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Abstract. In this paper we are going to discuss how extending the definition of
length affects the elasticity of different numerical semigroups. The primary focus will
be looking at properties that affect the elasticity through both the local and global
perspectives. We will fully characterize the global t-elasticity for a semigroup with
any number of generators, as well as τ , the set of values of t for which the t-elasticity
is accepted in the two generated case.

1. Introduction

In this paper we will be looking at the various properties of numerical semigroups
and most specifically the properties regarding the t-elastisity of a numerical semigroup
(see [1] for more). We will start with some background information to assist the reader
in understanding these concepts.

Throughout this paper, fix k ∈ N, and let a = (a1, . . . , ak) ∈ Nk be a minimal integer
vector whose entries are in monotone increasing sequence. A numerical semigroup,
S = ⟨a1, . . . , ak⟩, is a subset of the non-negative integers that is closed under addition
and has a finite complement t in the non-negative integers. See [7] or [8] for a more
thorough expansion. Namely,

S = {n ∈ Z≥0 : n = a1z1 + . . .+ akzk, zi ∈ Z≥0}
Let S = ⟨a⟩ be the semigroup generated by the entries of a. We call a the generating
vector of the semigroup. For example, we can look at the numerical semigroup, S =
⟨4, 7⟩. Written in set notation we have that S = {0, 4, 7, 8, 11, 12, 14, ...}
A factorization z ∈ Nk

0 of a semigroup element n is a k-tuple which encodes a
decomposition of n into atoms (generators of the semigroup). This can be written
as z = (z1, . . . , zk). Keeping with the same semigroup as before, ⟨4, 7⟩, let’s look
at the element n = 53. While this particular element has only two factorizations,
it is important to note that other semigroup elements can have more factorizations.
The specific factorizations of 53 are (8, 3) and (1, 7). These can be written out as
polynomials which help to visualize why these factorizations work for n = 53. Namely,

(8, 3) → 8(4) + 3(7) = 53

(1, 7) → 1(4) + 7(7) = 53
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In the study of semigroups, the notion of the length of a factorization is typically
defined as its coordinate sum, or ℓ1 norm. We will extend this notion to all ℓp norms
using a real-valued parameter t ∈ [0,∞), defining the t-length of a factorization in
terms of its ℓt norm. Recall that the ℓt norm is the map

||·||t : R
k → R given by


(∑k

j=1 z
t
j

)1/t
for 0 ≤ t ≤ 1(∑k

j=1 z
t
j

)1/t
fort > 1

As t → ∞, it is known that ||z||t → max{zj}, so we define ||z||∞ = max{zj}
according to that limit. When 1

t
+ 1

s
= 1, s and t are called Hölder conjugates, and ℓt

and ℓs are dual vector spaces. For any fixed t, we let s(t) = t
t−1

denote the conjugate

parameter value of t. Additionally, we will define q(t) = t
t−1

where1
t
+ 1

q
= 1 as duals.

We say that 1 and ∞ are duals.
Let’s continue with the same example and let t = 2. Let z = (8, 3)andw = (1, 7).

So we have that

∥z∥2 = (82 + 32)
1
2 =

√
73

∥w∥2 = (12 + 72)
1
2 =

√
50

For each semigroup element n, we denote its t-length set

Lt(n) = {||z||t | z ∈ π−1(n)}.
as well as its minimum and maximum factorization lengths,

ℓt(n) = minLt(n) and Lt(n) = maxLt(n),

not to be confused with the well-known sequence/function spaces. For S = ⟨4, 7⟩, n =
53 and t = 2 we have that

L2(53) = {
√
50,

√
73}

minL2(53) =
√
50

maxL2(53) =
√
73

For more in depth information on lengths, see [?], or [6].

We define the t-elasticity ρt of a semigroup element as

ρt(n) =
Lt(n)

ℓt(n)
,

referred to as local t-elasticity, in contrast to the elasticity of the semigroup, which we
define

ρt(S) = sup
n∈S

{ρt(n)},
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called the global t-elasticity.If one is interested in reading more about Elasticity, see [3],
and [4], for more.
Finally, we will complete this example by looking at the local and global elasticises for
53 and S respectively. So we have

ρ2(53) =
Lt(n)

ℓt(n)
=

√
73√
53

and ρ2(S) = sup
53∈S

{ρ2(53)} =
√
73

For instructions on how to generate information on numerical semigroups go to [5].

2. Global Elasticity

2.1. Global Elasticity on [1,∞].

Lemma 2.1. (Extreme values over Rk
≥0) Fix n ≥ 1 ∈ N0 and t > 1 ∈ R. Define

C : Rk
≥0 → R by C(x) = a · x− n. Let ei denote the i-th standard basis vector, and let

V(C) ⊂ Rk
≥0 denote the vanishing set of C. Finally, let q(t) = t/(t− 1) for t ∈ (1,∞).

For all k ≥ 2 and x ∈ Nk
0 ∩V(C),

min
Rk
0∩V(C)

(||x||t) =
n

||a||q
and max

Rk
0∩V(C)

(||x||t) =
n

a1
,

which occur at the (possibly non-integer) points

nm(t) =
n

(||a||q)q
∑
i∈[k]

a
1
t−1
i ei and nM =

ne1
a1

,

respectively.

Proof. We are interested in the extreme values of ||·||t over Nk
≥0∩V(C). We will obtain

bounds on the extrema of ||·||t over Nk
0 by solving the optimization explicitly over Rk

≥0

using the method of Lagrange multipliers.
Since g(x) = t

√
x increases monotonically for x ≥ 0, t⟩1, the set of points where ||·||t

takes on its extreme values agrees with the set of points at which extrema of ||·||tt are
achieved. As such, we can simplify the problem to locating the points in Rk

≥0 ∩V(C)

that optimize the function f(x) := ||x||tt.
The method of Lagrange multipliers relies on the fact that the extrema of f over

V(C) must occur at points x ∈ V(C) satisfying at least one of the following criteria:

i) (x, λ) is a solution to the Lagrange system,

L(x, λ) = ∇f(x)− λ∇C(x) = 0

Ĉ(x, λ) = C(x) = 0.

ii) x ∈ ∂(Rk
≥0 ∩V(C)) (that is, x lies on the boundary of V(C) ⊂ Rk

≥0.
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Fix k > 2 and t ∈ (1,∞) We wish to locate points x ∈ V(C) ⊂ Rk
≥0 where the extrema

of f(x) =
∑k

i=1 x
t
i are achieved. We begin with the Lagrange system, which consists

of the k + 1 equations.

