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Functional metagenomic profiling of nine biomes
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Microbial activities shape the biogeochemistry of the planet1,2 and
macroorganism health3. Determining the metabolic processes
performed by microbes is important both for understanding and
for manipulating ecosystems (for example, disruption of key pro-
cesses that lead to disease, conservation of environmental services,
and so on). Describing microbial function is hampered by the
inability to culture most microbes and by high levels of genomic
plasticity. Metagenomic approaches analyse microbial communit-
ies to determine the metabolic processes that are important for
growth and survival in any given environment. Here we conduct a
metagenomic comparison of almost 15 million sequences from 45
distinct microbiomes and, for the first time, 42 distinct viromes
and show that there are strongly discriminatory metabolic profiles
across environments. Most of the functional diversity was main-
tained in all of the communities, but the relative occurrence of
metabolisms varied, and the differences between metagenomes
predicted the biogeochemical conditions of each environment.
The magnitude of the microbial metabolic capabilities encoded
by the viromes was extensive, suggesting that they serve as a repo-
sitory for storing and sharing genes among their microbial hosts
and influence global evolutionary and metabolic processes.

Genomic plasticity of microbes causes variations in the gene con-
tent of closely related strains4, making predictions of community
metabolism on the basis of representative genomes and signature
genes such as 16S ribosomal RNA unreliable. Although it seems that
core genomes are relatively stable and shared among most indivi-
duals of the same species, parts of the genome (for example, pro-
phages, CRISPRs, pathogenicity/ecological islands, ORFans) are
hyper-variable5. Together, these two components make up the pan-
genome4. Unlike the signature genes approach, metagenomic
approaches analyse the complete genetic information of microbial
and viral communities6,7. In this way, the relative abundances of all
genes can be determined and used to generate a description of the
functional potential of each community8–14.

Here we use a comparative metagenomic approach to statistically
analyse the frequency distribution of 14,585,213 microbial and viral
metagenomic sequences to elucidate the functional potential of
nine biomes including: subterranean (that is, mine samples);
hypersaline ponds from solar salterns; marine; freshwater; coral-
associated; microbialites (including stromatolites and thrombolites);
aquaculture-fish-associated; terrestrial-animal-associated; and

mosquito-associated (details in Supplementary Table 1 and
Supplementary Fig. 1). Microbial and viral metagenomes
(Supplementary Fig. 2 and Supplementary Table 2) were isolated
and pyrosequenced. The sequences were compared to the 2007
SEED platform (http://www.theseed.org) using the BLASTX algo-
rithm, and hits with an E-value of ,0.001 were considered to be
significant (Methods). A total of 1,040,665 sequences from the 45
microbial metagenomes and 541,979 sequences from the 42 viral
metagenomes were significantly similar to functional genes within
the SEED (Supplementary Table 1). The SEED arranges metabolic
pathways into a hierarchical structure in which all of the genes
required for a specific task are arranged into subsystems15. At the
highest level of organization, the subsystems include both catabolic
and anabolic functions (for example, DNA metabolism) and at the
lowest levels the subsystems are specific pathways (for example, the
synthesis pathway for thymidine).

Table 1 shows the relative abundances of sequences assigned to
each major subsystem in the combined analysis of the microbiomes
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Table 1 | Mean percentage of sequences (6 s.e.m.) similar to major
metabolisms

