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Abstract

For certain a, b ∈ N, the Arithmetic Congruence Monoid M(a, b)
is a multiplicatively closed subset of N given by {x ∈ N : x ≡ a
(mod b)}∪{1}. An irreducible in this monoid is any element that can-
not be factored into two elements, each greater than 1. Each monoid
element (apart from 1) may be factored into irreducibles in at least
one way. The elasticity of a monoid element (apart from 1) is the
length of the longest factorization into irreducibles, divided by the
length of the shortest factorization into irreducibles. The elasticity
of the monoid is the supremum of the elasticities of the monoid el-
ements. A monoid has accepted elasticity if there is some monoid
element that has the same elasticity as the monoid. An Arithmetic
Congruence Monoid is local if gcd(a, b) is a prime power (apart from
1). It has already been determined whether Arithmetic Congruence
Monoids have accepted elasticity in the non-local case; we make make
significant progress in the local case, i.e. for many values of a, b.
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1 Introduction

Let N denote the set of positive integers, and N0 denote the set of nonneg-

ative integers. Let a, b ∈ N with a < b and a2 ≡ a (mod b). Set M(a, b) =

{x ∈ N : x ≡ a (mod b)} ∪ {1}. This set is a monoid under multiplication.

Such sets are called arithmetic congruence monoids, and their arithmetic

has received considerable attention recently [1, 2, 3, 4, 5, 6, 7, 9, 11]. We re-

strict our attention to the special case wherein gcd(a, b) is a prime power, in

which case M(a, b) is called a local (singular) arithmetic congruence monoid.

Specifically, we consider the local arithmetic congruence monoid, henceforth

ACM, given as M = M(pαξ, pαn), for some ξ, n, p, α ∈ N with p prime and

gcd(ξ, n) = gcd(p, n) = 1.

For monoid M , we say nonunit x ∈ M is irreducible if there are no

factorizations x = y · z where y, z are nonunits from M . ACM’s are ex-

amples of C-monoids (for a reference see the monograph [8]); consequently

each nonunit x ∈ M = M(pαξ, pαn) has at least one factorization into ir-

reducibles. Set L(x) = {n|x = x1x2 · · ·xn, with each xi irreducible in M}.
We define the elasticity of x, denoted ρ(x), as maxL(x)

minL(x) . We define the elastic-

ity of M as the supremum of ρ(x) over all nonunits x ∈M . If the supremum

is actually a maximum, i.e. if there is some x ∈M where ρ(x) = ρ(M), we

say that M has accepted elasticity. Our goal is to extend the work in [4] in

determining which ACM’s have accepted elasticity. We will show that the

answer depends on the (multiplicative) group structure of Z×n , and on the

cyclic subgroup generated by the element [p] ∈ Z×n . Broadly, if this sub-

group has “large” index, elasticity will be accepted for all or almost all α.

Otherwise, the answer is more complicated.

We now recall some standard notation from nonunique factorization the-

ory. Let G be a finite abelian group. Although in our context we write G

multiplicatively, our definitions will be compatible with the traditional ones

in which groups are written additively. We use F(G) to denote the set of

all finite length (unordered) sequences with terms from G, refer to the el-

ements of F(G) as sequences, and write all sequences multiplicatively, so

that a sequence S ∈ F(G) is written in the form

S = g1 · g2 · . . . · gl =
∏
g∈G

gνg(S), with νg(S) ∈ N0 for all g ∈ G.

We call νg(S) the multiplicity of g in S. For d ∈ N, we call

Sd =
∏
g∈G

gdνg(S) ∈ F(G) the d− fold product of S.
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The notation S1|S indicates that S1 is a subsequence of S, that is

νg(S1) ≤ νg(S) for all g ∈ G. For S1, S2, . . . , Sm, each a subsequence of

S, if
m∑
i=1

νg(Si) = νg(S) for all g ∈ G,

we write S1S2 · · ·Sm = S and call this a partition of S. If instead

m∑
i=1

νg(Si) ≤ νg(S) for all g ∈ G,

we write S1S2 · · ·Sm|S and call this a subpartition of S.

For a sequence S = g1 · g2 · . . . · gl =
∏

g∈G g
νg(S) ∈ F(G), we call

|S| = l =
∑
g∈G

νg(S) ∈ N0 the length of S,

σ(S) =
l∏

i=1

gi =
∏
g∈G

gνg(S) ∈ G the sum of S,

Σ(S) =
{∏

i∈I

gi : I ⊆ [1, l], 0 6= |I|
}
⊆ G the set of subsequence sums of S,

and Σ′(S) =
{∏

i∈I

gi : I ⊆ [1, l], 0 6= |I| 6= l
}
⊆ G

the set of proper subsequence sums of S.

For fixed n, let x ∈ Z satisfy gcd(x, n) = 1. We denote by [x] the equiva-

lence class in Z×n containing x. We define the valuation νp(x) as the unique

integer d such that pd|x and pd+1 - x; more generally we will use the same

valuation for p ∈ G and x ∈ F(G). The following are elementary results

about ACM’s that are either found in, or are easy to derive from, the pre-

vious ACM papers.

Lemma 1.1. Let M = M(pαξ, pαn) be an ACM. Then

1. For any u ∈ N, u ∈M \ {1} if and only if [u] = 1 and νp(u) ≥ α.

2. If u ∈M is irreducible, then α ≤ νp(u) ≤ α + β − 1.

3. ρ(M) = α+β−1
α

.

4. For any u ∈ M , there are some a, l ∈ N0 such that a ≥ α and u =

paq1q2 · · · ql, where each qi satisfies gcd(qi, pn) = 1.
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5. We may determine ξ as the unique integer in [1, n − 1] satisfying

[ξ] = [p]−α.

6. Let β be the unique minimal integer satisfying β ≥ α and [p]β = [1].

Then pβ ∈M and ps /∈M for all s ∈ [1, β).

Consequently, an ACM M(pαξ, pαn) may be determined by p, α, n alone,

and we will write M(p, α, n) for convenience, with ξ and β defined implicitly

whenever needed.

2 Configurations

Our primary tool in determining whether an ACM has accepted elasticity

will be the study of configurations, as defined below.

Let G be a finite abelian group, and let g ∈ G. We denote the order of

g in G by |g|G, or |g| when unambiguous.

Definition 2.1. Let G be a finite abelian group. Let g ∈ G. Let δ, γ ∈ N
satisfy δ ≥ |g| > γ ≥ 0. Suppose that there is some sequence S ∈ F(G) and

some c, d ∈ N with c
d
≥ 1 + δ−1

δ−γ satisfying

1. There is some partition S1S2 · · ·Sd = S such that for each i ∈ [1, d],

(a) σ(Si) = gγ+1, and

(b) Σ(Si) ∩ {g, g2, . . . , gγ} = ∅; and also

2. There is some subpartition T1T2 · · ·Tc|S, satisfying σ(Ti) = gγ for each

i ∈ [1, c].

We call this sequence, partition, and subpartition a (G, g, δ, γ)-configuration.

