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Polygonal numbers Ps,n can be arranged in a figure with s sides and n dots
per side, recursively containing the arrangement of Ps,n−1 like Russian nesting
dolls. Familiar triangular and square numbers are P3,n and P4,n, respectively.
We consider the set of all nontrivial polygonal numbers, as a subset of the
naturals. Allowing s ≤ 2 or n ≤ 2 trivializes this question, since then the two
sets coincide. This set of nontrivial polygonal numbers P (see [1]) was recently
proved in [6] to contain every cube, and in [2] to contain almost every perfect
power (apart from 2p, for p prime).

Figure 1: Examples of simplex and polygonal numbers

Left: Tetrahedral number P3(3) = 10 Right: Triangular number P3,4 = 10
(3 dimensional simplex, 3 per side) (3-sided polygon, 4 per side)

We continue these investigations by considering a different natural set of
figurate numbers, the r-simplex numbers, also known as polytopic numbers,
Pr(k), i.e. those which can be arranged to form an r-simplex (the r-dimensional
generalization of a triangle) with k dots per side. We ask which r-simplex
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numbers are polygonal. Note that 1-simplex numbers are line segments and
2-simplex numbers are triangular, so we skip past these trivialities and focus
on r ≥ 3 and k ≥ 3. We will prove that almost all r-simplex numbers are
polygonal, both asymptotically (Theorem 5) and experimentally (of the 198
smallest simplex numbers, only 4 fail to be polygonal).

We begin by recalling two key formulas, for the polygonal and simplex num-
bers respectively:

P =

{
Ps,n =

(s− 2)n2 − (s− 4)n

2
: s ≥ 3, n ≥ 3

}
, and

Pr(k) =

(
k + r − 1

r

)
=

k(k + 1)(k + 2) · · · (k + r − 1)

r!
.

We will need a theorem1 proved by Édouard Lucas in a series of papers
published in 1878 [3, 4, 5]. His other work later led to the well-known Lucas-
Lehmer primality test. His life was tragically cut short at age 49 by a banquet
accident. More specifically, we will need this corollary to Lucas’s Theorem.

Corollary to Lucas’ Theorem. Let p be prime and let a, b ∈ N with a ≥ b.
Express a, b in base p as a = (ajaj−1 · · · a1a0)p, b = (bjbj−1 · · · b1b0)p, where j
is chosen so that aj 6= 0. Then the following are equivalent:

1. p divides
(
a
b

)
;

2. There is some index i ∈ [0, j] where ai < bi.

It turns out that many r-simplex numbers are polygonal of the particular
type Ps,3. These are characterized by our first theorem. Note that the charac-
terization aligns well with the preceding corollary.

Theorem 1. Let r, k ∈ N with r, k ≥ 3. Then there is some s ≥ 3 with
Pr(k) = Ps,3 if and only if 3 divides

(
k+r−1

r

)
.

Proof. We begin by noting that

Ps,3 =
(s− 2)32 − (s− 4)3

2
= 3s− 3.

Since we only allow s ≥ 3, we see that Ps,3 takes on all multiples of 3 that are

6 or greater. Recall that Pr(k) =
(
k+r−1

r

)
. If k ≥ 3, then Pr(k) ≥

(
r+2
r

)
≥ 6.

Therefore it is of the type Ps,3 if and only if 3 divides Pr(k).

For example, Theorem 1 tells us that P3(7) = 84 = P29,3. Looking just at
terminal ternary digits, we can produce infinitely many polygonal Pr(k). Note
that Theorem 2 is weaker than Theorem 1 – it does not tell us that P3(7) is
polygonal, for example.

1Curious French-speaking readers can find this in Section XXI of [4].
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Theorem 2. Let r, k ∈ N with r, k ≥ 3. Then Pr(k) is polygonal if

(r mod 3, k mod 3) ∈ {(2, 0), (2, 1), (1, 0)}.

