, 10, 1)^T$. That is, $(\frac{1}{2}, \frac{2}{3}) = 4b_1 + 10b_2 + 1b_3$, which is easily double-checked if desired.