Note that if (c, d) satisfy the conditions, then so do (kc, kd) for each

k ∈ N, by considering the subpartition T k1 T
k
2 · · ·T kc |Sk = Sk1S

k
2 · · ·Skd . Hence

we will typically assume without loss of generality that (δ − γ)|d.

The connection between (G, g, δ, γ)-configurations and accepted elastic-

ity in ACMs, is given by the following.

Theorem 2.2. Let M = M(p, α, n) be an ACM. Then M has accepted

elasticity if and only if there exists a (Z×n , [p], β, β − α)-configuration.

Proof. Suppose first that M has accepted elasticity. Then there is some pair

of factorizations into irreducibles u1u2 · · ·us = v1v2 · · · vt with s
t

= α+β−1
α

=

ρ(M). By Lemma 1.1, sα ≤
∑s

i=1 νp(ui) =
∑t

i=1 νp(vi) ≤ t(α + β − 1). All
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inequalities are therefore equalities, so νp(ui) = α, νp(vi) = α+ β − 1 for all

i.

Express each vi = pα+β−1q
(i)
1 q

(i)
2 · · · q

(i)
li

as in Lemma 1.1. For each i ∈
[1, s], we define a sequence from Z×n given by Si = [q

(i)
1 ][q

(i)
2 ] · · · [q(i)li ]. We

have [1] = [vi] = [p]α+β−1σ(Si), so σ(Si) = [p]β−α+1. Suppose there were

a subsequence T |Si with σ(T ) = [p]x for some x ∈ [1, β − α]. Then we

set v′i = pβ−x
∏
q
(i)
j , where the product is taken over all [q

(i)
j ] ∈ T . We

set v′′i = vi
v′i

. We have νp(v
′
i) ≥ α and νp(v

′′
i ) = α + x − 1 ≥ α. Further

[v′i] = [p]β−xσ(T ) = [p]β = [1]. Since [1] = [v′iv
′′
i ] = [v′i][v

′′
i ], also [v′′i ] = 1.

Hence v′i, v
′′
i ∈ M , which contradicts the irreducibility of vi. Therefore, the

Si each satisfy the conditions of Definition 2.1.1. Set S = S1S2 · · ·St.
Express each ui = pαr

(i)
1 r

(i)
2 · · · r

(i)
li

as in Lemma 1.1. For each i ∈ [1, t],

we define a sequence from Z×n given by Ti = [r
(i)
1 ][r

(i)
2 ] · · · [r(i)li ]. We have

[1] = [ui] = [p]ασ(Ti), so σ(Ti) = [p]−α = [p]β−α. By unique factorization

in N, in fact T1T2 · · ·Ts = S. Thus, T1 · · ·Ts is a partition (and hence a

subpartition) of S. It remains to observe that s
t

= α+β−1
α

= 1 + β−1
β−(β−α) .

Suppose now that there exists a (Z×n , [p], β, β − α)-configuration. De-

fine φ : Z×n → N such that φ([x]) = qx for some prime qx 6= p satisfying

[qx] = [x]. Such a φ exists by Dirichlet’s theorem on primes. We now set

vi = pα+β−1
∏

x∈Si φ([x]) for i ∈ [1,m]. Note that [vi] = [p]α+β−1σ(Si) =

[p]α+β−1[p]β−α+1 = [1], so vi ∈ M . Suppose that vi were reducible with

factor v′i. We have v′i = pxσ(T ) for some x ≥ α and some T |Si. We have

[1] = [v′i] = [p]xσ(T ), so σ(T ) = [p]β−x, which is a contradiction. Hence each

vi ∈M is irreducible.

The second property gives us c
d
≥ 1 + β−1

β−(β−α) = α+β−1
α

. We assume

without loss that α|d, and set c′ = bd(α+β−1
α

)c = ( d
α

)(α + β − 1). For i ∈
[1, c′ − 1] ⊆ [1, c], we take ui = pα

∏
x∈Ti φ([x]), and set uc′ = S

[u1][u2]···[uc′−1]
.

We have [ui] = [p]ασ(Ti) = [p]α[p]β−α = [1], so ui ∈M for i ∈ [1, c′− 1]. Set

u = v1v2 · · · vm = u1u2 · · ·uc′ . We have [1] = [u] = [u1][u2] · · · [uc′−1][uc′ ], so

[uc′ ] = [1]. Further, since αc′ = d(α + β − 1) = νp(u) = (c′ − 1)α + νp(uc′)

we have νp(uc′) = α. Hence uc′ ∈M .

Finally, we have ρ(u) ≥ c
d
≥ α+β−1

α
= ρ(M), so M has accepted elasticity.

We now broadly outline the remainder of this paper. In the subsequent

sections, we will find that if G/〈g〉 is “large”, then configurations will exist

for all γ, provided that δ is sufficiently large. That is, if we fix p, n, then

M(p, α, n) has accepted elasticity for all but finitely many α. However, if

G/〈g〉 is “small”, then configurations will exist for “small” gamma and will
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not exist for “large” gamma (keeping in mind that γ ∈ [1, |g| − 1]) . That

is, if we again fix p, n, then M(p, α, n) has accepted elasticity for infinitely

many α, and does not have accepted elasticity for infinitely many α, with the

categorization occuring based on the congruence class α falls into modulo

φ(n), the Euler totient.

3 Finding Configurations

We first present some results that produce (G, g, δ, γ)-configurations in cer-

tain special cases. Recall that by Theorem 2.2, we are only concerned with

δ that are multiples of |g|. The following proposition, in the context of

ACMs, states that M(p, α, n) has accepted elasticity, provided that α = β.

For other equivalent conditions, see Proposition 3.2.

Proposition 3.1. Let G be any finite abelian group. Let g ∈ G, and let

δ ∈ N satisfy δ ≥ |g|. Then there is a (G, g, δ, 0)-configuration.

Proof. Set d = 1, and set S = S1 = (g). We have σ(S1) = g0+1, while

{g, g2, . . . , gγ} = ∅. For the second condition, we take c = d1 + δ−1
δ
e and set

T1 = T2 = · · · = Tc = ∅, which gives σ(Ti) = 1 = g0.

Consequently, we will assume henceforth that γ > 0 and β > α. By the

following proposition, we equally assume that ξ > 1 and ρ(M) ≥ 2.

Proposition 3.2. Given ACM M , the following are equivalent: (1) ξ =

1; (2) [p]α = [1]; (3) β = α; and (4) ρ(M) < 2.

Proof. If (1) holds, since [ξ] = [p]−α, in fact [1] = [p]α, so (2) holds. If (2)

holds, since α ≥ α and [p]α = [1], in fact β = α, so (3) holds. If (3) holds,

then [ξ] = [p]−α = [p]−β = [1]. Because 1 ≤ ξ ≤ n− 1, in fact ξ = 1, so (1)

holds. If (3) holds, then ρ(M) = β+α−1
α

= 2− 1
β
< 2, so (4) holds. Lastly, if

(4) holds, then β+α−1
α

< 2, so β − 1 < α ≤ β, so (3) holds.

