Math 254 Exam 1 Solutions

1. Carefully state the definition of "basis". Give two examples for the vector space \mathbb{R}^2 .

A basis is a set of vectors that is independent, with the added property that any additional vector will make the set dependent. Two examples in \mathbb{R}^2 are $\{(1,0), (0,1)\}$ (the standard basis), and $\{(2,2), (3,0)\}$ (this was proved independent in Chapter 0 Problem 6).

2. Let $u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $v = \begin{bmatrix} -1 & 5 & 2 \end{bmatrix}$. For each of the following expressions, determine

what type they are (undefined, scalar, matrix/vector). (a) uvu, (b) uvv, (c) $(u \cdot v) \cdot v$, (d) $(u \times v) \cdot u$, (e) $(u \times v) \times u$

 $u ext{ is } 3 \times 1$. $v ext{ is } 1 \times 3$. $uv ext{ is defined; it is } a 3 \times 3$ matrix. Therefore, $(uv)u ext{ is defined, and is } a 3 \times 1$ matrix (a). However, $uv ext{ has } 3$ columns but $v ext{ has only } 1$ row, so $(uv)v ext{ is undefined (b)}$. We may also consider $u, v ext{ as } 3$ -vectors; in this case, $u \cdot v ext{ is defined, and is a scalar. However, <math>(u \cdot v) \cdot v ext{ is not defined, } since ext{ dot product is not between a scalar and a vector (c). } u \times v ext{ is defined, } since ext{ both } u, v ext{ are } 3$ -vectors; it is itself a 3-vector. Therefore, $(u \times v) \cdot u ext{ is defined, } since ext{ both } vectors ext{ in the dot product are the same size. Its result is a scalar (d). In addition, <math>(u \times v) \times u ext{ is also defined, since both vectors in the (second) cross product are 3-vectors. Its result is a 3-vector (e).$

3. For $u = \begin{bmatrix} -3 & 5 & 2 \end{bmatrix}$ and $v = \begin{bmatrix} 4 & 2 & 1 \end{bmatrix}$, determine whether u, v are orthogonal. Justify your answer.

$$u \cdot v = (-3)4 + (5)2 + (2)1 = -12 + 10 + 2 = 0$$
. Therefore u, v are orthogonal.

4. For
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 3 \end{bmatrix}$$
, and $B = \begin{bmatrix} 2 & 1 \\ 0 & -1 \\ 1 & 6 \end{bmatrix}$, calculate AB and BA
$$AB = \begin{bmatrix} 0 & -11 \\ 3 & 16 \end{bmatrix}, BA = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -2 & -3 \\ 1 & 12 & 16 \end{bmatrix}$$

5. For $\vec{u} = (1, 2, 1)$ and $\vec{v} = (-3, -1, 0)$, find $\vec{u} \times \vec{v}$ and $\vec{v} \times \vec{u}$.

$$\begin{split} \vec{u} \times \vec{v} &= (\hat{i} + 2\hat{j} + \hat{k}) \times (-3\hat{i} - \hat{j}) = -(\hat{i} \times \hat{j}) - 6(\hat{j} \times \hat{i}) - 3(\hat{k} \times \hat{i}) - (\hat{k} \times \hat{j}) = \\ -\hat{k} - 6(-\hat{k}) - 3\hat{j} - (-\hat{i}) &= (1, -3, 5) \\ \vec{v} \times \vec{u} &= (-3\hat{i} - \hat{j}) \times (\hat{i} + 2\hat{j} + \hat{k}) = -6(\hat{i} \times \hat{j}) - 3(\hat{i} \times \hat{k}) - (\hat{j} \times \hat{i}) - (\hat{j} \times \hat{k}) = \\ -6\hat{k} - 3(-\hat{j}) - (-\hat{k}) - \hat{i} &= (-1, 3, -5) \end{split}$$

Note: This is no coincidence; it turns out that $(u \times v) = -(v \times u)$ for ALL 3-vectors u, v.