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Polygonal numbers Ps,n can be arranged in a figure with s sides and n dots
per side, recursively containing the arrangement of Ps,n−1 like Russian nesting
dolls. Familiar triangular and square numbers are P3,n and P4,n, respectively.
We consider the set of all nontrivial polygonal numbers, as a subset of the
naturals. Allowing s ≤ 2 or n ≤ 2 trivializes this question, since then the
two sets coincide. This set of nontrivial polygonal numbers P (see [1]) was
recently proved in [6] to contain every cube, and in [2] to contain almost every
perfect power (apart from 2p, for p prime). We continue these investigations by
considering a different natural set of figurate numbers, the r-simplex numbers
Pr(k), i.e. those which can be arranged to form an r-simplex with k dots per
side. We ask which r-simplex numbers are polygonal. Note that 1-simplex
numbers are line segments and 2-simplex numbers are triangular, so we skip
past these trivialities and focus on r ≥ 3 and k ≥ 3.

We begin by recalling two key formulas, for the polygonal and simplex num-
bers respectively:

P =

{
Ps,n =

(s− 2)n2 − (s− 4)n

2
: s ≥ 3, n ≥ 3

}
, and

Pr(k) =

(
k + r − 1

r

)
=

k(k + 1)(k + 2) · · · (k + r − 1)

r!
.

We will need a theorem proved by Edouard Lucas in a series of papers
published in 1878 [3, 4, 5]:

Theorem 1 (Lucas’s Theorem). Let p be prime and let a, b ∈ N. Express a, b
in base p as a = (ajaj−1 · · · a1a0)p, b = (bjbj−1 · · · b1b0)p. Then(

a

b

)
≡

j∏
i=0

(
ai
bi

)
(mod p),

where we make the standard interpretation of
(
ai

bi

)
= 0 if ai < bi.

More specifically, we will need a corollary of Lucas’s Theorem.

Corollary 2. Let p be prime and let a, b ∈ N. Express a, b in base p as a =
(ajaj−1 · · · a1a0)p, b = (bjbj−1 · · · b1b0)p. Then the following are equivalent:
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1. p divides
(
a
b

)
;

2. There is some index i ∈ [0, j] where ai < bj.

It turns out that many r-simplex numbers are polygonal of the particular
type Ps,3. These are characterized by our first theorem. Note that the charac-
terization aligns well with Corollary 2.

Theorem 3. Let r, k ∈ N with r, k ≥ 3. Then there is some s ≥ 3 with
Pr(k) = Ps,3 if and only if 3 divides

(
k+r−1

r

)
.

Proof. We begin by noting that Ps,3 = (s−2)32−(s−4)3
2 = 3s − 3. Since we only

allow s ≥ 3, we see that Ps,3 takes on all multiples of 3 that are 6 or greater.

Recall that Pr(k) =
(
k+r−1

r

)
. If k ≥ 3, then Pr(k) ≥

(
r+2
r

)
≥ 6. Therefore it is

of the type Ps,3 if and only if 3 divides Pr(k).

The following result gives infinitely many r for which at least two thirds of
k’s give a polygonal Pr(k).

Theorem 4. Let r, k ∈ N with r, k ≥ 3, r ≡ 2 (mod 3) and k 6≡ 1 (mod 3).
Then Pr(k) is polygonal.

Proof. We convert to base 3 as r = (rj · · · r1r0)3 and k + r − 1 = (aj · · · a1a0)3.
Note that r0 = 2 since r ≡ 2. Now, k 6≡ 1 and r ≡ 2 (mod 3), so k + r − 1 6≡ 2,
so a0 < 2. Applying Corollary 2, we find that a0 < r0, so 3 divides

(
k+r−1

r

)
.

Applying Theorem 3, we find that there is some s ≥ 3 with Pr,k = Ps,3.

Theorem 4 is powerful for one third of possible r’s. Theorem 5 is half as
powerful for half of the remaining r’s.

Theorem 5. Let r, k ∈ N with r, k ≥ 3, r ≡ 1 (mod 3), and k ≡ 0 (mod 3).
Then Pr(k) is polygonal.