The following proposition, in the context of ACMs, states that ifM(p, α, n)

has accepted elasticity, then so does M(p, α + t, n) for all t ∈ N satisfying

[p]t = [1].

Proposition 3.3. Suppose that there is a (G, g, δ, γ)-configuration with γ ≥
1. Let δ′ ∈ N with δ′ > δ. Then there is a (G, g, δ′, γ)-configuration.

Proof. We will show that the same configuration works. Because δ only

appears in relation to c and d, we only need to check that inequality. Because
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γ ≥ 1, we have δ−1
δ−γ ≥

δ′−δ
δ′−δ . Their mediant is δ′−1

δ′−γ , which must be between

these fractions and thus no more than δ−1
δ−γ . Consequently, c

d
≥ 1 + δ−1

δ−γ ≥
1 + δ′−1

δ′−γ .

In the ACM context, the combination of the previous proposition with

the following, states that if M(p, 1, n) has accepted elasticity, then so does

M(p, α, n) for all α ≥ 1.

Proposition 3.4. Suppose that there is a (G, g, |g|, |g| − 1)-configuration.

Let γ ∈ N with γ < |g| − 1. Then there is a (G, g, |g|, γ)-configuration.

Proof. Set k = |g| − γ − 1. We set S ′i = Si ∪ {(g−1)k} for i ∈ [1, d]. We have

S ′ = S ′1S
′
2 · · ·S ′d = SV for V = (g−1)dk. We have σ(S ′i) = g|g|−k = gγ+1.

Note that Σ{(g−1)k} = {g0, g−1, . . . , g−k}. Suppose that for some s ∈ [1, γ]

we had gs ∈ Σ(S ′i) = Σ(Si) · Σ{(g−1)k}. Hence Σ(Si) is not disjoint from

{gs, gs, . . . , gs+k} ⊆ {g, g2, . . . , g|g|−1}, a contradiction. Therefore Σ(S ′i) ∩
{g, g2, . . . , gγ} = ∅.

Without loss, we may assume that (k + 1)|c and (k + 1)|d. For each

i ∈ [1, c
k+1

], we set T ′i = T(i−1)(k+1)+1T(i−1)(k+1)+2 · · ·Ti(k+1). We have σ(T ′i ) =

[g](k+1)(|g|−1) = [g]−k−1 = [g]γ. For each i ∈ [ c
k+1

+ 1, c
k+1

+ kd
k+1

], we set T ′i =

{(g−1)k+1} and again σ(T ′i ) = [g]γ. By hypothesis c
d
≥ 1 + |g|−1

|g|−(|g|−1) = |g|.
Hence c

d
+ k ≥ |g| + k = (|g| − γ) + (|g| − 1) = (|g| − γ)(1 + |g|−1

|g|−γ ) =

(k + 1)(1 + |g|−1
|g|−γ ). Consequently,

c
k+1

+ kd
k+1

d
≥ 1 + |g|−1

|g|−γ .

The following proposition, in the context of ACMs, makes clear that not

n but Z×n is the important object.

Proposition 3.5. Suppose that there is a (G, g, δ, γ)-configuration with

γ ≥ 1. Let φ : G → H be a group homomorphism. Then there is an

(H,φ(g), δ, γ)-configuration.

Proof. For sequence S = g1 · . . . · gl ∈ F(G), we define φ(S) = φ(g1) ·
. . . · φ(gl) ∈ F(H). We have φ(S1) · · ·φ(Sd) = φ(S) is a partition that

satisfies σ(φ(Si)) = φ(g)γ+1 and Σ(φ(Si)) ∩ {φ(g), . . . , φ(g)γ} = ∅. The

same c, d as previously satisfy the necessary inequality, with subpartition

φ(T1) · · ·φ(Tc)|φ(S). Finally, we have σ(φ(Ti)) = φ(g)γ.

The following proposition, in the context of ACMs, states that M(p, α, n)

has accepted elasticity, provided that α is “large” and |[p]| is composite.

Specifically, if |[p]| = rs in Z×n , then we need α ∈ (β − r, β). The remaining

possibilities for α, namely (β − rs, β − r], are not covered; however in some
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cases there are no configurations for these α, as will be shown in Proposition

3.7.

Proposition 3.6. Let G be any finite abelian group. Let g ∈ G. Suppose

that |g| = rs with r, s > 1 and rs > 4. Let γ ∈ N satisfy γ < r. Then there

is a (G, g, rs, γ)-configuration.

Proof. We first consider the special case {s = 2, γ = 1}; by hypothesis

r ≥ 3. We set S1 = (g−1)2r−2, S2 = (g2)2r+1, T = (g−1) · (g2). We have

σ(S1) = σ(S2) = g2 = gγ+1 and σ(T ) = gγ. Also, Σ(S1) = 〈g〉 \ {1, g} and

Σ(S2) = 〈g2〉, which does not contain g since |g| is even. We set S = S1S2

and d = 2. We set c = 2r−2 and see that T c|S. Lastly we have c
d

= r−1 ≥
2 = 1 + 2r−1

2r−1 .

Henceforth we exclude {s = 2, γ = 1}. Set S1 = (g−1)rs−γ−1. We

have σ(S1) = gγ+1−rs = gγ+1, and Σ(S1) = {g−1, g−2, . . . , g−rs+γ+1} =

{gγ+1, gγ+2, . . . , grs−1}, which has no intersection with {g1, g2, . . . , gγ}. Set

S2 = (gr)2rs
2
(gγ+1). We have σ(S2) = gγ+1 and Σ(S2) = 〈gr〉 ∪ gγ+1〈gr〉,

which again has no intersection with {g1, g2, . . . , gγ}. We set d = rs−γ and

S = Sd−11 S2.

We now set c = s(rs − 2 + γ(s − 2)) + 1. We set T0 = (g−1) · (gγ+1)

and Ti = (g−1)r−γ · (gr) for i ∈ [1, c − 1]. Set T = T0T1 · · ·Tc−1; we will

prove that T |S. There are three group elements to consider. First, (gγ+1)

appears once in both T and S. Second, (gr) appears 2rs2 times in S and

c − 1 ≤ s(rs + rs) = 2rs2 times in T . Lastly, considering (g−1), we need

(rs− γ − 1)2 ≥ 1 + (c− 1)(r − γ). We chose c so that (rs− γ − 1)2 − (c−
1)(r− γ) = (γ(s− 1)− 1)2. This integer is zero only when γ = 1 and s = 2,

a possibility which has been excluded.

We now prove that c
d
≥ 1 + rs−1

rs−γ . This rearranges to X ≥ 0, for X =

rs2 + γs2− 2γs− 2s+ 2− 2rs+ γ = (s− 1)2γ+ s(r(s− 2)− 2) + 2. If s ≥ 3

we have X ≥ 4γ + 3(r − 2) + 2 ≥ 0; if s = 2 we have X = γ − 2 ≥ 0 since

γ = 1 has been excluded.