Proof. We convert to base 3 as r = (rj · · · r1r0)3 and k + r − 1 = (aj · · · a1a0)3.
We now consider the case of r mod 3 = 2, i.e. r0 = 2. Now, k 6≡ 1 (mod 3)

and r ≡ 2 (mod 3), so k+ r−1 6≡ 2 (mod 3), so a0 < 2. Applying the corollary
to Lucas’ Theorem, we find that a0 < r0, so 3 divides

(
k+r−1

r

)
.

We next consider the case of r mod 3 = 1, i.e. r0 = 1. Since k ≡ 0 (mod 3)
and r ≡ 1 (mod 3), we have k + r − 1 ≡ 0 (mod 3), so a0 = 0. Applying the
corollary to Lucas’ Theorem, we find that a0 < r0, so 3 again divides

(
k+r−1

r

)
.

Lastly, we apply Theorem 1 to find some s ≥ 3 with Pr,k = Ps,3.

Theorem 2 only looked at the terminal ternary digits. We can use similar
methods to find many such theorems, but there are diminishing returns as we
progress. We give one example, to illustrate why the returns diminish. It
may seem at first glance that Theorem 3 covers (3/9)(4/9) = 12/81 = 4/27
of all cases, but three of them2 duplicate results from Theorem 2. Hence only
9/81 = 1/9 of all remaining cases are covered by Theorem 3.

The smallest examples provided from Theorem 3 that are not covered by
Theorem 2 are P6(4) = 84 (which happens to equal P3(7), covered by Theorem
2) and P6(5) = 210 (which isn’t covered by Theorem 2, even indirectly).

Theorem 3. Let r, k ∈ N with r, k ≥ 3. Suppose that r mod 9 ∈ {6, 7, 8}, while
k mod 9 ∈ {4, 5, 6, 7}. Then Pr(k) is polygonal.

Proof. We convert to base 3 as r = (rj · · · r1r0)3 and k + r − 1 = (aj · · · a1a0)3.
Note that r1 = 2 by hypothesis. We see that

(k mod 9) + (r mod 9)− 1 ∈ {9, 10, . . . , 14},

so k + r − 1 mod 9 ∈ {0, 1, 2, 3, 4, 5}, and so a1 ∈ {0, 1}. We now apply the
corollary to Lucas’ Theorem, and Theorem 1, as before.

There are also analogues to Theorem 1 for other values of n. One such
theorem follows. The smallest nontrivial example Theorem 4 provides is that
P3(5) = 35 = P5,5.

Theorem 4. Let r, k ∈ N with r, k ≥ 3. Then there is some s ≥ 3 with
Pr(k) = Ps,5 if and only if 5 divides

(
k+r−1

r

)
and 2 does not.

Proof. We begin by noting that

Ps,5 =
(s− 2)52 − (s− 4)5

2
= 10s− 15.

Since we only allow s ≥ 3, we see that Ps,5 takes on all odd multiples of 5

that are greater than 5, i.e. 15, 25, 35, . . .. Recall that Pr(k) =
(
k+r−1

r

)
. If

2(r mod 9, k mod 9) ∈ {(8, 5), (8, 6), (7, 6)}
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k ≥ 3, then Pr(k) ≥
(
r+2
r

)
≥ 6. Therefore it is of the type Ps,3 if and only

if Pr(k) ≡ 5 (mod 10). By the Chinese Remainder Theorem, this holds if and
only if Pr(k) ≡ 0 (mod 5) and Pr(k) ≡ 1 (mod 2).

We now provide an asymptotic result. By looking at all of the digits, we can
prove that Pr(k) is polygonal (just with n = 3) with high probability.

Theorem 5. Let N ∈ N, and let r, k each be chosen independently, uniformly
at random, from [0, 3N ). Then Pr(k) is polygonal with probability at least

(1− (1/3)N−1)2(1− (2/3)N ) ≥ 1− 3(2/3)N .