Proof. We convert to base 3 as r = (rj · · · r1r0)3 and k + r − 1 = (aj · · · a1a0)3.
Note that r0 = 1 since r ≡ 1. Now, since k ≡ 0 and r ≡ 1, we have k+r−1 ≡ 0,
so a0 = 0. We now apply Corollary 2 and Theorem 3 as before.

Theorems 4 and 5 only looked at the terminal ternary digits. We can use
similar methods to find many such theorems, but there are diminishing returns
as we progress. It may seem at first glance that Theorem 6 covers (3/9)(4/9) =
12/81 = 4/27 of all cases, but five of them1 duplicate results from Theorems 4
and 5. Hence only 7/81 of all remaining cases are covered by Theorem 6.

Theorem 6. Let r, k ∈ N with r, k ≥ 3. Suppose that r mod 9 ∈ {6, 7, 8},
while k mod 9 ∈ {3, 4, 5, 6}. Then Pr(k) is polygonal.

Proof. We convert to base 3 as r = (rj · · · r1r0)3 and k + r − 1 = (aj · · · a1a0)3.
Note that r1 = 2 by hypothesis. We see that k + r − 1 ∈ {9, 10, . . . , 14}, so
k + r− 1 mod 9 ∈ {0, 1, 2, 3, 4, 5}, and so a1 ∈ {0, 1}. We now apply Corollary
2 and Theorem 3 as before.

1(r ≡ 8, k ≡ 3), (r ≡ 8, k ≡ 5), (r ≡ 8, k ≡ 6), (r ≡ 7, k ≡ 3), (r ≡ 7, k ≡ 6)
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We could continue finding similar theorems for n = 3, but instead we observe
that there are analogues to Theorem 3 for other values of n. One example
follows.

Theorem 7. Let r, k ∈ N with r, k ≥ 3. Then there is some s ≥ 3 with
Pr(k) = Ps,5 if and only if 5 divides

(
k+r−1

r

)
and 2 does not.

Proof. We begin by noting that Ps,5 = (s−2)52−(s−4)5
2 = 10s−15. Since we only

allow s ≥ 3, we see that Ps,3 takes on all odd multiples of 5 that are greater

than 5, i.e. 15, 25, 35, . . .. Recall that Pr(k) =
(
k+r−1

r

)
. If k ≥ 3, then Pr(k) ≥(

r+2
r

)
≥ 6. Therefore it is of the type Ps,3 if and only if Pr(k) ≡ 5 (mod 10). By

the Chinese Remainder Theorem, this holds if and only if Pr(k) ≡ 0 (mod 5)
and Pr(k) ≡ 1 (mod 2).

Theorem 8 uses Theorem 7 to prove that at least 1/5 of Pr(3) are of the
type Ps,5. However, one third of these are included in Theorem 5, so this only
improves things by 2/15 ≈ 13%. These are the sort of diminishing returns that
set in with further theorems along these lines.

Theorem 8. Let r ∈ N with r ≥ 3 and r mod 20 ∈ {4, 8, 9, 13}. Then Pr(3)
is polygonal.

Proof. Note that the hypothesis implies that r mod 5 ∈ {3, 4} and r mod 4 ∈
{0, 1}. We calculate Pr(3) =

(
2+r
r

)
= (r+2)(r+1)

2 . If r = 4q for some integer q,

then Pr(3) = (4q+2)(4q+1)
2 = (2q+ 1)(4q+ 1), which is odd. If instead r = 4q+ 1

for some integer q, then Pr(3) = (4q+3)(4q+2)
2 = (4q+3)(2q+1), which is also odd.

Hence either way
(
k+r−1

r

)
is odd. Now we write in base 5 as r = (rj · · · r1r0)5

and k + r− 1 = (aj · · · a1a0)5. Since r mod 5 ∈ {3, 4}, we have r0 ∈ {3, 4}. We
calculate k + r − 1 = 2 + r, so k + r − 1 mod 5 ∈ {0, 1} and hence a0 ∈ {0, 1},
so a0 < r0. Hence, by Corollary 2,

(
k+r−1

r

)
is a multiple of 5, and by Theorem

7, Pr(3) is polygonal.

