
ON THE SET OF CATENARY DEGREES OF FINITELY
GENERATED CANCELLATIVE COMMUTATIVE MONOIDS

CHRISTOPHER O’NEILL, VADIM PONOMARENKO, REUBEN TATE, AND GAUTAM WEBB

Abstract. The catenary degree of an element s of a cancellative commutative
monoid S is a nonnegative integer measuring the distance between the irreducible
factorizations of s. The catenary degree of the monoid S, defined as the supremum
over all catenary degrees occurring in S, has been heavily studied as an invariant of
nonunique factorization. In this paper, we investigate the set C(S) of catenary degrees
achieved by elements of S as a factorization invariant, focusing on the case where S
in finitely generated (where C(S) is known to be finite). Answering an open question
posed by Garćıa-Sánchez, we provide a method to compute the smallest nonzero
element of C(S) that parallels a well-known method of computing the maximum
value. We also give several examples demonstrating certain extremal behavior for
C(S), and present some open questions for further study.

1. Introduction

Nonunique factorization theory aims to classify and quantify the failure of elements
of cancellative commutative monoids to factor uniquely into irreducibles [14]. Fac-
torization invariants are arithmetic quantities that measure the failure of a monoid’s
elements to admit unique factorizations. There are many standard invariants used
frequently in the literature to compare factorization behavior between monoids, such
as the delta set [3], elasticity [8], and ω-primality [1, 16].

Most factorization invariants assign a value to each monoid element determined by its
factorization structure. In examining the behavior of an invariant throughout the whole
monoid, one often considers quantities such as the supremum of all values attained at
its elements, or the set of all such values. For instance, the elasticity of a monoid
element is defined as the ratio of its largest and smallest factorization lengths, and the
elasticity of the monoid is simply the supremum of the elasticities of its elements.

This paper concerns the catenary degree (Definition 2.3), a factorization invariant
that has been the subject of much recent work [2, 6, 17]. The catenary degree c(n) of a
monoid element n ∈ S is a nonnegative integer derived from combinatorial properties
of the set of factorizations of n. Although much of the literature on the catenary degree
focuses on the maximum catenary degree attained within S, some recent papers [4, 5]
examine the catenary degees of individual monoid elements. In this paper, we inves-
tigate the set C(S) of catenary degrees occuring within S as a factorization invariant,
focusing on the setting where S is finitely generated.

It is known from [7] that maxC(S), the maximum catenary degree attained within
a given monoid S, always occurs at least once within a certain finite class of elements
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of S called Betti elements (Definition 2.5). This result was later extended to monoids
satisfying a certain weakened Noetherian condition in [18]. The second author of [7]
conjectured that when S is finitely generated, the minimum nonzero value of C(S) also
occurs at a Betti element of S.

As the main result of this paper, we prove the aformetioned conjecture (Theo-
rem 3.5). This yields a computable bound on the values occuring in C(S), as well
as a characterization of those finitely gererated monoids S for which C(S) is minimal.
We also give in Example 3.1 a semigroup whose set of catenary degrees has a nonzero
element that does not occur at a Betti element, demonstrating that this result need
not extend the entire set C(S).

In Section 4, we give several examples that demonstrate certain extremal behavior
of C(S). In particular, we show that if a monoid S has at least 3 minimal generators,
then |C(S)| cannot be bounded by the number of generators of S (Theorem 4.7). We
conclude the paper by giving several directions for future study in Section 5.

Acknowledgements. The authors would like to thank Scott Chapman and Pedro
Garćıa-Sánchez for numerous helpful conversations, and Alfred Geroldinger for his
assistance with Theorem 4.10.

2. Background

Unless otherwise stated, S denotes a finitely generated cancellative commutative
monoid, written additively. By passing from S to the quotient by its unit group (if
necessary), we will assume that S is reduced, that is, S has no nonzero units.

Definition 2.1. An additive submonoid S ⊂ N is a numerical monoid is |N \S| <∞.
Any numerical monoid S has a unique generating set that is minimal with respect to
containment. If we write S = 〈n1, . . . , nk〉, it is assumed that the integers n1, . . . , nk

comprise the minimal generating set of S.