Metabolic category Microbial metagenomes Viral metagenomes

Carbohydrates 17.218 (6 0.648) 14.353 (6 0.718)
Amino acids 12.036 (6 0.491) 10.132 (6 0.642)
Virulence 9.788 (6 0.339) 11.175 (6 0.508)
Protein metabolism 9.123 (6 0.497) 8.838 (6 0.522)
Respiration 7.139 (6 1.285) 3.718 (6 0.276)
Photosynthesis 6.965 (6 2.148) 1.984 (6 0.554)
Cofactors, vitamins, and so on 5.411 (6 0.226) 6.661 (6 0.393)
RNA metabolism 3.971 (6 0.195) 4.324 (6 0.387)
DNA metabolism 3.970 (6 0.180) 7.555 (6 0.943)
Nucleosides and nucleotides 3.316 (6 0.149) 7.666 (6 0.817)
Cell wall and capsule 3.235 (6 0.223) 5.098 (6 0.649)
Fatty acids and lipids 3.095 (6 0.160) 3.002 (6 0.242)
Membrane transport 2.736 (6 0.158) 2.371 (6 0.182)
Stress response 2.599 (6 0.115) 3.354 (6 0.326)
Aromatic compounds 2.351 (6 0.175) 2.550 (6 0.340)
Cell division and cell cycle 1.791 (6 0.091) 1.983 (6 0.212)
Nitrogen metabolism 1.547 (6 0.070) 1.135 (6 0.093)
Sulphur metabolism 1.230 (6 0.102) 1.302 (6 0.134)
Motility and chemotaxis 1.022 (6 0.096) 1.011 (6 0.083)
Phosphorus metabolism 0.909 (6 0.080) 1.319 (6 0.167)
Cell signalling 0.885 (6 0.076) 0.885 (6 0.072)
Potassium metabolism 0.796 (6 0.048) 0.846 (6 0.079)
Secondary metabolism 0.159 (6 0.014) 0.235 (6 0.047)
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compared with the viromes. Over 30% of the identifiable genes in
the microbiomes were associated with carbohydrate or protein meta-
bolism. Respiration and photosynthesis subsystems accounted for an
additional ,15% of the similarities. Subsystems responsible for nuc-
leic acid metabolism and virulence were overrepresented in the viral
fractions (Table 1), whereas respiration and photosynthesis genes
were less frequent.

The functional diversity represented by the metagenomes
approached its theoretical limit of 2.81 in all environments
(Table 2), showing that most subsystems were represented in all of
the samples. Only the coral-associated microbes showed a lower func-
tional diversity; this is because they have fewer secondary metabo-
lisms, virulence pathways, cell signalling pathways and membrane
transport pathways. Because microbes associated with corals are taxo-
nomically diverse11, functional reduction may have occurred in these
communities, similar to microbes in other symbiotic relationships16.

Diversity is a function of both richness (that is, the number of
metabolic processes) and evenness (that is, the relative abundance
of a particular metabolic process in a sample). The evenness for the
metagenomes was very low (,0.1; Table 2 and Supplementary Fig.
3), showing that there are a few dominant metabolisms in each
environment. Differential dominant metabolisms suggest that there
are characteristic functional profiles of the metagenomes.

To test the hypothesis that each environment has a distinguishing
metabolic profile, a canonical discriminant analysis (CDA) was con-
ducted (Fig. 1). Most of the variance between the different environ-
ments (79.8% of the combined microbiome and 69.9% of the
virome) was explained in this analysis, showing that metagenomes
are highly predictive of metabolic potential within an ecosystem. In
contrast, a recent analysis of 16S rRNA genes from multiple environ-
ments only explained about 10% of the variance17, suggesting that
different ecosystems cannot be distinguished by their taxa.

The position of each metagenome in Fig. 1 reflects the frequency
combination of sequences associated with each subsystem; the vec-
tors indicate which metabolisms most strongly determined the dis-
tribution. Using these as clues, it is possible to determine which
metabolisms are important for the organisms in that environment
relative to other environments. For example, subsystems involved in
respiration and protein metabolism placed the coral-associated
microbes apart from the microbes found within terrestrial animals.
This trend is visualized in Fig. 2, which shows that ,20% of the coral-
associated microbial genes were involved in respiration, compared
with only 3% in the microbiomes associated with terrestrial animals.
The relatively high occurrence of respiration-associated genes in the
coral-associated microbiomes reflects the diurnally fluctuating
oxygen environment, which is supersaturated with oxygen in the
day and essentially anaerobic at night18. In contrast, microbes living
within the stable anaerobic alimentary tracts of terrestrial animals are
less likely to experience selection for multiple respiration pathways.

Similarly, virulence genes were proportionally more abundant
in the organism-associated microbes than in free-living microbes.
These are the factors necessary to facilitate symbiotic relationships
(mutualism, parasitism or commensalisms; Fig. 2f–h). Another

example of the predictive power of the metagenomes is the sulphur
metabolisms associated with aquaculture fish. In particular, two sub-
systems—alkanesulphonate and taurine metabolism—were overre-
presented in fish-associated metagenomes (Supplementary Fig. 4).
Alkanesulphonates are involved in the use of both inorganic and
organic sulphur, such as taurine and aliphatic sulphonates19 (taurine
is a sulphur organic acid used to supplement aquaculture fish food20).

