Math 254 Exam 3 Solutions

1. Carefully define the term "dimension" as it applies to vector spaces. Give two examples: a four-dimensional vector space, and an infinitedimensional vector space.

The dimension of a vector space is the size of any basis of that vector space. \mathbb{R}^{4}, the set of all 4 -vectors, is a four-dimensional vector space. $\mathbb{R}[x]$, the set of all polynomials with real coefficients, is an infinitedimensional vector space.
2. Find the LU decomposition of $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ 2 & 3 & 2 \\ -1 & 3 & 0\end{array}\right]$, if it exists.

BONUS: Find the LDU decomposition of A, if it exists.
We put A in echelon form with ERO's; we get $E_{3} E_{2} E_{1} A=\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 3 & 6 \\ 0 & 0 & -8\end{array}\right]$, where $E_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, and $E_{3}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$.
We then have $A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 3 & 6 \\ 0 & 0 & -8\end{array}\right]=\underbrace{\left[\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]}_{L} \underbrace{\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 3 & 6 \\ 0 & 0 & -8\end{array}\right]}_{U}$.
For LDU decomposition, $D=\operatorname{diag}(1,3,-8)$ is the diagonal of this first U; hence we factor $1,3,-8$ out of each row, respectively. This gives

$$
A=\underbrace{\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -8
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]}_{U}
$$

3. Find $\left[\begin{array}{rrr}1 & 0 & 2 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]^{-1}$, if it exists.

We form the augmented matrix $\left[\begin{array}{rrr|rrr}1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$ and perform

ERO's to put the left side into row echelon form. We have

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 0 & -2 \\
0 & 1 & 0 & 1 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \text {. Hence }\left[\begin{array}{rrr}
1 & 0 & 2 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 0 & -2 \\
1 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

The remaining problems both concern $B=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$.
4. Write B as the product of elementary matrices.

We first put B into diagonal form using elementary matrices. One way:
$\left[\begin{array}{rr}1 & -\frac{3}{2} \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ -\frac{3}{2} & 1\end{array}\right] \underbrace{\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]}_{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Hence
$\underbrace{\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]}_{B}=\left[\begin{array}{rr}1 & 0 \\ -\frac{3}{2} & 1\end{array}\right]^{-1}\left[\begin{array}{rr}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right]^{-1}\left[\begin{array}{rr}1 & -\frac{3}{2} \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$
$\left[\begin{array}{ll}1 & 0 \\ \frac{3}{2} & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{ll}1 & \frac{3}{2} \\ 0 & 1\end{array}\right]$.
5. Calculate $f(B)$, for the polynomial $f(x)=x^{3}+2 x^{2}-3 I_{2}$.
$I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right], B^{2}=\left[\begin{array}{ll}13 & 18 \\ 18 & 25\end{array}\right], B^{3}=\left[\begin{array}{rr}80 & 111 \\ 111 & 154\end{array}\right]$
$f(B)=\left[\begin{array}{rr}80 & 111 \\ 111 & 154\end{array}\right]+2\left[\begin{array}{ll}13 & 18 \\ 18 & 25\end{array}\right]-3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}103 & 147 \\ 147 & 201\end{array}\right]$.
This problem illustrates a nice feature of symmetric matrices; if you do arithmetic (addition, multiplication, etc.) with them, the results will remain symmetric.