Let G be a nontrivial finite abelian group. Suppose that g ∈ G generates

G, i.e. G = 〈g〉. It is a well-known result from group theory that if G ∼= Z×n
for some n, then |G| = |g| is even. In this situation the following proposition

states that the bound of Proposition 3.6 is tight (provided |g| > 4). It also

shows that although (G, g, δ, γ)-configurations may be plentiful, they are

not omnipresent – not all ACMs have accepted elasticity.
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Proposition 3.7. Let G be a finite abelian group. Let g ∈ G satisfy G = 〈g〉.
Suppose that |g| = 2r ≥ 4. Let γ, δ ∈ N satisfy δ ≥ 2r > γ ≥ r. Then there

is no (G, g, δ, γ)-configuration.

Proof. Set A = {γ + 1, γ + 2, . . . , 2r} for convenience. We define φ : G→ N
via φ(g−i) = i, where we choose i ∈ [0, 2r−1]. Note that φ(ab) ≡ φ(a)+φ(b)

(mod 2r). We extend φ to sequences in the natural way, via φ(a · b) =

φ(a) + φ(b). Set k = 2r− γ − 1, which satisfies k ∈ [0, r− 1]. Suppose there

were a (G, g, δ, γ)-configuration. We will first prove that each Si satisfies

φ(Si) = k. We consider each subsequence U |Si, and prove that φ(U) ≤ k

by induction on |U |. If |U | = 1, then U = (gs) for some s ∈ A. Hence

φ(U) = φ(gs) ≤ k. Otherwise we write U = U ′ ·(gs) for some s ∈ A. We have

σ(U ′) = gt, where t ∈ A and φ(U ′) ≤ k by the inductive hypothesis. Now

we have φ(U) = φ(U ′) +φ(gs) ≤ 2k. Because φ(U) ≡ φ(σ(U)) (mod 2r), in

fact φ(U) = φ(σ(U)) = −s−t. If φ(U) > k then −s−t > k = 2r−γ−1 and

σ(U) ∈ {g, g2, . . . , gγ}, a contradiction. Hence φ(U) ≤ k, and in particular

φ(Si) ≤ k. But φ(Si) ≥ φ(σ(Si)) = φ(gγ+1) = k, so in fact φ(Si) = k.

Now, φ(Ti) ≥ φ(σ(Ti)) = φ(gγ) = k + 1. Hence we have dk = dφ(Si) =

φ(S) ≥
∑c

i=1 φ(Ti) ≥ c(k + 1). We rearrange to get c
d
≤ k

k+1
< 1 + δ−1

δ−γ , a

contradiction.

We combine Propositions 3.6 and 3.7 into the following theorem, which

was the main result of [4] (with different proof). It completely solves the

special case where p is a primitive root modulo n. In particular, this requires

Z×n to be cyclic, which in the ACM context occurs only when n = 2, 4, qk,

or 2qk for some odd prime q.

Theorem 3.8. Let G be a finite abelian group. Let g ∈ G satisfy G = 〈g〉.
Suppose that |g| is even. Let δ, γ ∈ N with δ ≥ |g| > γ > 0. Then there is a

(G, g, δ, γ)-configuration if and only if

1. |g| > 4, and

2. |g| ≥ 2γ.

Proof. The only cases not covered by Propositions 3.6 and 3.7 are the fol-

lowing.

{|g| = 4, γ = 1}: Because νg(S) = 0, for all i we have νg3(Ti) ≥ 1, while

νg3(Si) ≤ 2. Hence we have 2d ≥ νg3(S) ≥ c, but also c
d
≥ 1+ δ−1

δ−1 = 2. Hence

all inequalities are equalities and νg3(Si) = 2 for all i. Then νg2(Si) = 0 for



10 L. Crawford, V. Ponomarenko, J. Steinberg, M. Williams

all i, and thus νg2(S) = 0. But now σ(Ti) 6= g, so in fact there is no config-

uration.

{|g| = 2, γ = 1}: Because νg(Si) = 0, we have σ(Ti) 6= g.

4 〈g〉 ⊕H
With Theorem 3.8 we have resolved the case of G = 〈g〉, a cyclic group

(provided |G| is even, which holds for all nontrivial G ∼= Z×n ). Otherwise,

G/〈g〉 is nontrivial and in the remainder we explore its structure. In this

section we consider nontrivial subgroups H ≤ G such that 〈g〉 ⊕ H ≤ G.

Such subgroups H need not exist, e.g. for (G, g) ∼= (Z25, 5). However they

do exist in two important cases, given by Propositions 4.2 and 4.3. We recall

first a lemma from the classical theory of finite abelian groups.

Lemma 4.1. Let G be a finite abelian group with |G| = y. Let x ∈ N satisfy

x|y. Then there is some subgroup H ≤ G with |H| = x.

Proof. See, e.g., [10, p. 77].

The fololowing proposition allows us to not only address noncyclic groups

G, but also cyclic groups G provided that some prime divides |G| but not

|g|.

Proposition 4.2. Let G be a finite abelian group with g ∈ G. Suppose that

|G| = xy and gcd(x, y) = gcd(x, |g|) = 1. Then there is some subgroup

H ≤ G with |H| = x and 〈g〉 ⊕H ≤ G.

Proof. By Lemma 4.1 there must be some H ≤ G with |H| = x. Let

z ∈ 〈g〉 ∩ H. Then |z| divides both |g| and x, but then |z| = 1 so the

conclusion follows.

Proposition 4.3 is an elementary result concerning finite abelian groups

that seems like it should be well-known, but we have no reference. For

noncyclic groups G, it provides a “large” subgroup H such that 〈g〉⊕H ≤ G.

Proposition 4.3. Let G ∼= Zn1 ⊕Zn2 ⊕ · · · ⊕Znk be a finite abelian group,

with n1|n2| · · · |nk. Let g ∈ G. Then there is some H ≤ G such that 〈g〉⊕H ≤
G and H ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk−1

.

Proof. We first assume that G is a p-group for some prime p, i.e. G ∼=
Zpa1 ⊕ Zpa2 ⊕ · · · ⊕ Zpak , for integers ak ≥ ak−1 ≥ · · · ≥ a1 ≥ 1. We write

G additively as k-tuples, and in particular g = (g1, g2, . . . , gk). For each
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i ∈ [1, k], let mi be the order of gi in Zpai . Let M be chosen so that mM

is maximal among {m1, . . . ,mk}. By Lagrange’s theorem on finite groups,

each mi is a power of p for all i ∈ [1, k], so in particular mi|mM . Hence

mM is the order of g, and therefore each nonzero element of 〈g〉 has a

nonzero element in the M th coordinate. We now set H = {(b1, . . . , bk) ∈
G : bM = 0 and pak−aM |bk}, a subgroup of G. We have 〈g〉 ∩ H = {0}, so

〈g〉 ⊕ H ≤ G. Further, by swapping the M th and kth coordinates, we see

that H ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk−1
⊕ {0} ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk−1

.