Definition 2.2. Fix n ∈ S. A factorization of n is an expression n = u1 + · · ·+ ur of
n as a sum of irreducible elements u1, . . . , ur of S. If n1, . . . , nk minimally generate S,
we often write factorizations of n in the form n = a1n1 + · · ·+ aknk. Write

ZS(n) = {(a1, . . . , ak) : n = a1n1 + · · ·+ aknk} ⊂ Nk

for the set of factorizations of n ∈ S. When there is no ambiguity, we often omit the
subscript and write Z(n). Given a ∈ ZS(n), we denote by |a| the number of irreducibles
in the factorization a, that is, |a| = a1 + · · ·+ ak.

Definition 2.3. Fix an element n ∈ S. For a,b ∈ Z(n), the greatest common divisor
of a and b is given by

gcd(a,b) = (min(a1, b1), . . . ,min(ar, br)) ∈ Nr,
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Figure 1. Computing the catenary degree of 450 ∈ S = 〈11, 36, 39〉,
as in Example 2.4. Each vertex is labeled with an element of Z(450),
and each edge is labeled with the distance between the factorizations at
either end. The diagram on the left depicts all edges, and the diagram
on the right includes only those edges labeled at most c(450) = 16. Both
graphics were created using the computer algebra system SAGE [19].

and the distance between a and b (or the weight of (a,b)) is given by

d(a,b) = max(|a− gcd(a,b)|, |b− gcd(a,b)|).

Given a,b ∈ Z(n) and N ≥ 1, an N-chain from a to b is a sequence a1, . . . , ak ∈ Z(n)
of factorizations of n such that (i) a1 = a, (ii) ak = b, and (iii) d(ai−1, ai) ≤ N for
all i ≤ k. The catenary degree of n, denoted c(n), is the smallest non-negative integer
N such that there exists an N -chain between any two factorizations of n. The set of
catenary degrees of S is the set C(S) = {c(m) : m ∈ S}.

Example 2.4. Consider the numerical monoid S = 〈11, 36, 39〉. The left-hand picture
in Figure 1 depicts the factorizations of 450 ∈ S along with all pairwise distances. There
exists a 16-chain between any two factorizations of 450; one such 16-chain between
(6, 2, 8) and (24, 3, 2) is depicted with bold red edges. Since every 16-chain between
these factorizations contains the edge labeled 16 at the bottom, we have c(450) = 16.

This can also be computed in a different way. In the right-hand picture of Figure 1,
only distences of at most 16 are depicted, and the resulting graph is connected. Remov-
ing the edge labeled 16 yields a disconnected graph, so we again conclude c(450) = 16.

Factorizations of certain monoid elements, called Betti elements (Definition 2.5),
contain much of the structural information used to construct chains of factorizations,
and thus are closely related to the catenary degree. For instance, it is known that the
maximum catenary degree occuring in a monoid S is guaranteed to occur at a Betti
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Figure 2. A SAGE plot [19] showing the catenary degrees for the nu-
merical monoid S = 〈11, 25, 29〉 discussed in Example 3.1.

element of S (Theorem 2.6). Continuing in this vein, we will show in Corollary 3.7
that the minimum nonzero catenary degree of S also occurs at a Betti element of S.

Definition 2.5. Fix a finitely generated monoid S. For each nonzero n ∈ S, consider
the graph ∇n with vertex set Z(n) in which two vertices a,b ∈ Z(n) share an edge if
gcd(a,b) 6= 0. If ∇n is not connected, then n is called a Betti element of S. We write

Betti(S) = {b ∈ S : ∇b is disconnected}

for the set of Betti elements of S.

Theorem 2.6 ([7, Theorem 3.1]). For any finitely generated monoid S,

maxC(S) = max{c(b) : b ∈ Betti(S)}.

