Math 254 Exam 1 Solutions

1. Carefully state the definition of "basis". Give two examples for the vector space \mathbb{R}^{2}.

A basis is a set of vectors that is independent, with the added property that any additional vector will make the set dependent. Two examples in \mathbb{R}^{2} are $\{(1,0),(0,1)\}$ (the standard basis), and $\{(2,2),(3,0)\}$ (this was proved independent in Chapter 0 Problem 6).
2. Let $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, and $v=\left[\begin{array}{lll}-1 & 5 & 2\end{array}\right]$. For each of the following expressions, determine what type they are (undefined, scalar, matrix/vector).
(a) $u v u$, (b) $u v v$, (c) $(u \cdot v) \cdot v$, (d) $(u \times v) \cdot u$, (e) $(u \times v) \times u$
u is $3 \times 1 . v$ is $1 \times 3 . u v$ is defined; it is a 3×3 matrix. Therefore, $(u v) u$ is defined, and is a 3×1 matrix (a). However, $u v$ has 3 columns but v has only 1 row, so $(u v) v$ is undefined (b). We may also consider u, v as 3 -vectors; in this case, $u \cdot v$ is defined, and is a scalar. However, $(u \cdot v) \cdot v$ is not defined, since dot product is not between a scalar and a vector (c). $u \times v$ is defined, since both u, v are 3 -vectors; it is itself a 3 -vector. Therefore, $(u \times v) \cdot u$ is defined, since both vectors in the dot product are the same size. Its result is a scalar (d). In addition, $(u \times v) \times u$ is also defined, since both vectors in the (second) cross product are 3 -vectors. Its result is a 3 -vector (e).
3. For $u=\left[\begin{array}{lll}-3 & 5 & 2\end{array}\right]$ and $v=\left[\begin{array}{lll}4 & 2 & 1\end{array}\right]$, determine whether u, v are orthogonal. Justify your answer.

$$
u \cdot v=(-3) 4+(5) 2+(2) 1=-12+10+2=0 . \text { Therefore } u, v \text { are orthogonal. }
$$

4. For $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 2 & 3\end{array}\right]$, and $B=\left[\begin{array}{cc}2 & 1 \\ 0 & -1 \\ 1 & 6\end{array}\right]$, calculate $A B$ and $B A$.

$$
A B=\left[\begin{array}{cc}
0 & -11 \\
3 & 16
\end{array}\right], B A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & -2 & -3 \\
1 & 12 & 16
\end{array}\right]
$$

5. For $\vec{u}=(1,2,1)$ and $\vec{v}=(-3,-1,0)$, find $\vec{u} \times \vec{v}$ and $\vec{v} \times \vec{u}$.

$$
\begin{aligned}
& \vec{u} \times \vec{v}=(\hat{i}+2 \hat{j}+\hat{k}) \times(-3 \hat{i}-\hat{j})=-(\hat{i} \times \hat{j})-6(\hat{j} \times \hat{i})-3(\hat{k} \times \hat{i})-(\hat{k} \times \hat{j})= \\
& -\hat{k}-6(-\hat{k})-3 \hat{j}-(-\hat{i})=(1,-3,5) \\
& \vec{v} \times \vec{u}=(-3 \hat{i}-\hat{j}) \times(\hat{i}+2 \hat{j}+\hat{k})=-6(\hat{i} \times \hat{j})-3(\hat{i} \times \hat{k})-(\hat{j} \times \hat{i})-(\hat{j} \times \hat{k})= \\
& -6 \hat{k}-3(-\hat{j})-(-\hat{k})-\hat{i}=(-1,3,-5)
\end{aligned}
$$

Note: This is no coincidence; it turns out that $(u \times v)=-(v \times u)$ for ALL 3 -vectors u, v.