Suppose now that there are distinct primes p1, p2 . . . , ps and correspond-

ing p-groups G1, G2, . . . , Gs, such that G ∼= G1⊕G2⊕· · ·⊕Gs. For each i ∈
[1, s] we haveGi

∼= Z
p
a(i,1)
i
⊕· · ·⊕Z

p
a(i,ki)
i

, for integers a(i, ki) ≥ · · · ≥ a(i, 1) ≥
1. By the above, for each i ∈ [1, s] we find Hi ≤ Gi such that 〈g|Gi〉⊕Hi ≤ Gi

and Hi
∼= Z

p
a(i,1)
i
⊕ · · · ⊕ Z

p
a(i,ki−1)

i

. Let φi denote the natural embedding of

each p-group Gi into G, and set H = φ1(H1) + φ2(H2) + · · · + φs(Hs). Be-

cause the primes are distinct, in fact φ1(H1)⊕ φ2(H2)⊕ · · · ⊕ φs(Hs) ≤ G,

and also 〈g〉⊕H ≤ G. We now have H ∼=
∏
Hi, and the result follows since

nk =
∏

i p
a(i,ki)
i , nk−1 =

∏
i p

a(i,ki−1)
i , . . ..

Theorem 4.5 is the main result of this section, which requires the follow-

ing definition.

Definition 4.4. Let H ∼= Zm1 ⊕Zm2 ⊕ · · · ⊕Zmk be a finite abelian group,

where m1|m2| · · · |mk. We define d?(H) = (m1 + m2 + · · · + mk) − k =∑k
i=1(mi − 1).

Theorem 4.5. Let G be a finite abelian group and g ∈ G. Suppose that

there is some H ≤ G with 〈g〉 ⊕H ≤ G. Let δ, γ ∈ N that satisfy δ ≥ |g| >
γ > 0. Then there is a (G, g, δ, γ)-configuration, provided that the following

inequality holds:

d?(H) >

(
1− 1

|g|

)(
1

|g| − γ
+
δ − 1

δ − γ

)
Proof. We will construct the configuration explicitly. Let α ∈ N be large.

Let h1, . . . , hk ∈ G with 〈h1〉 ⊕ · · · 〈hk〉 ⊕ 〈g〉 ≤ G, |hi| = mi for i ∈ [1, k],

and m1|m2| · · · |mk. Set S1 = (g−1)|g|−γ−1 ·
∏k

i=1(hig
γ)mi−1 · (h−1i g−γ)mi−1,

S2 = (g−1)|g|−γ−1 ·
∏k

i=1(h
−1
i )|g|

2m2
iα. We set T0 = (g−1)|g|−γ, and for i ∈

[1, k] set Ti = (hig
γ) · (h−1i ), T ′i = (h−1i g−γ)|g|−1 · (h−1i )|g|(mi−1)+1. Note that

σ(S1) = σ(S2) = gγ+1 and for all i ∈ [1, k], σ(Ti) = σ(T ′i ) = σ(T0) = gγ. If

x ∈ 〈g〉∩ (Σ(S1) ∪ Σ(S2)) then in fact x ∈ Σ((g−1)|g|−γ−1) and consequently

x /∈ {g, g2, . . . , gγ}.
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For convenience, set a1 = |g| − 1, aγ = |g| − γ. We set d = a1aγα +

1 and S = S
a1aγα
1 S2. We set c = a1(aγ − 1)α + d?(H)|g|aγα and T =

T
a1(aγ−1)α
0

∏k
i=1 T

(mi−1)a1aγα
i T

′(mi−1)aγα
i . We now verify that T |S. For g−1,

we have νg−1(T ) = aγa1(aγ − 1)α < (aγ − 1)a1aγα + (aγ − 1) = νg−1(S).

For any i ∈ [1, k], we have νhigγ (T ) = (mi − 1)a1aγα = νhigγ (S). We also

have νh−1
i g−γ (T ) = (mi − 1)a1aγα = νh−1

i g−γ (S). Lastly we have νh−1
i

(T ) =

(mi − 1)a1aγα + (mi − 1)aγα(|g|(mi − 1) + 1) = (mi − 1)miaγ|g|α ≤
m2
i |g|2α = νh−1

i
(S). We now calculate c

d
= a1(aγ−1)α+d?(H)|g|aγα

a1aγα+1
= 1−

1+ 1
a1α

aγ+
1
a1α

+

d?(H) |g|
a1+

1
aγα

= 1 − 1
aγ

+ d?(H) |g|
a1

+ ε, where we choose α sufficiently large

to ensure that |ε| < |g|
a1
d?(H)− ( 1

aγ
+ δ−1

δ−γ ), which we may do by hypothesis.

Hence we have c
d
> 1− 1

aγ
+ 1

aγ
+ δ−1

δ−γ , as desired.

Recall that in the ACM context we may assume that δ is a positive

integer multiple of |g|. If we take δ = |g|, the following corollary shows that

it suffices to have d?(H) > |g|−1
|g|−γ . If d?(H) ≥ |g| then this condition is met

for all γ; otherwise it is met only for γ < |g| − |g|−1
d?(H)

.

Corollary 4.6. Let G be a finite abelian group and g ∈ G. Suppose that

there is some H ≤ G with 〈g〉 ⊕H ≤ G. Let γ ∈ N such that |g| > γ > 0.

Suppose that d?(H) > |g|−1
|g|−γ . Then there is a (G, g, |g|, γ)-configuration.

Proof. With δ = |g| we have
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
= |g|−1
|g|−γ .

Corollary 4.7. Let G be a finite abelian group, and let exp(G) denote

the exponent of G. Suppose that d?(G) ≥ 2 exp(G) − 1. Then there are

(G, g, γ, δ)-configurations for all g ∈ G and all γ, δ ∈ N satisfying δ ≥ |g| >
γ > 0.

Proof. Let g ∈ G. Apply Proposition 4.3 to getH ≤ G with 〈g〉⊕H ≤ G. We

have d?(H)+ exp(G)−1 = d?(G) ≥ 2 exp(G)−1, so d?(H) ≥ exp(G) ≥ |g|.
We now apply Corollary 4.6.

If we exclude the smallest value of δ, namely |g|, we only need the weak

condition that d?(H) ≥ 3 to get all possible γ.

Corollary 4.8. Let G be a finite abelian group and g ∈ G. Suppose that

there is some H ≤ G with 〈g〉 ⊕ H ≤ G. Let δ, γ ∈ N satisfy δ ≥ 2|g|
and |g| > γ > 0. Suppose that d?(H) ≥ 3. Then there is a (G, g, δ, γ)-

configuration.

Proof. Since δ − γ > |g| > γ − 1, we have 1 > γ−1
δ−γ . Therefore, d?(H) ≥ 3 >

2 + γ−1
δ−γ = 1 + δ−1

δ−γ >
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
.
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Corollary 4.8 gives configurations for all γ, provided that d?(H) ≥ 3

and δ is sufficiently large. If d?(H) = 2 (i.e. H ∼= Z3 or Z2 ⊕ Z2), then

Corollary 4.9 shows that again we get configurations for all γ provided that

δ is sufficiently large. If d?(H) = 1 (i.e. H ∼= Z2), then we do not get

configurations for all γ, no matter the size of δ, as will be shown later in

Proposition 6.4.