3. The minimum nonzero catenary degree

By Theorem 2.6, in order to compute the maximum catenary degree achieved in a
monoid S, it suffices to compute the catenary degree of each of its Betti elements. The
same cannot be said for all of the values in C(S); see Example 3.1. The main result of
this section is Theorem 3.4, which implies that the minimum nonzero catenary degree,
like the maximum catenary degree, achieved in a finitely generated monoid S occurs
at a Betti element of S.

Example 3.1. Let S = 〈11, 25, 29〉 ⊂ N. The catenary degrees of S are plotted in
Figure 2. The only Betti elements of S are 58, 150, and 154, which have catenary
degrees 4, 12, and 14, respectively. However, c(175) = 11 is distinct from each of
these values. However, by Corollary 3.7, every element of S with at least two distinct
factorizations has catenary degree at least 4 and at most 14.

Lemma 3.2 and Proposition 3.3 are used in the proof of Theorem 3.4.
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Lemma 3.2. Suppose S = 〈n1, . . . , nk〉. Fix n ∈ S with |Z(n)| ≥ 2, let B be the set of
Betti elements of S that divide n, and let

b = min{c(m) : m ∈ B}.
For each a = (a1, . . . , ak) ∈ Z(n), there exists a′ ∈ Z(n) such that d(a, a′) ≥ b.

Proof. Let X = {(x1, . . . , xk) : 0 ≤ xi ≤ ai for 1 ≤ i ≤ k} and let

F = {x ∈ X : |Z(x1n1 + · · ·+ xknk)| ≥ 2} ⊂ X.

Note that F forms a finite nonempty partially ordered set with unique maximal element
a. Choose a minimal element b = (b1, . . . , bk) ∈ F , and let m = b1n1 + . . . + bknk.

Minimality of b implies that |Z(m−ni)| = 1 for each positive bi, so any factorization
b′ ∈ Z(m) with b′ 6= b satisfies gcd(a′i, b

′
i) = 0. In particular, m ∈ B. Fix b′ ∈ Z(m)

with b′ 6= h, and let a′ = b′ + a− b ∈ Z(n). We have

d(a, a′) = d(b + a− b,b′ + a′ − b) = d(b,b′) ≥ c(m) ≥ b,

as desired. �

Proposition 3.3. Suppose S = 〈n1, . . . , nk〉. Fix n ∈ S with |Z(n)| ≥ 2, let B be the
set of Betti elements of S that divide n, and let

b = min{c(m) : m ∈ B}.
Given distinct a,b ∈ Z(n) with d(a,b) < b, there exists x ∈ Z(n) such that

max{|a|, |b|} < |x|.

Proof. First, suppose gcd(a,b) = 0, so that d(a,b) = max{|a|, |b|}. By Lemma 3.2,
there exists x ∈ Z(n) such that d(a,x) ≥ b. The strict inequality

|a− gcd(a,x)| ≤ |a| < b ≤ d(a,x) = max{|a− gcd(a,x)|, |x− gcd(a,x)|}
implies d(a,x) = |x− gcd(a,x)|. This means

max{|a|, |b|} = d(a,b) < b ≤ d(a,x) = |x− gcd(a,x)| ≤ |x|,
which proves the claim in this case.

Now, suppose gcd(a,b) 6= 0. Let a′ = a− gcd(a,b) and b′ = b− gcd(a,b), and fix
n′ ∈ S such that a′,b′ ∈ Z(n′). Since any Betti element dividing n′ also divides n, the
above argument ensures the existence of x′ ∈ Z(n′) such that

max{|a|, |b|} = max{|a′|, |b′|}+ | gcd(a,b)| < |x′|+ | gcd(a,b)|.
Choosing x = x′ + gcd(a,b) completes the proof. �

Theorem 3.4. Suppose S = 〈n1, . . . , nk〉. Fix n ∈ S with |Z(n)| ≥ 2, and let B denote
the set of Betti elements of S that divide n. Then

c(n) ≥ min{c(m) : m ∈ B}.
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Proof. Let b = min{c(m) : m ∈ B}, and let

V = {a ∈ Z(n) : d(a,b) < b for some b ∈ Z(n)} ⊂ Z(n).