Li(x, λ) = txt−1
i − λai(2.1)

Ĉ(x, λ) = C(x) = −n+
∑
i∈[k]

aixi = 0.(2.2)

Each Li can be solved for xi in terms of λ, obtaining

(2.3) xi =

(
λai
t

) 1
t−1

We substitute into (2) to get an equation dependent only on λ, namely

0 = −n+

(
λ

t

) 1
t−1 ∑

i∈[k]

a
t
t−1
i .

We use algebra to solve for λ, which results in

λ = tnt−1

∑
i∈[k]

aqi

−t/q

= tnt−1 ||a||−tq .

Back-substitution into (3) gives, for each i,

xi =

(
tnt−1

||a||tq
· ai
t

)1/(t−1)

=
na

1/(t−1)
i

||a||t/t−1
q

=
na

q/t
i

||a||qq
.

We can write our solution nm, where

m =
∑
i∈[k]

a
q/t
i ei
||a||qq

We take the t-norm of nm, our unique solution interior to V(C), which gives us

||nm||t = n ||m||t =
n

||a||qq

∑
i∈[k]

a
t/(t−1)
i

1/t

=
n

||a||qq
||a||q/tq = n ||a||−q(1−1/t)

q = n ||a||−1
q .

Now, we must check the points on the boundaries. We claim nm(t) has minimal t-norm

and that M =
nek
ak

has maximal t-norm. We will prove this by induction on k, the

number of variables.
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In the base case, when k = 2, ∂V(C) consists of the endpoints of the line segment
a1x1 + a2x2 − n = 0 in the first quadrant, which are ne1

a1
and ne2

a2
, with t-norms n

a1
and

n
a2
, respectively. It is easy to see that

n

||a||q
≤ n

a2
≤ n

a1
,

since aq1 ≤ aq2 ≤ aq1 + aq2. This completes our proof of the base case.
Now, we assume that our lemma holds in k − 1 variables. By definition, V(C) is a

(k− 1)-dimensional hyperplane in Rk
≥0, which is bounded by the k hyperplanes xi = 0

for each i. The intersection of each bounding hyperplane with V(C) consists of points
satisfying equations

∂Cj(x) = −n+
∑
i ̸=j∈[k]

aixi = 0

for each j ∈ [k], obtained by substituting xj = 0 into the defining equation for V(C).
Notice that each ∂Cj is a constraint equation of the desired form in k − 1 variables.

As such, we can apply our inductive hypothesis to conclude that

mj = min
V(∂Cj)

(||x||t) = n

 ∑
i ̸=j∈[k]

aqi

− 1
q

and Mj = max
V(∂Cj)

(||x||t) =

{
n
a2

j = 1
n
a1

otherwise
.

for each j, which fully characterizes the extrema on the boundary of V(C).
We can therefore conclude that

min
V(C)

(||x||t) = min

({
n

||a||q

}
∪ {mj | j ∈ [k]}

)
=

n

||a||q
and

max
V(C)

(||x||t) = max

{
n

a1
,
n

a2

}
=

n

a1
,

as desired.
□

Lemma 2.2. (Global ∞-elasticity.)
For all S = ⟨a1, a2, . . . , ak⟩ where a1 < a2 < · · · < ak and a = (a1, a2, . . . , ak),

ρ∞(S) =
∥a∥1
a1

,

and the elasticity is accepted.

Proof. Let S = ⟨a1, a2, . . . , ak⟩ and a = (a1, a2, . . . , ak) ∈ Nk
0. Let n =

k∑
i=1

aixi ∈ S,

where x ∈ Rk
≥0. We have that z = ( n

a1
, 0, . . . , 0) is a factorization of n Any other real



6 BEHERA, COMBES, HOWARD, O’NEILL, PERRY, PONOMARENKO, AND WORMS

factorization can be written as x = z+α, where α is a real-valued trade in ker aT with
α1 < 0 satisfying

−α1 =
a2
a1
α2 +

a3
a1
α3 + · · ·+ ak

a1
αk > 0 and α1, . . . , αk ∈ R.

Each entry of the solution must be non-negative, so n
a1

− α1 ≥ 0, and α2, . . . , αk ≥ 0.
For any αi such that 2 ≤ i ≤ k, we have αi ≤ a1

ai
α1, since αi =

a1
ai
α1 when all other

values α2, . . . , αk = 0, excluding αi. For each i, a1
ai
α1 ≥ 0 and we know that ai > a1,

so we must have that α1 >
a1
ai
α1. Then, because

n
a1

≥ α1, we find that

n

a1
≥ α1 ≥

a1
ai
α1.

Therefore, ∥x∥∞ ≤ n
a1
.

Now, consider the rational factorization z = ( n
∥a∥1 ,

n
∥a∥1 , . . . ,

n
∥a∥1 ) of n ∈ S. Any other

factorization may be written as z+α where α is a non-zero trade in ker aT . Since at
least one αi must be positive, ||z||∞ ≥ zi + αi ≥ zi =

n
||a||1

. We have thus shown that

max
Rk
≥0

L∞(n) ≤ n

a1
and min

Rk
≥0

L∞ ≥ n

||a||1
Since Nk ⊆ Rk, these bounds hold for integral factorizations of n as well. As such,

ρ∞(n) =
max{L∞(n)}
min{L∞(n)}

≤
n
a1
n

∥a∥1
=

∥a∥1
a1

.
Let n = a1∥a∥1 ∈ S for q ∈ Z≥0.

n
a1

= ∥a∥1 and n
∥a∥1 = a1. We have that

(∥a∥1, 0, . . . , 0) is a factorization of n, so max{L∞(n)} = ∥a∥1 = n
a1
. Also, (a1, a1, . . . , a1)

is a factorization of n, so min{L∞(n)} = a1 =
n

∥a∥1 . Thus,

ρ∞(n) =
max{L∞(n)}
min{L∞(n)}

=
∥a∥1
a1

.