Corollary 4.9. Let G be a finite abelian group and g ∈ G. Suppose that

there is some H ≤ G with 〈g〉⊕H ≤ G and d?(H) = 2. Let δ, γ ∈ N satisfy

δ > |g| |g|−1
2

and |g| > γ > 0. Then there is a (G, g, δ, γ)-configuration.

Proof. It suffices to prove that 2 >
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
for γ = |g| − 1.

This is a rearrangement of δ > |g| |g|−1
2

.

In the special case of H = 〈h〉 with |h| = |g|, we have d?(H) = |g| − 1.

Here Theorem 4.5 does not apply for {δ = |g|, γ = |g| − 1}. In fact there

is a configuration for this case as well, and hence for all δ, γ by Proposition

3.4.

Proposition 4.10. Let G be a finite abelian group. Let g, h ∈ G with 〈g〉⊕
〈h〉 ≤ G and |g| = |h|. Then there is a (G, g, |g|, |g| − 1)-configuration.

Proof. Set k = |g| for convenience. Set d = 2, S1 = (hg−1)2k, S2 = (h−1)2k,

and S = S1S2. We have σ(S1) = (hk)2(g−k)2 = 1 = (h−k)2 = σ(S2). We

have Σ(S1) = {hig−i : i ∈ [1, 2k]}. Suppose that for some i, j ∈ N we had

hig−i = gj. Then we have hi = gj+i so by hypothesis hi = 1 and hence k|i so

hig−i = ((hg−1)k)i/k = 1. We also have Σ(S2) = 〈h〉 so Σ(S2)∩〈g〉 = {1}. We

set c = 2k and set T = (hg−1)·(h−1). We have σ(T ) = g−1 = gγ, and T c = S,

in fact a partition of S. Lastly, we compute c
d

= |g| = 1 + δ−1
δ−(δ−1) = 1 + δ−1

δ−γ ,

as desired.

5 Minimal K-Sum Sequences

We now continue the study of G/〈g〉, but drop the 〈g〉 ⊕H ≤ G restriction

which is too strong in some cases. For example, consider (G, g) ∼= (Z49, 7).

In this case, the previous section does not apply, but we will see in Theorem

5.4 that in fact there are configurations for almost every δ, γ.

To do this, we introduce another useful tool that may have some interest

beyond this problem. Although we continue to write our groups multiplica-

tively, we will embrace the traditional additive terminology in the following

definition.
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Definition 5.1. Let G be a finite abelian group. Let K be a subgroup of

G. Let S ∈ F(G). We call S a K-sum sequence if σ(S) ∈ K. We call S a

minimal K-sum sequence if σ(S) ∈ K and Σ′(S) ∩K = ∅.

Note that if K = {1} then this definition coincides with that of zero-sum

sequences, which are quite well-studied. For example, it is known that each

such G has an associated number D(G), called the Davenport constant,

such that for every t ∈ [1, D(G)], there is a minimal zero-sum sequence of

length t. We can employ this fact to construct minimal K-sum sequences

via the following.

Proposition 5.2. Let G be a finite abelian group with subgroup K. Let S

be a minimal zero-sum sequence in G/K. Then there is a minimal K-sum

sequence T ∈ F(G), such that |T | = |S|.

Proof. Let S = (g1K) · (g2K) · . . . · (glK), for some l ∈ N0, and for some

g1, . . . , gl ∈ G. Set T = g1 · g2 · . . . · gl ∈ F(G). Because σ(S) = 1K, we

must have σ(T ) ∈ K and |T | = |S|. Suppose that there is some I ⊆ [1, l]

with
∏

i∈I gi ∈ K. But then
∏

i∈I(giK) ∈ KK = 1K. Because S is minimal,

either |I| = 0 or |I| = l. Hence Σ′(T ) ∩K = ∅.

Once we have a minimal K-sum sequence, we can produce many more

of the same length.

Proposition 5.3. Let G be a finite abelian group with subgroup K. Let

S = g1 · g2 · . . . · gl be a minimal K-sum sequence. Let h1, h2, . . . , hl ∈ K.

Then T = (g1h1) · (g2h2) · . . . · (glhl) is a minimal K-sum sequence.

Proof. We have σ(T ) =
∏l

i=1 gihi = σ(S)
∏l

i=1 hi ∈ K. Further, suppose

I ⊆ [1, l] and
∏

i∈I gihi ∈ K. But then
∏

i∈I gi =
(∏

i∈I gihi
)(∏

i∈I hi
)−1 ∈

K. Since S is a minimal K-sum sequence, either |I| = 0 or |I| = l. Hence

Σ′(T ) ∩K = ∅.

We now have the machinery to produce configurations, provided that

D(G/〈g〉) ≥ 6 and subject to a mild restriction on γ.

Theorem 5.4. Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉.
Suppose that there is a minimal K-sum sequence of length 6. Let δ, γ ∈ N
with δ ≥ 2γ − 1 and |g| > γ > 0. Then there is a (G, g, δ, γ)-configuration.

Proof. Let R = g1 · g2 · g3 · g4 · g5 · g6 be a minimal K-sum sequence. Note

that R′ = g−11 · g−12 · g−13 · g−14 · g−15 · g−16 is also a minimal K-sum sequence.

Because σ(R) ∈ K, there is some s ∈ [1, |g|] such that gs = σ(R). Now, for
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each i ∈ [1, |g|], we define two minimal K-sum sequences as follows. Set Si =

(g1g
γ)·(g2gγ)·g3 ·g4 ·(g5gi)·(g6g1−γ−s−i), and S ′i = g−11 ·g−12 ·(g−13 gγ)·(g−14 gγ)·

(g−15 gγ−i) · (g−16 g1−2γ+s+i). We set S = S1S2 · · ·S|g|S ′1S ′2 · · ·S ′|g|. Note that

for each i ∈ [1, |g|], we have σ(Si) = σ(R)g1+γ−s = g1+γ, and also σ(S ′i) =

σ(R′)g1+γ+s = g1+γ. Also for each i ∈ [1, |g|], because they are minimal K-

sum sequences, Σ′(Si) ∩ {g, g2, . . . , g|g|−1} = ∅ = Σ′(S ′i) ∩ {g, g2, . . . , g|g|−1}.
Hence this partition of S satisfies the required definition with d = 2|g|.

We set c = 6|g|. For i ∈ [1, 2], we define Ti = (gig
γ) · (g−1i ). For

i ∈ [3, 4], we define Ti = (g−1i gγ) · (gi). For i ∈ [1, |g|], we define Ui =

(g5g
i) · (g−15 gγ−i). Note that {g1−γ−s−i : i ∈ [1, |g|]} = K = {g1−2γ+s+i :

i ∈ [1, |g|]}. Hence there is some permutation π of {1, 2, . . . , |g|} such that

g1−γ−s−ig1−2γ+s+π(i) = gγ for each i ∈ [1, |g|]. Now, for i ∈ [1, |g|], we define

Vi = (g6g
1−γ−s−i)·(g−16 g1−2γ+s+π(i)). We have S = (T1T2T3T4)

|g|U1 · · ·U|g|V1 · · ·V|g|.
By construction we see that σ(Ti) = σ(Ui) = σ(Vi) = gγ, for all i in this

subpartition (actually partition) of S.