If V = ∅, then d(a,b) ≥ b for all a,b ∈ Z(n), and it follows that c(n) ≥ b. Otherwise,
choose a ∈ V such that |a| is maximal among elements of V . Since a ∈ V , there exists
b ∈ Z(n) such that d(a,b) < b. By Proposition 3.3, there exists x ∈ Z(n) such that
max{|a|, |b|} < |x|. Since |a| ≤ max{|a|, |b|} < |x|, maximality of |a| ensures that
x 6∈ V . Consequently, d(x,x′) ≥ b for all x′ ∈ Z(n) with x′ 6= x, so c(n) ≥ b. �

We conclude this section with several immediate consequences Theorem 3.4. The
first is Corollary 3.5, in the spirit of Theorem 2.6.

Corollary 3.5. If n ∈ S satisfies c(n) > 0, then

c(n) ≥ min{c(m) : m ∈ Betti(S)}.
In particular, minC(S) \ {0} is the catenary degree of some Betti element of S.

Remark 3.6. The proof of Theorem 2.6 given in [7] can be easily extended to show
that the catenary degree of any monoid element is bounded above by the catenary
degrees of the Betti elements dividing it. We record this in Corollary 3.7.

Corollary 3.7. Fix n ∈ S with c(n) > 0, and let B denote the set of Betti elements
of S that divide n. Then

min{c(m) : m ∈ B} ≤ c(n) ≤ max{c(m) : m ∈ B}.

Lastly, Corollary 3.8 classifies those monoids S for which |C(S)| is minimal, and
generalizes [11, Theorem 19].

Corollary 3.8. C(S) = {0, c} if and only if c(m) = c for all m ∈ Betti(S).

Remark 3.9. The set C(S) of catenary degrees occuring in a monoid S shares many
similarities to the delta set ∆(S). In fact, the maximum element of ∆(S) is known
to lie in the delta set of a Betti element [2]. In contrast, this need not hold for the
minimum element of ∆(S). For example, the numerical monoid S = 〈30, 52, 55〉 has
delta set ∆(S) = {1, 2, 3, 5}, but its only Betti elements are 260 and 330, and their
delta sets are given by ∆(260) = {2} and ∆(330) = {5}.

4. Some extremal examples of C(S)

The first results of this section examine the relationship between the number of
minimal generators of a monoid S and the cardonality of C(S). In particular, we
exhibit an infinite family of numerical monoids with identical sets of catenary degrees
but distinct numbers of minimal generators (Corollary 4.3), and an infinite family of 3-
generated numerical monoids whose sets of catenary degrees have distinct cardonalities
(Theorem 4.7). Together, these results demonstrate that if S = 〈n1, . . . , nk〉 for k ≥ 3,
then neither k or |C(S)| can be bounded in terms of the other. We conclude the
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section with Theorem 4.10, which demonstrates that for any c ≥ 3, there exists a
finitely generated monoid whose set of catenary degrees equals {0, 2, 3, . . . , c}.

Example 4.1. Suppose S ⊂ Nk has two minimal generators. If k ≥ 2 and the
generators of S are linearly independent, then S is factorial, so C(S) = {0}. Otherwise,
S is isomorphic to a numerical monoid 〈n1, n2〉 ⊂ N, and [5, Remark 2.2] implies
C(S) = {0, n2}.

Given integers k ≥ 3 and c ≥ 3, Corollary 4.3 identifies a k-generated numerical
monoid S with catenary degree c whose elements achieve precisely 3 distinct catenary
degrees. As this monoid is generated by an arithmetic sequence, the result follows
immediately from Theorem 4.2, which appeared in [5].

Theorem 4.2 ([5, Theorem 3.1]). If S = 〈a, a+d, . . . , a+(k−1)d〉 ⊂ N with gcd(a, d) =
1 and 3 ≤ k ≤ a, then C(S) = {0, 2,

⌈
a

k−1

⌉
+ d}.

Corollary 4.3. Fix c ≥ 3 and k ≥ 3. Let S = 〈k, k + (c− 2), . . . , k + (k − 1)(c− 2)〉.
Then C(S) = {0, 2, c}.