We now turn to an asymptotic result. By looking at all of the digits, we can
prove that Pr(k) is polygonal (just with n = 3) with high probability.

Theorem 9. Let N ∈ N, and let r, k each be chosen independently, uniformly
at random, from [0, 3N ). Then Pr(k) is polygonal with probability at least (1−
(1/3)N−1)2(1− (2/3)N ) ≥ 1− 3(2/3)N .

Proof. Each of r, k is at least 3 with probability 1 − 3N−1. Condition on this
assumption. Now, each ternary digit of r, k is equally likely to be 0, 1, 2, so each
ternary digit of k + r − 1, r are equally likely to be 0, 1, 2. Of these nine cases,
three – (1, 2), (0, 1), (0, 2) – guarantee that Pr(k) is polygonal via Corollary 2
and Theorem 3. To fail this test with all N digits is of probability (2/3)N , so
to pass it is of probability 1− (2/3)N . Finally, (1− (1/3)N−1)2(1− (2/3)N ) =
1 − (2/3)N − 2(1/3)N−1 + (1/3)N−1(2(2/3)N + (1/3)N−1(1 − (2/3)N )) ≥ 1 −
(2/3)N − 2(1/3)N−1 ≥ 1 − (1 + 6/2N )(2/3)N ≥ 1 − 3(2/3)N , where the final
inequality holds for all N ≥ 2 (and we check the trivial N = 1 separately).
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Our last two results are specifically for small r: r = 3 are the tetrahedral
numbers and r = 4 are the pentatope numbers. The nicer result is for the latter.

Theorem 10. Let k ≥ 3. Then the pentatope number P4(k) is polygonal.

Proof. If k ≡ 0 (mod 3), then Theorem 5 shows that P4(k) is polygonal, with

n = 3. Otherwise P4(k) will be polygonal with s = 5. We set q = (k+1)(k+2)
6 .

Note that q is an integer exactly when k 6≡ 0 (mod 3). We directly calculate

P5,q = 3q2−q
2 = k4

24 + k3

4 + 11k2

24 + k
4 = k(k+1)(k+2)(k+3)

24 = P4(k).

Lastly, we consider tetrahedral numbers. Neither Theorem 4 nor Theorem 5
help here, unfortunately. However, we find that almost all tetrahedral numbers
are polygonal. The cases of Theorem 11 may seem strange and random, but in
fact there are often few choices of (n, s) that work, or only one!

Theorem 11. Let k ≥ 3. If k 6≡ 6 (mod 18), then P3(k) is polygonal.

Proof. The proof proceeds in five cases. In each case, just as in Theorem 10, we
explicitly compute Ps,n and P3(k) to see they are equal.
Case k ≡ 2 (mod 3): Take n = k, s = k+10

3 .

Case k ≡ 1 (mod 3): Take n = k+2
3 , s = 3k + 8.

Case k ≡ 0 (mod 9): Take n = 3, s = 1 + k(k+1)(k+2)
18 .

Case k ≡ ±3 (mod 18): Take n = k+1
2 , s = 6 + 4k

3 .

Case k ≡ 12 (mod 18): Take n = 4, s = 48+k(k+1)(k+2)
36 .

The “missing” tetrahedral case of k ≡ 6 (mod 18) really is missing: many
of those are computed to not be polygonal, in a complicated pattern.

In fact, these many positive results may give the impression that almost all
simplex numbers are polygonal, but this is just due to a difficulty in proving
negative results. We conjecture that there are infinitely many simplex numbers
that fail to be polygonal. Even more strongly, we conjecture that there are
infinitely many tetrahedral numbers that fail to be polygonal.

These conjectures are supported with some experimental evidence. The first
five simplex numbers that fail to be polygonal are 20, 56, 2600, 6188, 13244. The
quantity of simplex numbers that fail to be polygonal, up to various thresholds,
are summarized in the table below.

≤ 102 ≤ 103 ≤ 104 ≤ 105 ≤ 106 ≤ 107 ≤ 108 ≤ 109 ≤ 1010

2 2 4 9 16 24 40 75 151
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