Table 2 | Mean functional diversity and evenness (6 s.e.m.) of metagenomes, sampled from nine environments

Functional diversity (H9) Functional evenness

Biome Microbial Viral Microbial Viral

Subterranean 2.393 (6 0.030) 0.005 (6 1.2 3 10
24)

Hypersaline 2.361 (6 0.006) 2.041 (6 0.021) 0.005 (6 1.4 3 10
24) 0.012 (6 5.6 3 10

24)
Marine 2.313 (6 0.021) 2.162 (6 0.026) 0.005 (6 0.9 3 10

24) 0.007 (6 4.0 3 10
24)

Freshwater 2.430 (6 0.003) 2.080 (6 0.034) 0.005 (6 0.9 3 10
24) 0.010 (6 6.7 3 10

24)
Coral 1.733 (6 0.059) 2.289 (6 0.023) 0.009 (6 5.2 3 10

24) 0.007 (6 1.1 3 10
24)

Microbialites 2.408 (6 0.015) 1.743 (6 0.115) 0.005 (6 3.8 3 10
24) 0.019 (6 6.9 3 10

23)
Fish 2.447 (6 0.001) 2.439 (6 3.1310

24) 0.005 (6 0.4 3 10
24) 0.005 (6 0.7 3 10

24)
Terrestrial animals 2.428 (6 0.006) 2.016 (6 0.173) 0.004 (6 0.1 3 10

24) 0.017 (6 4.5 3 10
23)

Mosquito 2.395 (6 0.015) 0.004 (6 0.5 3 10
24)

There are no subterranean viral metagenomes and no mosquito microbial metagenomes.
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Figure 1 | Functional analysis of microbial and viral metagenomes. The
CDA of the microbial (a) and viral (b) metagenomes identified that the
metabolic processes grouped these communities in the two-dimensional
spaced described by canonical discriminant functions 1 and 2. The symbols
represent the position of each metagenome and the vectors represent the
structural matrix for subsystems that were identified as influencing the
separation of the metagenomes using the stepwise procedure. The length of
the vectors represents the strength of influence of the particular metabolic
process. The cross-validation scores for the microbial and viral
metagenomes were 66.7 and 59.9%, respectively.
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Together, these examples show that metagenomes predict important,
emergent biological characters of the environments. By substituting
environmental groups in multiple CDAs, the predictive nature of
metagenomes was confirmed (Supplementary Figs 5 and 6).

Shifting of a metagenome from its sister group in the CDA was also
predictive of ecological differences. For example, one of the marine
metagenomes (number 27 Supplementary Table 1) was positioned
more negatively than the rest of the marine metagenomes (Fig. 1a).
This sample was taken from waters that were unusually rich in nitro-
gen, phosphate and dissolved organic carbon21. The ability to deter-
mine subtle differences in metabolic potential will allow the detection
of environmental changes at early stages of perturbation and identify
previously unknown pathways for therapeutics.

The viromes are dominated by phage, which are expected to have
similar lifestyles in every environment (infection, replication, host
lysis and release of free virions). Phage have also been shown to move
between environments22, which suggests that their metabolic profiles
are similar in different ecosystems. In contrast, other studies have
shown that phage carry ‘specialization’ genes23, including phosphate
metabolism24 and cyanobacterial photosystems25, to manipulate host
metabolisms associated with a particular ecosystem. Phage ‘sample’
their host’s genetic material and incorporate extra pieces of DNA
called MORONS26, suggesting that phage metagenomes may instead
show distinctive profiles based on their environment. As shown in
Figs 1b and 2, the viromes have highly predictive metabolic profiles
that suggest enrichment for specific genes in different environments,
and thus support the latter hypothesis (69.9% of the variance).

Because phages and viruses are non-motile, the abundance of
motility and chemotaxis proteins within the combined viral

metagenomes was the most unexpected example of specialized meta-
bolisms being carried within the viromes (Fig. 3). A total of 130
SEED-annotated motility and chemotaxis proteins (out of a possible
157) were present in the viromes. There was a non-random acquisi-
tion of these proteins by the viral community, shown by the variation
in relative abundances of these proteins between the microbial and
viral metagenomes (Supplementary Table 3). In the viromes, flagellar
biosynthesis protein FlhA, the chemotaxis response regulator
proteins CheA and CheB and deacylases were overrepresented
(Supplementary Table 3), whereas the twitching motility protein
PilT, type II secretary pathways and GldJ were overrepresented in
the microbiomes. cheA and cheB genes within microbes work
together to control flagella motor switching rates27, but their role
within the phage remains an outstanding question.