Remark 4.4. Corollary 3.8 classifies monoids S with exactly one nonzero element
in C(S). Such monoids can also have arbitrarily large minimal generating sets. In
particular, if p1 < · · · < pk are k distinct primes, then the numerical monoid

S = 〈(p1 · · · pk)/pk, . . . , (p1 · · · pk)/p1〉
has a single Betti element, so C(S) = {0, pk} by Corollary 3.8. See [11] for more detail
on this class of numerical monoids.

Theorem 4.7 defines an infinite family of 3-generated numerical monoids, based on a
parameter k, whose set of catenary degrees has cardonality at least k+ 1. Example 3.1
discusses the resulting numerical monoid when k = 5. Before we prove the theorem,
we recall Lemmas 4.5 and 4.6, whose proofs are given in [12].

Lemma 4.5. If S = 〈n1, n2〉 is a numerical monoid and n ∈ Z, then n ∈ S if and only
if n1n2 − n1 − n2 − n /∈ S.

Lemma 4.6. Let S = 〈n1, n2, n3〉 ⊂ N be a numerical monoid. Each element of
Betti(S) can be written in the form

cini = rijnj + riknk,

where {i, j, k} = {1, 2, 3} and ci = min{c > 0 : cni ∈ 〈nj, nk〉}.

Theorem 4.7. Fix k ≥ 3, and let n1 = 2k + 1, n2 = 6k − 5, n3 = 6k − 1, and
S = 〈n1, n2, n3〉.

(i) The Betti elements of S are u = (3k − 1)n1, v = (k + 1)n2 and w = 2n3.
(ii) We have {4, 3k − 1}, {2k − 1, . . . , 3k − 3} ⊂ C(S).
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Proof. Notice the generators of S are all pairwise coprime. Fix a < 3k − 1, and write
a = 3b + c for 0 ≤ c < 3. We have

n2n3 − n2 − n3 − an1 = (6k − 5)(6k − 1)− (6k − 5)− (6k − 1)− a(2k + 1)
= 36k2 − (2a + 48)k + (11− a)
= (2ck + b− 1)n2 + (6k − 2ck − 2b + c− 6)n3,

so by Lemma 4.5, an1 /∈ 〈n2, n3〉. This means u = (3k − 1)n1 = kn2 + n3 is a Betti
element of S by Lemma 4.6. Similarly, for each a < k + 1, we have

n1n3 − n1 − n3 − an2 = 12k2 − (6a + 4)k + (5a− 1)
= (3a− 1)n1 + (2k − 2a)n3,

so v = (k+ 1)n2 = (3k− 4)n1 +n3 is also a Betti element of S by Lemmas 4.5 and 4.6.
Applying Lemmas 4.5 and 4.6 once more, we conclude from

n1n2 − n1 − n2 − n3 = 12k2 − 18k = (3k − 5)n1 + (k − 1)n2,

that w = 2n3 = 3n1 + n2 is the last Betti element of S. This proves (i).
It is easy to check that u, v, and w each have only 2 distinct factorizations, and

the first containment of (ii) follows from computing c(u) = 3k − 1 and c(w) = 4. For
0 ≤ j ≤ k − 2, let sj = 6k2 + (6j + 1)k − 5j − 5. We claim each sj has exactly j + 2
distinct factorizations: sj = (k + 1 + j)n2, which we shall denote by a0 ∈ Z(sj) and

sj = (3k − 1− 3i)n1 + (j + 1− i)n2 + (2i− 1)n3

for 1 ≤ i ≤ j + 1, which we shall denote by ai ∈ Z(sj). Indeed, this has already been
shown for s0 = v above, and induction on j implies each sj = sj−1 + n2 has exactly
j+1 factorizations with at least one copy of n2. Since 3k−4−3j < n3 and 2j+1 < n1,
the only factorization of sj in 〈n1, n3〉 is a0, from which the claim follows.