Therefore, ρ∞(S) = ∥a∥1
a1

and this elasticity is accepted. □

Theorem 2.3. (Global t-Elasticity Formula for Numerical Semigroups.)

Fix a ∈ Nk
0 with ai < aj when i < j and gcd({ai}) = 1. Define q(t) =


∞ t = 1

t/(t− 1) t ∈ (1,∞)

1 t = ∞
,

so that 1/t+ 1/q = 1. Fix S = ⟨a⟩. Then

ρt(S) =
||a||q(t)
a1

.

Furthermore, if t ∈ {1, 2,∞}, then the elasticity is accepted.
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Proof of Theorem. The 1-elasticity of any numerical semigroup S is known to be ac-

cepted, and is given by ρ1(S) =
ak
a1

=
||a||∞
a1

, which agrees with the claimed formula, if
we set q = ∞ when t = 1. Karina’s lemma verifies our claim in the t = ∞ case, so it
remains to be shown for t ∈ (1,∞).
Fix t > 1. Lemma 1 gives an upper bound on the global elasticity of S, namely

ρt(S) ≤
||M||t
||m||t

=
||a||q
a1

.

Recall that the minimal and maximal t-norms over the points satisfying C(x) = 0
occur at

nm(t) =
n

(||a||q)q
∑
i∈[k]

a
1/(t−1)
i ei and nM =

n

a1
e1,

respectively.
For t = 2, notice that when n = a1 ||a||22 ∈ N0, the points that give extreme values

evaluate to

a1 ||a||22m(2) = a1
∑
i∈[k]

aiei and a1 ||a||22M = ||a||22 e1,

which are both integer points. As such, ρ2(n) =
||a||2
a1

is maximal, which verifies that in
this case, the elasticity is as claimed and that it is accepted.

To verify our elasticity formula for any other fixed t > 1, we must ensure the of
existence of n ∈ S with elasticity arbitrarily close to our upper bound. Consider the
set of points

V = {x ∈ Rk |
∑
j∈[k]

ajxj = a1}.

It is easy to see that a1M = e1 is a factorization of a1 in S of maximal t-length. Since
Qk is dense in Rk, and thus dense in V∩Rk, we can ensure the existence of an infinite
sequence of rational factorizations of a1, {zi} ∈ V that converges to a1m, which is
irrational for t ̸= 2. Since {zi} → a1m, it follows that {||zi||t} → ||a1m||t. As such,
for every ϵ > 0, there exists N ∈ N0 so that α > N ⇒ ||zα||t− a1 ||m||t < ϵ, which is a
positive quantity since a1m has minimal t-norm.

Fix ϵ > 0, and choose α > N(ϵ). We can write the rational factorization zα as

zα =
∑
j∈[k]

bj
cj
ej,

with relatively prime bj ∈ N0, cj ∈ Z>0 for each j.
Let C = lcm({cj}). then Czα is an integer point, and hence a factorization of

a1C ∈ S, and a1CM is as well. As such, we have

ρt(Ca1) =
||a1CM||t
||Czα||t

=
a1 ||M||t
||zα||t

>
a1 ||M||t

a1 ||m||t + ϵ
=

||M||t
||m||t + ϵ/a1

.
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Since our choice of ϵ was arbitrary, this implies that one can obtain an element with

elasticity arbitrarily close to
||M||t
||m||t

=
||a||q
a1

. More formally, we have shown that

||M||t
||m||t + ϵ/a1

< ρt(S) ≤
||M||t
||m||t

which verifies equality of our formula for ρt(S) by the squeeze theorem. □

Theorem 2.4. For t ≥ 1, ρt(S) is non-decreasing.

Proof. By Theorem 3.3, if t ≥ 1, ρt(S) =
∥a∥q(t)
a1

where q(t) = t
t−1

. First, we will show

that q(t) is decreasing. q′(t) = (t−1)−t
(t−1)2

= −1
(t−1)2

< 0. Then, if t1 ≥ t2 ≥ 1, q(t1) ≤ q(t2).

We know that this implies ∥a∥q(t1) ≥ ∥a∥q(t2) [9]. Thus, ρt1(S) =
∥a∥q(t1)
a1

≥ ∥a∥q(t2)
a1

=

ρt2(S), and ρt(S) is non-decreasing. □

Remark 2.5. It is possible for elasticity to be accepted for any other rational value of
t > 1. This was illuminated by the reparametrization and manipulation of our minimal
t-norm solution using the substitution u = t− 1. Then for u ∈ (0,∞),

m(u) =
k∑
j=1

a
1/u
j

(
k∑
i=1

a
(u+1)/u
i

)−1

ej

=
k∑
j=1

a
1/u
j

(
k∑
i=1

aia
1/u
i

)−1

ej

=
k∑
j=1

a
1/u
j

((
aj
aj

)1/u k∑
i=1

aia
1/u
i

)−1

ej

=
k∑
j=1

(
k∑
i=1

ai

(
ai
aj

)1/u
)−1

ej.

Claim 2.6. Fix any rational t > 1. There exist infinitely many generating vectors
b ∈ Rk such that ρt(⟨b⟩) is accepted.
Proof. Fix rational t = α/β > 1 for coprime, non-negative integers with α > β and
β ̸= 0 and let pi be the i-th positive prime. Then we can write

u = t− 1 =
α− β

β
.

