Math 254 Fall 2012 Exam 6 Solutions

1. Carefully state the definition of "dimension". Give two examples that are each associated to subspaces of \mathbb{R}^{4}.

The dimension of a vector space is the number of elements of any basis. A one-dimensional subspace of \mathbb{R}^{4} is $\operatorname{Span}(\{(1,2,3,4)\})$. A two-dimensional subspace of \mathbb{R}^{4} is $\operatorname{Span}(\{(1,2,3,4),(1,1,1,1)\})$.
2. Let V be a vector space with basis $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. The representation (in basis S) is a map []$_{S}: V \rightarrow \mathbb{R}^{3}$. Prove that []$_{S}$ is a linear transformation.

Let $u \in V$. Because S is a basis, there are some scalars a_{1}, a_{2}, a_{3} where $u=$ $a_{1} s_{1}+a_{2} s_{2}+a_{3} s_{3}$. Similarly, for $v \in S$ there are some scalars b_{1}, b_{2}, b_{3} where $v=b_{1} s_{1}+b_{2} s_{2}+b_{3} s_{3}$. We have $u+v=\left(a_{1}+b_{1}\right) s_{1}+\left(a_{2}+b_{2}\right) s_{2}+\left(a_{3}+b_{3}\right) s_{3}$, hence $[u+v]_{S}=[u]_{S}+[v]_{S}$. Thus []$_{S}$ respects vector addition. For any $k \in \mathbb{R}, k u=\left(k a_{1}\right) s_{1}+\left(k a_{2}\right) s_{2}+\left(k a_{3}\right) s_{3}$, hence $[k u]_{S}=k[u]_{S}$. Thus []$_{S}$ respects scalar multiplication.
3. Consider the vector space $P_{2}(t)$. Determine if $S=\left\{t^{2}+2, t^{2}+t+3, t^{2}-t+1\right\}$ is independent.

Let $E=\left\{t^{2}, t, 1\right\}$. We represent each element of S in basis E, then place as either rows or columns, e.g. $\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & 1 & 3 \\ 1 & -1 & 1\end{array}\right]$. We apply elementary row operations to place this in row canonical form, $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$. This is two-dimensional, hence the rowspace of $[S]_{E}$ is two-dimensional, hence $\operatorname{Span}(S)$ is two-dimensional, hence S is dependent.
4. In the vector space \mathbb{R}^{2}, set $S=\{(2,3),(5,8)\}$, a basis. Find the change-of-basis matrix from the standard basis E to S, and use this matrix to find $[(7,11)]_{S}$.

We have $P_{E S}=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$, but we want $P_{S E}=P_{E S}^{-1}=\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$, which we can find with the row-reduction algorithm or using the 2×2 formula. $[(7,11)]_{S}=$ $P_{S E}[(7,11)]_{E}=\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}7 \\ 11\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
5. In the vector space $M_{2,2}(\mathbb{R})$, the set of 2×2 matrices, set $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right)$, $C=\left(\begin{array}{ll}-3 & 2 \\ -2 & 3\end{array}\right)$. Set $V=\operatorname{Span}(\{A, B, C\})$. Find the dimension of V, and a basis.

We first choose a basis for $M_{2,2}$, say $\left.E=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right)\right\}$. We represent A, B, C in this basis, then place these as either rows or columns, e.g. $\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ -3 & 2 & -2 & -1\end{array}\right]$. We apply elementary row operations to place this in echelon form, $\left[\begin{array}{cccc}1 & 2 & 0 & 1 \\ 0 & -4 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Hence, V is two-dimensional, with basis $\left\{\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & -4 \\ 1 & -3\end{array}\right)\right\}$.