Essentially all of the functional diversity was represented in the
viromes. Unlike their cellular hosts, most viruses must carry a specific
amount of DNA to correctly pack their capsids (that is, viruses are
not evolutionarily penalized for carrying ‘extra’ DNA). If there is a
selective advantage of the extra DNA (resulting in increased phage
progeny), these genes are fixed in the phage genome; otherwise they
will be lost. Because there are an estimated 1031 phages on the planet
and they can move between environments, the potential reservoir of
genes that can be transferred both locally and globally12 by phage is
enormous28. As our research shows, there is little restriction to the
types of genes carried by the viral community, suggesting that they
influence a wide range of processes, including biogeochemical cyc-
ling, short-term adaptation and long-term evolution of microbes.

The low functional evenness measured for both microbial and viral
metagenomes is even lower than the functional diversity calculated
for individual bacterial genomes (Table 2 and Supplementary Fig. 3).
This finding is diametrically opposed to the high taxonomic evenness
reported for both microbial and viral communities2,12, ranging from
0.6 to 1 for human faecal and marine viruses9,12 and about 0.9 for soil
microbes29. To resolve this apparent dilemma, we propose that the
frequency of a gene encoding a particular metabolic function reflects
its relative importance in an environment, and that genetic sweeps
favour particular gene frequencies regardless of their taxonomical
background. That is, rather than changing taxa, variation in gene
content, presumably by means of horizontal gene transfer30 between
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Figure 2 | A one-dimensional representation of the environmental
metabolic profiles for the microbial and viral metagenomes sampled from
the nine environments. Microbial metagenomes are shown in a–h, and viral
metagenomes are shown in i–p. Each bar represents the mean for each
metabolic category. For subterranean, n 5 2 (a); for hypersaline, n 5 9
(b); for marine, n 5 8 (c); for freshwater, n 5 4 (d); for coral, n 5 7 (e);
for microbialites, n 5 3 (f); for fish, n 5 4 (g); for terrestrial animals,
n 5 8 (h); for mosquito, n 5 3 (i); for hypersaline, n 5 12 (j); for marine,
n 5 10 (k); for freshwater n 5 4 (l); for coral n 5 6 (m); for microbialites,
n 5 3 (n); for fish, n 5 2 (o); and for terrestrial animals, n 5 2 (p).
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Figure 3 | A comparison of the distribution of sequences similar to motility
and chemotaxis genes identified within the microbiomes (n 5 43) and
viromes (n 5 41). Microbial metagenomes are shown on the left, and viral
metagenomes are shown on the right. The abundance of sequences identified
within each of three fine-scale subsystems including flagellum (a), bacterial
chemotaxis (b) and gliding motility (c), as described by the SEED platform.
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sympatric microbes, is controlling gene distribution within an
environment. The large amount of variation (,70%) explained by
the functional analysis presented here supports this hypothesis.

METHODS SUMMARY

Samples for metagenomes were collected and fractioned using standard tech-

niques, sequenced using pyrosequencing and compared to the functional genes

in the SEED platform11,12 (Methods). All statistics were performed on the per-

centage of sequences showing similarities to known functions. For the CDA,

sequences were grouped according to the SEED classification scheme and the

analysis was conducted on the principal metabolic functions. The CDA builds a

model for group membership. A discriminative value is calculated for each

metagenomic sample, which is a linear combination of the response variables

(metabolic processes) represented in the new dimensional space. These values

are used to visualize group membership.

An advantage of the CDA is that it identifies which variables are driving the

separation between the groups; it uses these to build the model and discards

those that are not influential. Identification of influential variables was con-

ducted by a stepwise method, using Wilk’s lambda with P 5 0.05, and was con-

firmed with analysis of variance (ANOVA; Supplementary Table 4). The level of

influence of each variable is provided by the structural matrix and can be visua-

lized using an h-plot, in which the length of the line is representative of the level

of influence. The CDA also performs a cross-validation analysis that identifies

the likelihood of correctly classifying each sample. Cross validation removes the

predetermined grouping for each sample and uses the response variables to align

the individual sample to a group. Because the data were divided into nine

predetermined groups (biomes), the number of samples correctly identified by

chance alone is 11%. The percentage-correct classification has to be substantially

larger than this number for the metabolic processes to be useful for classifying the

metagenomes into environments.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Collection of the metagenomes. Metagenomic samples were collected and DNA

was prepared by the different groups involved; each laboratory used slight

modifications on the basic protocol. Sample locations were widely dispersed

or separate organisms (Supplementary Fig. 1 and Supplementary Table 1).