Note that by assumption we have δ ≥ 2γ − 1, which is equivalent to

3 ≥ 1 + δ−1
δ−γ . The proof is now complete since c

d
= 6|g|

2|g| = 3.

There are only eight nonisomorphic nontrivial groups whose Davenport

constant is less than 6, and the only cyclic ones are Z2,Z3,Z4,Z5. From the

perspective that G/〈g〉 is arbitrary, the restriction that D(G/〈g〉) ≥ 6 is

quite mild. On the other hand, if we fix G of small rank and vary g, then

this restriction appears stronger since a significant fraction of G may fail to

meet it.

Recall that in the ACM context δ is always a multiple of |g|. Hence the

condition in Theorem 5.4 that γ ≤ δ/2 always holds, unless δ = |g|. That

is, the condition that γ ≤ δ/2 is equivalent to α ≥ |[p]|Z×n /2.

We can also trade off the two restrictions in Theorem 5.4; if we increase

the lengths of the Si, we strengthen the Davenport constant restriction

and weaken the already mild α restriction. However, no matter how big

D(G/〈g〉) is, this approach cannot work for α = 1. In the other direction, we

can also weaken the Davenport constant restriction by one, but strengthen

the α restriction, as given by the following.

Proposition 5.5. Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉.
Suppose that there is a minimal K-sum sequence of length 5. Let δ, γ ∈ N
with δ ≥ 3γ − 2 and γ < |g|. Then there is a (G, g, δ, γ)-configuration.

Proof. Let R = g1 · g2 · g3 · g4 · g5 be a minimal K-sum sequence. Note

that R′ = g−11 · g−12 · g−13 · g−14 · g−15 is also a minimal K-sum sequence.
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Because σ(R) ∈ K, there is some s ∈ [1, |g|] such that gs = σ(R). Now,

for each i ∈ [1, |g|] and each j ∈ [1, |g|], we define two minimal K-sum

sequences as follows. Set Si,j = (g1g
γ)·(g2gγ)·(g3gγ)·(g4gi)·(g5g1−2γ−s−i), and

S ′i,j = (g−11 )·(g−12 )·(g−13 )·(g−14 gj)·(g−15 g1+γ−s−j). We set S =
∏

i,j Si,jS
′
i,j, with

d = 2|g|2. Note that for each i, j ∈ [1, |g|], we have σ(Si,j) = σ(S ′i,j) = g1+γ,

so this partition satisfies the required definition.

We set c = 5|g|2. For i ∈ [1, 3], we define Ti = (gig
γ) · (g−1i ). Note

that {g1−2γ−s−i : i ∈ [1, |g|]} = K = {g1+γ−s−j : j ∈ [1, |g|]}. For i ∈
[1, |g|], we define Ui = (g4g

i) · (g−14 gγ−i). For i ∈ [1, |g|], we define Vi =

(g5g
1−2γ−s−i) · (g−15 g1+γ−s−(2−2γ−2s−i)) = (g5g

1−2γ−s−i) · (g−15 g−1+3γ+s+i). We

have S = (T1T2T3)
|g|2(U1 · · ·U|g|)|g|(V1 · · ·V|g|)|g|. By construction we see that

σ(Ti) = σ(Ui) = σ(Vi) = gγ, for all i in this subpartition (actually partition)

of S.

Note that by assumption we have δ ≥ 3γ − 2, which is equivalent to
5
2
≥ 1 + δ−1

δ−γ . The proof is now complete since c
d

= 5|g|2
2|g|2 = 5

2
.

In the ACM context, the restriction that δ ≥ 3γ − 2 is equivalent to

either α ∈ [2
3
(x− 1), x), or α ≥ 4x−2

3
, for x = |[p]|Z×n . We cannot reduce the

restriction on D(G/〈g〉) any further than 5 using this approach.

6 exp(G/〈g〉)
We now consider G/〈g〉 in a third way, by considering its exponent. This

is a particularly fruitful approach if G (and hence G/〈g〉) is cyclic. The

following result uses a construction similar to that in Theorem 4.5.

Theorem 6.1. Let G be a finite abelian group and g ∈ G. Set K = 〈g〉,
m = exp(G/K). Let δ, γ ∈ N that satisfy δ ≥ |g| > γ > 0. Then there is a

(G, g, δ, γ)-configuration, provided that the following inequality holds:

m ≥ 1 +
1

|g| − γ
+
δ − 1

δ − γ

Proof. We will construct the configuration explicitly. Let hK ∈ G/K satisfy

|hK| = exp(G/K) = m. Note that hx /∈ K for x ∈ [−(m−1), (m−1)]\{0}.
For each i ∈ [1, |g|], we set Si = (g−1)|g|−γ−1 · (hgi)m−1 · (h−1g−i)m−1. We set

T0 = (g−1)|g|−γ, and for i ∈ [1, |g|] set Ti = (hgγ+i) · (h−1g−i). Note that for

all i ∈ [1, |g|], we have σ(Si) = gγ+1 and σ(Ti) = gγ = σ(T0). If x ∈ K∩Σ(Si)

then in fact x ∈ Σ((g−1)|g|−γ−1) and consequently x /∈ {g, g2, . . . , gγ}.
For convenience, set aγ = |g|−γ. We set d = |g|aγ and S =

∏|g|
i=1 S

aγ
i . We

set c = (aγ−1)|g|+(m−1)aγ|g| = maγ|g|−|g| and T = T
(aγ−1)|g|
0

∏|g|
i=1 T

(m−1)aγ
i .
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We now verify that T |S (in fact T = S). For g−1, we have νg−1(T ) =

aγ(aγ − 1)|g| = νg−1(S). For any i ∈ [1, k], we have νhgi(T ) = (m − 1)aγ =

νhgi(S) and equally νh−1gi(T ) = (m− 1)aγ = νh−1gi(S). Lastly, we calculate
c
d

= maγ |g|−|g|
|g|aγ = m− 1

aγ
≥ 1 + δ−1

δ−γ by hypothesis.

As before, the theorem leads to several corollaries. Corollary 6.2 gives

configurations for all but one γ, and all sufficiently large δ.

Corollary 6.2. Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉.
Suppose that exp(G/K) = 3 . Let δ, γ ∈ N with δ ≥ 3|g| and |g|−1 > γ > 0.

Then there is a (G, g, δ, γ)-configuration.

Proof. Suppose by way of contradiction that Theorem 6.1 fails to hold, i.e.

3 < 1 + 1
|g|−γ + δ−1

δ−γ ≤ 1 + 1
2

+ 3|g|−1
2|g|+2

, where we used the hypotheses regarding

δ and γ. This rearranges to 3|g|+ 3 < 3|g|+ 1, a contradiction.