Lastly, if c(sj) = N , there exists an N -chain eminating from a0, so

N ≥ min{d(a0, ai) : 1 ≤ i ≤ j + 1} = min{3k − i− 2 : 1 ≤ i ≤ j + 1} = 3k − 3− j.

Since d(ai, ai+1) = 4 for 1 ≤ i ≤ j, we have c(sj) = 3k − 3− j. �

The final result of this section concerns monoids of zero-sum sequences over finite
groups (Definition 4.8). Here, we only introduce what is needed to prove Theorem 4.10.

Definition 4.8. Fix a finite group G with |G| ≥ 3, written additively, and let F(G)
denote the (multiplicatively written) free abelian monoid with basis G. An element
A = g1·. . .·g` ∈ F(G) (called a sequence over G) is said to be zero-sum if g1+. . .+g` = 0
in G. The set B(G) ⊂ F(G) of zero-sum sequences over G is a submonoid of F(G),
called the block monoid of G.

Remark 4.9. By [14, Proposition 2.5.6], the block monoid B(G) of a finite group G
is a Krull monoid with class group isomorphic to G and every class contains a prime
divisor (we refer the reader to [14] for the background on Krull monoids). The catenary
degree of block monoids was recently studied in the context of Krull monoids in [13, 15].
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Theorem 4.10. Let S be the block monoid of a cyclic group G of order |G| = n ≥ 4,
and fix an element g ∈ G with order |g| = n. Then C(S) = {0, 2, 3, . . . , c(S)}.
Proof. By [14, Theorem 6.4.7], we have c(S) = n and hence C(S) ⊂ {0, 2, 3, . . . , n}.
Hence, it remains to show that the interval [2, n] ⊂ C(S). First, consider the element

A = (2g)2g2n−4 ∈ S.

The only minimal (that is, irreducible) zero-sum sequences dividing A are given by
U = gn, V = (2g)gn−2, and W = (2g)2gn−4. This yields Z(A) = {UW, V 2}, from which
we conclude that c(A) = 2.

Now, fix j ∈ [3, n] and let h = (j − 1)g. Consider the zero-sum sequence

A = (−g)j−1gnh ∈ S.

This time, there are precisely four minimal zero-sum sequences dividing A, namely
U = gn, V = g(−g), W = (−g)j−1h, and X = gn−j+1h. From this, we conclude that
Z(A) = {UW, V j−1X}, which means in particular that c(A) = j. �

5. Future work

The delta set realization problem [9] asks which finite sets D ⊂ N satisfy ∆(S) = D
for some monoid S. The results of Section 4 pertain to the realization problem for sets
of catenary degrees; we record this here as Problem 5.1.

Problem 5.1. Fix a finite set C ⊂ N such that C ∩ {0, 1} = {0}. Does there exist a
finitely generated monoid S with C(S) = C?

In general, it is not easy to prove that a given value c does not equal the catenary
degree of any elements of a given monoid S (the same difficulty arises when computing
the delta set of a monoid; see Remark 3.9). Computer software can be used to com-
pute the catenary degree of individual elements of S (for instance, the GAP package
numericalsgps [10] can do this). However, computing C(S) via exhaustive search is
not possible, and it can be difficult to determine when the whole set C(S) have been
computed. An answer to Problem 5.2 would allow for a more effective use of computer
software packages in studying C(S).

Problem 5.2. Given a monoid S, determine a (computable) finite class of elements
of S on which every catenary degree in C(S) occurs.

A generalized arithmetic sequence is a sequence of the form

a, ah + d, . . . , ah + (k − 1)d

for integers a, h, d and k. In [5], a formula is given for the catenary degree of any
element in a numerical monoid generated by an arithmetic sequence (from which The-
orem 4.2 follows). These results were motivated in part by [17], which computes the
maximum catenary degree achieved in any numerical monoid generated by generalized
arithmetic sequences. The following natural question arises.
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Problem 5.3. Suppose S = 〈a, ah + d, . . . , ah + (k − 1)d〉 with gcd(a, d) = 1 and
1 < k ≤ a. Describe the set C(S) in terms of a, d, h and k.
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