Define b(t) ∈ Rk by b(t) =
k∑
i=1

p
q(α−β)
i ei, choosing q ∈ N such that p

q(α−β)
1 > k, to

ensure that the multiplicity is at least the number of generators. Consider S = ⟨b(t)⟩,
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and let n = p
q(α−β)
1

∑k
i=1 p

qα
i . Then the minimal t-length real factorization of n occurs

at the point

nm(u) = p
q(α−β)
1

(
k∑
i=1

pqαi

)
k∑
j=1

(
k∑
i=1

bi

(
bi
bj

)1/u
)−1

ej

= p
q(α−β)
1

(
k∑
i=1

pqαi

)
k∑
j=1

 k∑
i=1

p
q(α−β)
i

(
p
q(α−β)
i

p
q(α−β)
j

)β/(α−β)
−1

ej

= p
q(α−β)
1

(
k∑
i=1

pqαi

)
k∑
j=1

(
k∑
i=1

p
q(α−β)+qβ
i

pqβj

)−1

ej

= p
q(α−β)
1

(
k∑
i=1

pqαi

)
k∑
j=1

(
k∑
i=1

pqαi
pqβj

)−1

ej

= p
q(α−β)
1

k∑
j=1

pqβj ej

which is an integer point. We can also easily see that nM =
p
q(α−β)
1

∑k
i=1 p

qα
i e1

p
q(α−β)
1

=∑k
i=1 p

qα
i e1, is an integer factorization as well. Since n achieves the bounds for both

minimal and maximal length, the elasticity is accepted. □

Example 2.7. Consider n = 198 ∈ S = ⟨3, 5⟩, which has factorization (66, 0) of max-
imal length. (1, 39) is also a factorization of 198, and when t = 1 + κ(3, 5)/κ(1, 39) =
ln(65)/ ln(39), it has minimal t-length, so S accepts this elasticity. We claim that t is
irrational. BWOC,

ln(65)

ln(39)
=
c

d

for some integers c and d. This is true when there are integer solutions to (13(5))d =
(3)(13)c. Since 3 is not a prime factor of 65, this value cannot be rational. So, S
accepts ρt for at least one irrational value of t.

Remark 2.8. Recall the parametrized curve of Lagrange critical points when n = 1,

m(t) =
1

||a||q(t)q(t)

k∑
j=1

a
1/(t−1)
j ej.
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We can rewrite

m(t) =
k∑
j=1

(
a
1/(t−1)
j∑k
i=1 a

q(t)
i

)
ej.

So that

mj(t) =
a
1/(t−1)
j∑k

i=1 a
t/(t−1)
i

=

(
k∑
i=1

ai

(
ai
aj

)1/(t−1)
)−1

.

We can reparametrize, letting u = t− 1, so that for u ∈ (0,∞)

m(u) =
k∑
j=1

(
k∑
i=1

ai

(
ai
aj

)1/u
)−1

ej,

for u ∈ (0,∞). m is not defined at u = 0 or ∞, but we will define it at its endpoints
by its limits at those points, which we will see in the following proposition.

Proposition 2.9. m(u) has limits ek
ak

and
∑k

j=1
ej

||a||1
as u approaches 0+ and ∞ re-

spectively.

Proof. Given that ai < aj whenever i < j, it is easy to see that

lim
u→0+

(
ai
aj

)1/u

→


0 i < j

1 i = j

∞ i > j

.

It follows that when j < k,

lim
u→0+

1

mj(u)
=

k∑
i=1

ai

(
lim
u→0+

(
ai
aj

)1/u
)

= 0 + aj +
k∑

i=j+1

ai lim
u→0+

ai
aj

1/u

diverges to infinity. Since its reciprocal diverges, this proves that lim
u→0+

mj(u) = 0.

When j = k, we have

lim
u→0+

1

mk(u)
=

k∑
i=1

ai

(
lim
u→0+

(
ai
aj

)1/u
)

= 0 + ak,

which gives that limu→0+ m(u) = ek
ak
, as claimed.

Now, to verify the limit at infinity, we note that for any i, j, lim
u→∞

ai
aj

1/u

→ 1, so that

lim
u→∞

1

mj(u)
=

k∑
i=1

ai lim
u→∞

ai
aj

1/u

=
k∑
i=1

ai = ||a||1 , ⇒ lim
u→∞

m(u) =
k∑
j=1

ej
||a||1

.

□

Definition 2.10. Define the map κ : R2
>0 → R by (x, y) 7−→ ln y/x.
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Proposition 2.11. (The solution in t to m(t) = (x, t))
Fix a, n ∈ S, and let x = (x, y), with x ≤ n

a1+a2
, a real factorization of n ∈ S.

Define T (x) = 1 + κ(a)
κ(x)

. Then

nm(T (x)) = x.

Proof. In 2.8, we derived the representation of the lagrange curve, reparametrized in
terms of u = t− 1, given by

m(1 + u) =
k∑
j=1

(
k∑
i=1

ai

(
ai
aj

)1/u
)−1

ej,

for u ∈ (0,∞).
When k = 2, this gives us the curve

m(1 + u) =

 1

a1 + a2

(
a2
a1

)1/u , 1

a1

(
a1
a2

)1/u
+ a2


We refer to the coordinates of as m1 and m2. We evaluate nm1 at u = T (x)−1 = κ(a)

κ(x)
,

and take its reciprocal (to make it look nicer), obtaining

1

nm1

∣∣∣∣
u=

κ(a)
κ(x)

=
1

n

(
a1 + a2

(
a2
a1

)κ(x)
κ(a)

)
=

1

n

(
a1 + a2e

ln
(
a2
a1

)κ(x)
κ(a)

)

We substitute κ(a) = ln
(
a2
a1

)
, obtaining

1

nm1

∣∣∣∣
u=

κ(a)
κ(x)

=
1

n

(
a1 + a2e

κ(a)
κ(x)
κ(a)

)
=

1

n

(
a1 + a2e

κ(x)
)

=
1

n

(
a1 + a2e

ln y/x
)
=

1

n

(
a1 +

a2y
x

)
=

1

xn
(a1x+ a2y) = 1/x.