Metagenomes were collected to answer broad ecological questions such as viral

community dynamics in the lungs of healthy and cystic fibrosis patients and the

microbial communities on coral reefs (Supplementary Table 1). Typically, the

microbiome process starts by filtering samples onto 0.22mm Sterivex filters,

removing the filter membranes and extracting DNA using a bead-beating pro-
tocol (MoBio). In some samples, the DNA was amplified with Genomiphi (GE

Healthcare Life Sciences) in six to eight 18-h reactions22,31. The reactions were

pooled and purified using silica columns (Qiagen). The DNA was precipitated

with ethanol and resuspended in water at a concentration of approximately

300 ngml21. Microbial metagenomes capture Bacteria, Archaea, some small

protists as well as a few trapped viral-like particles (Supplementary Table 2).

The viruses in the small metagenomic fractions (that is, 0.22-mm filtrate

treated with chloroform) were purified using caesium chloride (CsCl) step gra-

dients to remove free DNA and any cellular material10,12. Viral samples were

visually checked for microbial contamination using epifluorescent microscopy.

Viral DNA was isolated using CTAB (cyltrimethylammonium bromide) and

25:24:1 phenol:chloroform:isoamyl alcohol mix extractions and amplified using

Genomiphi reactions. These reactions were pooled and purified using silica

columns (Qiagen). The DNA was precipitated with ethanol and resuspended

in water at a concentration of approximately 300 ngml21. One viral metagenome

(number 40, Supplementary Table 1) was prepared by concentrating a natural

microbial sample and inducing it with mitomycin C. All metagenome libraries

consisted of approximately 5 mg of DNA. The viral metagenomes contained
viruses, phage and prophage, and as expected the proportion of phage and

prophage are higher in these metagenomes than in the microbial fraction

(Supplementary Table 2).

Sequencing and bioinformatics. Sequencing was performed using pyrosequen-

cing on Roche Applied Sciences and 454 Life Sciences GS20 platforms32 with a

practical limit of 105 bp. DNA sequences were analysed in the metagenomics

RAST pipeline—an open-access metagenome curation and analysis platform

(http://metagenomics.theseed.org/)33. First, sequences were screened to remove

exactly duplicated sequences—a known artefact of the pyrosequencing

approach. The sequences were compared to the SEED platform, which comprises

all known protein sequences, using the NCBI BLASTX algorithm on the NMPDR

compute cluster (Argonne National Laboratory; http://www.nmpdr.org/). The

SEED platform includes all available genome data, DNA and protein sequences,

and is supplemented with data from genome sequencing centres as available.

Every metagenome was compared to exactly the same data set using the same

BLAST parameters at the same time to ensure congruity of the data. Connections

between the metagenomes and the SEED subsystems were calculated by iden-

tifying matches to the SEED platform where the matched protein was curated to
be in a subsystem, and the expect value from the BLAST search was less than

0.001. The SEED subsystems are manually curated collections of proteins with

related functions and are available at http://www.theseed.org/. Simultaneously,

all sequences were compared to the 16S databases using BLASTN. The databases

were extracted from GreenGenes34, the Ribosomal Database Project35 and the

European Ribosomal Database Project36.

Several metagenomes were constructed from environments that were likely to

contain DNA from other organisms such as humans, corals and mosquitoes. To

test and to remove contaminants, 20,000 sequences were chosen at random from

every metagenome and compared to the March 2006 build of the human genome

and the February 2003 build of the Anopheles gambiae genome (both down-

loaded from http://genome.ucsc.edu/). The comparisons were performed using

BLASTN with an expect (E) value cutoff of 1 3 1025. Every sample (including

the mosquito samples) had less than 1% of their sequences with significant

similarity to the A. gambiae genome, and only two samples had .5% of sequence

similarity to the human genome. These two samples, from the human virome

studies, were compared in full and human sequences excluded. To identify and

remove dinoflagellate sequences, such as Symbiodinium (a coral symbiont), a

custom database was created from the nucleotide and RNA (expressed sequence

tag) sequences in GenBank; all coral reef water and coral samples were analysed

as described above and dinoflagellates sequences were excluded.