Corollary 6.3. Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉.
Suppose that exp(G/K) = m, for some m ≥ 4. Let δ, γ ∈ N with either

1. δ ≥ 2|g| and |g| > γ > 0; or

2. δ = |g| and m−2
m−1 |g| ≥ γ > 0.

Then there is a (G, g, δ, γ)-configuration.

Proof. Suppose by way of contradiction that Theorem 6.1 fails to hold, i.e.

m < 1 + 1
|g|−γ + δ−1

δ−γ .

(1) Then m < 1 + 1 + 2|g|−1
|g|+1

, which rearranges to (m − 4)|g| < 1 − m, a

contradiction.

(2) Then m < 1+ |g|
|g|−γ , which rearranges to γ > m−2

m−1 |g|, a contradiction.

These corollaries show that there are configurations for all γ (for δ suf-

ficiently large) if exp(G/K) ≥ 4, and all but one γ for exp(G/K) = 3. The

case of that missing γ is addressed in Proposition 6.5, while the case of

exp(G/K) = 2 is addressed in Proposition 6.4.

Proposition 6.4. Let G be a finite abelian group. Let g ∈ G with |g| > 2.

Set K = 〈g〉. Suppose that G/K ∼= Z2. Let δ ∈ N with δ ≥ |g|. Then there

is no (G, g, δ, |g| − 1)-configuration.

Proof. Suppose we had such a configuration. Set γ = |g|−1 for convenience.

Choose coset representative h ∈ G \ K. We have G = K ∪ (hK). For

X ∈ F(G), we define X+, X− such that X+ ∈ F(1K), X− ∈ F(hK), and
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X = X+ ·X−. We define Q = {k ∈ G : |k| > 2} ⊆ G and φ : F(G) → N0

via φ(S) =
∑

k∈Q νk(S). For each i ∈ [1, c], we claim that φ(Ti) ≥ 1 because

otherwise Ti would consist of elements of order at most 2, hence σ(Ti) would

be of order at most 2, but σ(Ti) = g−1 which is of order |g|. We now claim

that φ(Si) ≤ 2 for each i ∈ [1, d]. Suppose to the contrary for some i we have

φ(Si) ≥ 3. We have φ(S+
i ) = 0 so in fact φ(S−i ) ≥ 3. Hence there are some

(hgx), (hgy), (hgz) ∈ Q with (hgx) · (hgy) · (hgz)|S−i . Taking these pairwise,

we get h2gx+z = h2gy+z = 1, since Σ(Si)∩{g, g2, . . . , gγ} = ∅. Modulo |g|, we

have x+ z ≡ y+ z ≡ 0 and hence x ≡ y. But then (hgx)2 = (hgx)(hgy) = 1,

so in fact (hgx) /∈ Q. Combining the above, we get 2d ≥ φ(S) ≥ c hence

2 ≥ c
d
≥ 1 + δ−1

δ−γ . This rearranges to 1 ≥ γ = |g| − 1, so 2 ≥ |g|, a

contradiction.

Note that if |g| = 2 and G/K ∼= Z2 then either G ∼= Z4 and no configu-

ration exists for γ = |g| − 1 = 1 (by a simple argument similar to the proof

of Proposition 6.4), or G ∼= Z2 ⊕ Z2 and configurations exist for all γ by

Proposition 4.10.

Proposition 6.5. Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉.
Suppose that G/K ∼= Z3 and G 6∼= K ⊕ Z3. Let δ ∈ N with δ ≥ |g|. Then

there is no (G, g, δ, |g| − 1)-configuration.

Proof. Suppose we had such a configuration. Set γ = |g|−1 for convenience.

Choose coset representative h ∈ G \K. We have G = K ∪ (hK) ∪ (h2K),

with h3 ∈ K. If there were some s ∈ [1, |g| − 1] such that h3 = g3s, then

we have (hg−s)3 = 1 and hence G ∼= K ⊕Z3, which violates the hypothesis.

Similarly, there is no such s with (h2)3 = g3s.

Let Si be in our configuration; we claim that Si contains at most 4

nonunit elements. First, Si can contain no nonunit elements from K. Sup-

pose that Si contains four elements from hK, say hgx1 , hgx2 , hgx3 , hgx4 . Mul-

tiplying these three at a time, we get h3gx1+x2+x3 , h3gx1+x2+x4 ∈ ΣSi ∩K =

{1}. Hence x3 ≡ x4 (mod |g|) and by symmetry x1 ≡ x2 ≡ x3 ≡ x4

(mod |g|). But now (hgx1)3 ∈ ΣSi ∩K = {1}, so h3 = (g−x1)3, which con-

tradicts our hypothesis. Hence Si contains at most three nonunit elements

from hK and by symmetry at most three nonunit elements from h2K. Sup-

pose now Si contained at least 5 nonunit elements. At least three must be

from the same coset, so without loss Si contains hgx1 , hgx2 , hgx3 , h2gx4 . But

now h3gx1+x4 = h3gx2+x4 = h3gx3+x4 = 1, so x1 ≡ x2 ≡ x3 (mod |g|) and

again (hgx1)3|Si, a contradiction.
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Since νg−1(S) = 0 and σ(Ti) = g−1, each Ti in our configuration must

have at least two nonunit elements. Combining the above, we get 4d ≥ 2c,

and hence 2 ≥ c
d
> 1 + δ−1

δ−γ . This rearranges to 1 ≥ γ = |g| − 1, so 2 ≥ |g|.
But then G ∼= Z6

∼= K ⊕ Z3, a contradiction.

The condition G 6∼= K⊕Z3 in Proposition 6.5 is essential, since otherwise

Corollary 4.9 gives us the opposite conclusion for large δ. Note that by

Corollary 6.2, Proposition 6.5 is tight for δ ≥ 3|g|. That is, γ = |g| − 1 is

the only value of γ that does not have a configuration.

7 Problems and Conjectures

Although we have made substantial progress on the existence question of

(G, g, δ, γ)-configurations, there are still several gaps in our work.

First, there are some (G, g) pairs where there is no large enough H

with 〈g〉 ⊕ H ≤ G, and G/〈g〉 has Davenport constant less than 5 and

exponent less than 4. In these cases nothing at all is known. For example,

if G/〈g〉 ∼= Z2 ⊕ Z2 ⊕ Z2.

Second, in the case where G/〈g〉 ∼= Z2, Proposition 6.4 gives the single

value γ = |g|−1 where no configuration exists, for any δ. However, we don’t

know about the other values of γ. Preliminary work suggests that there is

a cutoff τ ≈
√
|g|, such that if γ < τ configurations exist for δ sufficiently

large and if γ > τ configurations do not exist. This and other computational

work leads us to the following conjecture, for general G, g.

Conjecture 7.1. Suppose that there is a (G, g, δ, γ)-configuration, and γ >

0. Then there is a (G, g, δ, γ − 1)-configuration.

Lastly, for all the cases where configurations are known to exist for all γ

and all δ sufficiently large (i.e. all but finitely many α), there is still a small

set of α where it is unknown whether configurations exist.
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