We evaluate nm2 at u = κ(a)
κ(x)

similarly,

1

nm2

∣∣∣∣
u=

κ(a)
κ(x)

=
1

n

(
a1

(
a1
a2

)κ(x)
κ(a)

+ a2

)
=

1

n

(
a1e

ln
(
a1
a2

)κ(x)
κ(a) + a2

)

Notice that ln
(
a1
a2

)
= ln

((
a2
a1

)−1
)

= − ln
(
a2
a1

)
= −κ(a). We use this to substitute

1

nm2

∣∣∣∣
u=

κ(a)
κ(x)

=
1

n

(
a1e

− ln
( y
x

)
+ a2

)
=

1

n

(
a1e

ln
(
x
y

)
+ a2

)
=

1

n

(
a1x+a2y

y

)
= 1/y,

as desired. □
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Corollary 2.12. T (x) is a two-sided inverse of m(t). In particular, (T ◦m)(t)=t.

Proof. We have that T (m(t)) =
ln(

a2
a1

)

ln

a1+a2(
a2
a1

)
1

t−1

a1(
a1
a2

)
1

t−1 +a2

 + 1. When looking specifically at the

bottom term, we can simplify:

ln

(
a1 + a2(

a2
a1
)

1
t−1

a1(
a1
a2
)

1
t−1 + a2

)
=

1

t− 1
ln

(
(a1 + a2(

a2
a1
)

1
t−1 )t−1

(a1(
a1
a2
)

1
t−1 + a2)t−1

)

=
1

t− 1
ln

(
((a2
a1
)

1
t−1 [(a1(

a1
a2
)

1
t−1 + a2)])

t−1

(a1(
a1
a2
)

1
t−1 + a2)t−1

)
=

1

t− 1
ln

(
a2
a1

)
.

Now, we have that

T (m(t)) =
ln(a2

a1
)

1
t−1

ln(a2
a1
)
+ 1 = t− 1 + 1 = t.

□

Remark 2.13. The limits as m(t) approaches 0+ and ∞ given by Proposition 2.9
imply that we must define its inverse as follows:

T (x, y) =


1 x = 0

1 +
ln(

a2
a1

)

ln( y
x
)

0 < x < y

∞ x = y

2.2. Global Elasticity on [0, 1).

Lemma 2.14. Fix a numerical semigroup S having minimal generating vector a ∈ Zk>0.
Suppose t ∈ (0, 1) and q is the dual of t. If x is a factorization of n in S, then

(2.4)

(
n

ak

)t
≤ ∥x∥t ≤

(
n

∥a∥q

)t
.

Moreover, these lower and upper bounds are achieved by the vectors

nm =
n

ak
ek and nM(t) =

n

(∥a∥q)q
∑
i∈[k]

t−1
√
aiei

respectively

Proof. When n = 0, the only factorization is the zero vector with k components. In
this case, (2.4) reduces to 0 ≤ 0 ≤ 0.

We may now assume that n is positive. Consider the functions Ck : Rk
≥0 → R by

x 7→ a · x − n and ∥·∥t. Any factorization x of n must be an element of R2
≥0 with

integer components satisfying Ck(x) = 0. It follows that the t-norm of a factorization
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of n is bounded by the extreme values of ∥·∥t constrained by Ck(x) = 0. We may use
the method of Lagrange multipliers to find these extreme values.

The interior of the set of x satisfying Ck(x) = 0 contains only vectors with no zero
components. Any critical point x = (x1, x2, . . . , xk) in the interior of this set must
satisfy

(2.5)



txt−1
1 = λa1

txt−1
2 = λa2

...

txt−1
k = λak

a · x = n

for some real λ. We have that λ > 0, since otherwise we could never have a · x = n
for the positive integer n. Since txt−1

i is monotone decreasing,

(2.6) xi =
t−1

√
λai
t
.

is the only possible value of any component xi. Equation (2.6) and a · x = n implies

k∑
i=1

ai
t−1

√
λai
t

= n⇒ t−1

√
λ

t

k∑
i=1

aqi = n

⇒ t−1

√
λ

t
(∥a∥q)q = n

⇒ λ = t

(
n

(∥a∥q)q

)t−1

.

Therefore,

xi =
n t−1

√
ai

(∥a∥q)q
.

We have now identified x = nM (t) as the only critical point in the interior of the set
of vectors satisfying Ck(x) = 0. This gives

∥x∥t =
k∑
i=1

(
n t−1

√
ai

(∥a∥q)q

)t
=

(
n

(∥a∥q)q

)t
(∥a∥q)q

=

(
n

∥a∥q

)t
as the only possible extreme value of ∥·∥t constrained by Ck(x) = 0 not on the boundary
of the set of vectors satisfying the constraint. Note that for any vector a′ ∈ Ri

>0 and



14 BEHERA, COMBES, HOWARD, O’NEILL, PERRY, PONOMARENKO, AND WORMS

function Ci defined in the same way as Ck, the same result holds for the possible
extreme value of ∥·∥t restricted by Ci(x) = 0.

We now consider possible extreme values on the boundary of the set of x satisfying
Ck(x) = 0. This boundary is the set containing elements of Rk

≥0 having at least one
zero component. To find the extreme values, we will induct on the number of nonzero
components of boundary elements. First, consider the case where x has only one
nonzero component. The nonzero component of these vectors take the form n/ai. The
possible t-norms of such vectors have values of the form (n/ai)

t. Among these values
and the possible extreme value we have already identified, the minimum is (n/ak)

t

(achieved at nm and the maximum is (n/∥a∥q)t (achieved at nM (t)).