Statistical analysis. Statistics were performed on the proportions of sequences

within each subsystem, thus normalizing data across metagenomes and

removing differences in reaction efficiencies. Total numbers of sequences and

numbers of sequences that showed similarities to the SEED are provided in

Supplementary Table 1, and ,11% of sequences were similar to functional

genes. The SEED platform housed 654 well-documented subsystems that were

used to calculate the Shannon index (H9). Maximum diversity occurs when every

functional category is present in equal numbers, thus Hmax 5 log S, where S is

number of categories. Evenness is H9 divided by the number of subsystems in

each sample (evenness ranges from 0 to 1, which is even). As a comparison to the

metagenomic analyses, the diversity and evenness was calculated for all 842

sequenced bacterial genomes. These calculations were conducted on the number

of genes within each subsystem, rather than on the number of sequences that was

used for the metagenomes (Supplementary Fig. 3).

To analyse the stability of the CDAs, an experiment was conducted in which

several of the metagenomic groups were removed and the analysis re-run. In the

first trial, the subterranean, fish and mosquito metagenomes were removed

(Supplementary Fig. 5). In the second trial, these metagenomes were re-added

and the hypersaline metagenomes removed (Supplementary Fig. 6). Multiple

trials were required because CDAs are sensitive to the number of samples (that is,

metagenomes) relative to the number of variables (that is, metabolic processes).

The data were further analysed using a non-parametric ANOVA, a Kruskal–

Wallis test and a median test, and the results compared to ensure that stable

results could be obtained (Supplementary Table 3). Environments driving the

variation were identified using Duncan comparisons (degrees of freedom were

set at 7).

All metagenomes were provided by authors of this manuscript. Further mater-

ial, including direct access to the data, is available at http://www.theseed.org/

DinsdaleSupplementalMaterial/. The NCBI genome project IDs used in this

study that were associated with previous publications are: 28369, 28367,

28365, 28363, 28349, 28347, 28345, 28343, 19145 17771, 17769, 17767, 17765

17635, 17633 and 17401.
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Functional metagenomic profiling of nine biomes
Elizabeth A. Dinsdale, Robert A. Edwards, Dana Hall, Florent Angly, Mya Breitbart, Jennifer M. Brulc, Mike Furlan, Christelle Desnues,
Matthew Haynes, Linlin Li, Lauren McDaniel, Mary Ann Moran, Karen E. Nelson, Christina Nilsson, Robert Olson, John Paul,
Beltran Rodriguez Brito, Yijun Ruan, Brandon K. Swan, Rick Stevens, David L. Valentine, Rebecca Vega Thurber, Linda Wegley, Bryan A. White
& Forest Rohwer

Nature 452, 629–632 (2008)

In this Letter, functional diversity and evenness were calculated using log10, but it has been drawn to our attention that the calculations should
have been made with natural logs (Table 2). Recalculation does not change the relative levels of diversity; however, this reanalysis showed that a
mistake was made in the original evenness calculation. Corrected values are shown in Table 1 below.

Table 1 | Functional metagenomic diversity calculated using the natural log (H9 max 6.483) and corrected evenness (6 s.e.m.)

Diversity natural log Evenness

Biome Microbial Viral Microbial Viral

Subterranean 5.511 (6 0.098) 0.881 (6 0.008)
Hypersaline 5.435 (6 0.043) 4.699 (6 0.169) 0.892 (6 0.006) 0.893 (6 0.013)
Marine 5.326 (6 0.134) 4.979 (6 0.188) 0.875 (6 0.021) 0.856 (6 0.015)
Freshwater 5.595 (6 0.015) 4.790 (6 0.155) 0.899 (6 0.004) 0.888 (6 0.015)
Coral 3.991 (6 0.363) 5.271 (6 0.130) 0.748 (6 0.040) 0.901 (6 0.015)
Microbialites 5.544 (6 0.059) 4.014 (6 0.460) 0.903 (6 0.011) 0.830 (6 0.085)
Fish 5.634 (6 0.007) 5.615 (6 0.001) 0.908 (6 0.002) 0.913 (6 0.003)
Terrestrial animals 5.590 (6 0.040) 4.642 (6 0.400) 0.886 (6 0.006) 0.965 (6 0.009)
Mosquito 5.514 (6 0.060) 0.875 (6 0.011)
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