Proof. Each of r, k is at least 3 with probability 1 − 3N−1. Condition on this
assumption. Now, each ternary digit of r, k is equally likely to be 0, 1, 2, so each
ternary digit of k + r − 1, r are equally likely to be 0, 1, 2. Of these nine cases,
three – (1, 2), (0, 1), (0, 2) – guarantee that Pr(k) is polygonal via the corollary
to Lucas’ Theorem, as well as Theorem 1. To fail this test with all N digits is
of probability (2/3)N , so to pass it is of probability 1− (2/3)N . Finally,

(1− (1/3)N−1)2(1− (2/3)N ) =

1− (2/3)N − 2(1/3)N−1 + (1/3)N−1(2(2/3)N + (1/3)N−1(1− (2/3)N )) ≥
1− (2/3)N − 2(1/3)N−1 ≥ 1− (1 + 6/2N )(2/3)N ≥ 1− 3(2/3)N ,

where the final inequality holds for all N ≥ 2 (and we check the trivial N = 1
separately).

Our last two results are specifically for small, familiar, r: r = 3 are the
tetrahedral numbers and r = 4 are the pentatope numbers. The nicer result is
for the latter.

Theorem 6. Let k ≥ 3. Then the pentatope number P4(k) is polygonal.

Proof. If k ≡ 0 (mod 3), then Theorem 2 shows that P4(k) is polygonal, with

n = 3. Otherwise P4(k) will be polygonal with s = 5. We set q = (k+1)(k+2)
6 .

Note that q is an integer exactly when k 6≡ 0 (mod 3). We directly calculate

P5,q =
3q2 − q

2
=

k4

24
+

k3

4
+

11k2

24
+

k

4
=

k(k + 1)(k + 2)(k + 3)

24
= P4(k).

Lastly, we consider tetrahedral numbers. Theorem 2 does not help here,
unfortunately. However, we find that almost all tetrahedral numbers are polyg-
onal. The cases of Theorem 7 may seem strange and random, but in fact there
are often few choices of (n, s) that work, or only one! We challenge the reader
to find a unifying pattern, and to resolve the missing case.

Theorem 7. Let k ≥ 7. If k 6≡ 6 (mod 18), then P3(k) is polygonal.
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Proof. The proof proceeds in five cases. In each case, just as in Theorem 6, we
explicitly compute Ps,n and P3(k) to see they are equal.
Case k ≡ 2 (mod 3): Take n = k, s = k+10

3 .

Case k ≡ 1 (mod 3): Take n = k+2
3 , s = 3k + 8.

Case k ≡ 0 (mod 9): Take n = 3, s = 1 + k(k+1)(k+2)
18 .

Case k ≡ ±3 (mod 18): Take n = k+1
2 , s = 6 + 4k

3 .

Case k ≡ 12 (mod 18): Take n = 4, s = 48+k(k+1)(k+2)
36 .

Looking at the small values of k, we see that P3(3) = 10 = P3,3 (as in
Figure 1) and P3(5) = 35 = P5,5; P3(4) and P3(6) are not polygonal. The
“missing” tetrahedral case of k ≡ 6 (mod 18) really is missing: many of those
are computed to not be polygonal, in a complicated pattern.

In fact, these many positive results may give the impression that almost all
simplex numbers are polygonal, but this is just due to a difficulty in proving
negative results. We conjecture that there are infinitely many simplex numbers
that fail to be polygonal. Even more strongly, we conjecture that there are
infinitely many tetrahedral numbers that fail to be polygonal.

These conjectures are supported with some experimental evidence. The first
five simplex numbers that fail to be polygonal are 20, 56, 2600, 6188, 13244. The
quantity of simplex numbers that fail to be polygonal, up to various thresholds,
are summarized in the table below.

≤ 102 ≤ 103 ≤ 104 ≤ 105 ≤ 106 ≤ 107 ≤ 108 ≤ 109 ≤ 1010

2 2 4 9 16 24 40 75 151
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