Now suppose that among all boundary vectors having either at most 1 ≤ j < k
nonzero components or no nonzero components, the minimum and maximum values of
∥·∥t are (n/ak)

t and (n/∥a∥q)t respectively. Consider the vectors having exactly j + 1
nonzero components. We may partition these vectors further by which components of
the vector are zero. Suppose D is one such partition. Associate a partial sequence
α1, . . . , αj+1 of the indices of the nonzero components of the vectors in D. Now let

a′ = (aα1 , aα2 , . . . , aαj+1
). Then define a new function Cj+1 : Rj+1

≥0 → R by x 7→ a′·x−n.
We have already shown that the only extreme value of ∥·∥t constrained to Cj+1(x) = 0
having no nonzero components must be (n/∥a′∥q)t. Since the image of D under ∥·∥t
is equal to the image of vectors in Rj+1

>0 with Cj+1(x) = 0, they must have the same
extreme values. We have that ∥a∥q ≤ ∥a′∥q ≤ ak, so the t-norm of any vector in D is
not less than (n/ak)

t or greater than (n/∥a∥q)t. Since this is true regardless of which
partition of vectors we used, the inductive hypothesis must hold. It follows that (2.4)
holds for all factorizations of n. □

Theorem 2.15. Suppose S is a numerical semigroup generated minimally by a ∈ Zk>0.
If t ∈ [0, 1), then

ρt(S) =

{
k if t = 0

(ak/∥a∥q)t if t ∈ (0, 1)

where q is the dual of t.

Proof. First we will prove the case when t = 0. In this case the length of a factoriza-
tion is simply the number of nonzero elements in it, so the minimum and maximum
factorization possible for any nonzero element is 1 and k respectively. The element
a1a2 · · · ak has factorizations with both of these lengths, so the elasticity of S is k.

Now consider the case when t ∈ (0, 1). We have from lemma 2.14 that ρt(S) ≤
(ak/∥a∥q)t. Consider the set V of non-negative real factorizations of ak. The fac-
torization ek of ak has the smallest t-norm of the elements of V . There also exists
a factorization M of ak in the interior of V having the maximum t-norm. It has
previously been shown that ∥M∥t/∥ek∥t = (ak/∥a∥q)t.
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Fix ϵ > 0. Since ∥·∥t is continuous at M and Qk is dense in Rk, there exists a
rational factorization z ∈ Qk

>0 of ak with∣∣∥z∥t − ∥M∥t
∣∣ < ϵ.

Let C be an integer such that Cz has integer components. The vector Cz is an integer
factorization of Cak with ∥Cz∥t > ∥CM∥t − Ctϵ and Cek is also a factorization of
Cak. Therefore,

ρt(S) ≥
∥Cz∥t
∥Cek∥t

>
∥CM∥t − Ctϵ

∥Cek∥t

=

(
ak

∥a∥q

)t
− ϵ

We now have that ρt(S) is less than or equal to (ak/∥a∥q)t and greater than anything
less than (at/∥a∥q)t. Therefore ρt(S) = (at/∥a∥q)t. □

We now have an explicit formula for the global elasticity of an arbitrary numerical
semigroup over the interval [0,∞]. Figure 1 shows a graph of elasticity as a function
of t. Note that even though the graph is defined piecewise, it is continues on its entire
domain.

Theorem 2.16. Let S = ⟨a1, . . . , ak⟩ and a = (a1, . . . , ak). Then, ρ0(S) < ρ∞(S).

Proof. By Theorem 2.15, we know that ρ0(S) = k, and by Lemma 3.2, we know that

ρ∞(S) = ∥a∥1
a1

= a1+...+ak
a1

. Then,

a1 + . . .+ ak
a1

− k =
1

a1
(a1 + . . .+ ak − a1k)

=
1

a1
((a1 − a1) + (a2 − a1) + . . .+ (ak − a1))

a1 + . . .+ ak
a1

− k

=
1

a1
(a1 + . . .+ ak − a1k)

=
1

a1
((a1 − a1) + (a2 − a1) + . . .+ (ak − a1))

=
1

a1
((a2 − a1) + . . .+ (ak − a1)).

Since a1 < a2 < · · · < ak, we have that aj − a1 > 0 for all 2 ≤ j ≤ k. Hence,
(a2−a1)+. . .+(ak−a1) > 0 and so ρ∞(S)−ρ0(S) = 1

a1
((a2−a1)+. . .+(ak−a1)) > 0. □

Remark 2.17. Computational evidence suggests that the graph of global elasticity
from t = 0 to t = 1 is U-shaped (concave up).
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0 1 2 3 4 5
t

2.5

3.0

3.5

4.0

4.5

t(S
)

t-Elasticity of S = [6, 9, 20]

Figure 1. Global t-elasticity of the semigroup generated by (6, 9, 20)
as a function of t.

Conjecture 2.18. For 0 ≤ t ≤ 1, ∂2

∂t2
ρt(S) > 0.

Remark 2.19. Based on Theorem 2.4, Theorem 2.16, and Conjecture 2.18, it would
naturally follow that a semigroup’s ∞-elasticity is the maximum of all of its other
t-elasticities.

Conjecture 2.20. Let ρ∗(S) = {ρt(S) | t ∈ [0,∞]}. Then, max(ρ∗(S)) = ρ∞(S).

3. 2-Generated Elasticity Curves

We will now look deeper into two generated semigroups. There is a lot of information
that can be drawn upon about the elasticity curves of two generated semigroups, and
most of that information comes from that factorizations of a given element. Before we
dive into results we will look at a few figures that will motivate our results.

First, in Figure 2, we will look at a graph of the line n = a1x1 + a2x2 where x =
(x1, x2) is an arbitrary factorization of n. Every point on this line is a real factorization
of n and all of the points labeled with red dots are the integer factorizations of n.
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Figure 2. Line of Factorizations

(a) t1 (b) t2

(c) t3 (d) t4

Figure 3. Relating factorizations of n ∈ S to their t-norm
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Now we will expand on this by looking at a graph that related the factorizations
of an element n to their respective t-norms. Above in Figure 3 is a graphic showing,
for a particular element, n ∈ S, showing the factorizations of that element in relation
to their t-norm. As t increases we see the t-norm change as the line becomes concave
up as t approaches its t = ∞-norm. The blue dots show the integer factorizations
of n and the lines show all of the real numbered factorizations. The green dot is
the real factorization that has the minimum t-length and the red dot is the integer
factorization that has the minimum t-length. Figure 3 shows four instances of this
figure as t increases; t1 < t2 < t3 < t4. However, think of this an more of an animation
than a figure where these curves will smoothly change over time.

When t is in the interval [0, 1] we can create the same graph that is shown in Figure 3.
Figure 4 shows various versions of this graph for the element 30 in the semigroup ⟨5, 7⟩
as t varies.

0 1 2 3 4 5 6

1

2

3

4

5

6 t=0.01
t=0.5
t=0.8
t=1

Figure 4. Factorization t-length for 30 in the semigroup ⟨5, 7⟩ as a
function of the first component of the factorization.

Proposition 3.1. Suppose S is a numerical semigroup generated minimally by a =
(a1, a2) and r is a positive real number. If x and y are unique real-valued factorizations
of r, then ∥x∥t = ∥y∥t at most twice on (0,∞).

Proof. First note that for all t in (0,∞), ∥x∥t = ∥y∥t if and only if ∥x/r∥t = ∥y/r∥t.
Since both x/r and y/r are real-valued factorizations of 1, we only need to prove the
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statement of Lemma 1 for the case r = 1. We may assume without loss of generality
that x and y are factorizations of 1. Suppose that x = (x1, x2) and y = (y1, y2). We
may further simplify what we are looking to prove by noting that

(3.1) ∥x∥t = ∥y∥t ⇐⇒ xt1 + xt2 = yt1 + yt2.

We will prove some edge cases by focusing on the right side of (3.1). If x and y both
have only one nonzero component cx and cy respectively, then the right side of (3.1) is
equivalent to (cx/cy)

t = 1. Since cx ̸= cy (x and y are unique), there is no t in (0,∞)
satisfying this equation. Now suppose that one of the factorizations has two nonzero
components and the other has only one. We can assume without loss of generality that
x has two nonzero components and y has only cy as a nonzero component. We can
get what we want by showing that (x1/cy)

t + (x2/cy)
t = 1 is satisfied by at most a

single positive t. Since x and y are factorizations of 1, we know that 1/cy ≤ a2 and
x2 < 1/a2, so x2/cy < 1. If x1/cy ≥ 1, then (x1/cy)

t + (x2/cy)
t > 1 for all positive t.

If x1/cy < 1, then (x1/cy)
t + (x2/cy)

t is strictly decreasing and can only equal 1 for a
single positive t.

The only case left to prove is when both x and y have no nonzero components. For
the rest of the proof we will assume that this is the case. We may assume without loss
of generality that the first component of x is greater than the first component of y, so
that

(3.2) x1 < y1 and y2 < x2.

We know the second of these inequalities holds because x2 = (1 − a1x1)/a2 and y2 =
(1− a1y1)/a2. For positive t, we get from (3.1) that

(3.3) ∥x∥t = ∥y∥t ⇐⇒ ln
(
xt2 − yt2

)
− ln

(
yt1 − xt1

)
= 0.

Let f be the difference of logarithms on the right side of (3.3) defined for positive t.

We can show that f(t) = 0 at most twice over its domain by proving that f ′ has at
most a single zero. Before differentiating f , we will rewrite it in a form that will be
easier to work with.

f(t) = ln
(
xt2 − yt2

)
− ln

(
yt1 − xt1

)
= ln

(
yt2
(
(x2/y2)

t − 1
))

− ln
(
xt1
(
(y1/x1)

t − 1
))

= t ln(y2) + ln
(
(x2/y2)

t − 1
)
− t ln(x1)− ln

(
(y1/x1)

t − 1
)

= t ln(y2/x1) + ln
(
(x2/y2)

t − 1
)
− ln

(
(y1/x1)

t − 1
)

For simplicity, let A = x2/y2 and B = y1/x1 so that

f(t) = t ln(y2/x1) + ln
(
At − 1

)
− ln

(
Bt − 1

)
.
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Note that (3.2) guarantees that both A and B are greater than 1. Now we differentiate
f to get

f ′(t) = ln(y2/x1) + ln(A)
At

At − 1
− ln(B)

Bt

Bt − 1
.

We wish to show that f ′ has at most a single zero. Before proceeding to prove
this generally, we will pick out the special case of when A = B. When this is true,
f ′(t) = ln(y2/x1). As long as y2 ̸= x1 we have that f ′ has no zeros, so f(t) for at most
one positive t. Suppose y2 = x1 and remember that if A = B, then x2/y2 = y1/x1.
Therefore, we get x2 = y1, so y = (x2, x1). Finally, using the fact that both x and y
are factorizations of 1 we get

a1x1 + a2x2 = a1y1 + a2y2

a1x1 + a2x2 = a1x2 + a2x1

x2(a2 − a1) = x1(a2 − a1)

x2 = x1.

But if this is true, then x = y. Since we are given that x ̸= y, we must have that
y2 ̸= x1. This implies f ′ has no zeros when A = B, so f can only have at most one
zero in (0,∞).

We can now assume that A ̸= B and look to show that f ′ has only one zero in
(0,∞). To prove this, we will show that f ′′(t) is either always negative or always
positive, so that f ′ is strictly monotone. Note before taking the derivative of f ′ that
for any constant C greater than 1,

d

dt

(
Ct

Ct − 1

)
=

ln(C)Ct(Ct − 1)− Ct ln(C)Ct

(Ct − 1)2

= ln(C)
Ct((Ct − 1)− Ct)

(Ct − 1)2

= − ln(C)
Ct

(Ct − 1)2
.

Therefore,

f ′′(t) = ln(B)2
Bt

(Bt − 1)2
− ln(A)

At

(At − 1)2
.

We want to show that f ′′ is either always positive or always negative regardless of t.
Fix an arbitrary t0 in (0,∞) and let

g(z) = ln(z)2
zt0

(zt0 − 1)2

for z ∈ (1,∞). This means f ′′(t0) = g(B) − g(A). If we show that g is strictly
decreasing, then we will have that f ′′ is either always negative or always positive
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(depending on which of A or B is greater) regardless of t. To do this, we will show
that g′ is always negative on its domain. First note that

d

dz

(
zt0

(zt0 − 1)2

)
=
t0z

t0−1(zt0 − 1)
2 − zt0(2(zt0 − 1)t0z

t0−1)

(zt0 − 1)4

=
t0z

t0−1(zt0 − 1)((zt0 − 1)− 2zt0)

(zt0 − 1)4

=
−t0zt0−1(zt0 + 1)

(zt0 − 1)3
.

Then we can use the product rule to differentiate g:

g′(t) =
2 ln(z)zt0

z(zt0 − 1)2
+

ln(z)2(−t0zt0−1(zt0 + 1))

(zt0 − 1)3

=
2 ln(z)zt0−1

(zt0 − 1)2
+

ln(z)2(−t0zt0−1(zt0 + 1))

(zt0 − 1)3

=
ln(z)zt0−1

(zt0 − 1)3
(
2(zt0 − 1)− t0 ln(z)(z

t0 + 1)
)
.

Since everything outside the parentheses is positive, g′ can only be negative if every-
thing inside the parentheses is negative for all z in (1,∞). Let h(z) be this quantity.
This means that we have proven what we want if we show that h(z) is always negative
on its domain. We can see that limz→1+ h(z) = 0, so if h is strictly decreasing, then we
have shown what we are looking for. Once again, we will take a derivative and then
attempt to show that it is negative:

h′(z) = 2t0z
t0−1 − t0

(
zt0 + 1

z
+ t0 ln(z)z

t0−1

)
=
t0
z
(2zt0 − ((zt0 + 1) + t0 ln(z)z

t0))

=
t0
z
(zt0 − 1− t0 ln(z)z

t0)

=
t0
z
(zt0(1− t0 ln(z))− 1).

The fraction outside the parentheses is positive. This means we want the quantity in
the parentheses to be negative. We can see that

lim
z→1+

zt0(1− t0 ln(z))− 1 = 0.
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So if this quantity is decreasing as z increases, then we have shown what is needed.
We complete this proof by taking one final derivative and showing it is negative:

d

dz

(
zt0(1− t0 ln(z))− 1

)
= t0z

t0−1(1− t0 ln(z))− t0z
t0−1

= t0z
t0−1((1− t0 ln(z))− 1)

= −t0zt0−1 ln(z).

Because z > 1, this is certainly negative. Working backwards, we have just shown
that g is strictly decreasing. This means that f ′′(t0) = g(B) − g(A) is either always
negative or always positive (depending on the values of A and B, which have already
been determined). Since t0 is arbitrary, f

′ is strictly monotone. From that, we get that
f has at most two zeros, so ∥x∥t = ∥y∥t for at most two positive t. □

The proof of Proposition 3.1 shows that for all cases except where both factorizations
have no nonzero components and A ̸= B, there can only be at most one crossing in
(0,∞). What we did show however, is that the function f ′ is strictly monotone in that
case. Data shows that whenever f ′(t) = 0 for some positive t, f(t) is always negative.
Proving that this is the case would be enough to show that two factorizations of an
element of a two-generated numerical semigroup can only be equal at most once over
(0,∞).

Conjecture 3.2. Suppose S is a numerical semigroup generated minimally by a1 and
a2 with a1 < a2 and r is a positive real number. If x and y are unique real-valued
factorizations of r, then ∥x∥t = ∥y∥t at most once on (0,∞).

Proposition 3.3. Suppose S is minimally generated by (a1, a2) and N is a positive
integer. There exists an n > N in S and t0 ∈ (0, 1) such that the factorization of n
with the smallest t0-norm is (n/a1, 0).

Proof. Let k be an integer greater than N/a1 that is not divisible by a2. The integer
n = a1k is greater than N and (k, 0) is the only factorization of n having a zero
component. Suppose x is a different factorization of n. Since

lim
t→0+

∥(k, 0)∥t = 1 and lim
t→0+

∥x∥t = 2

and there are only a finite number of factorization of n, there exist a t0 ∈ (0, 1) such
that (k, 0) has the minimum t0-norm of all factorizations of n. □

When t = 0, the factorization length graph shown in Figure 4 is no longer continuous.
Moreover, it discontinuous only where it reaches its minimum, which is at the endpoints
of the domain. This property is what allows us to always pick out a large element of
the semigroup having an minimum-length integer factorization on the far right side of
the domain. However, when we only consider t ∈ (ϵ, 1) where ϵ ∈ (0, 1) then we can
not always find large elements having a minimum-length integer factorization on the
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Figure 5. Factorization 0-length for 30 in ⟨5, 7⟩ as a function of the
first component of the factorization.

right side of the domain. In fact, we can for very large elements of the semigroup, the
minimum-length integer factorization is garanteed to be on the left side of the graph.

Proposition 3.4. Suppose S is generated by (a1, a2) and ϵ ∈ (0, 1). There exists an
integer N such that for all n > N in S and t ∈ (ϵ, 1), the factorization of n with the
smallest t-norm is the factorization having the smallest first component.

Proof. Let f be the bijection from [0, 1/a1] to the real-valued factorizations of 1 by

x→
(
x,

1− a1x

a2

)
.

Fix any t in (0, 1) and consider the function

∥f(x)∥t = xt +

(
1− a1x

a2

)t
.

In the interior of the domain, the first and second derivatives of this function are

(∥f(x)∥t)′ = t

(
xt−1 − a1

a2

(
1− a1x

a2

)t−1
)
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and

(∥f(x)∥t)′′ = t(t− 1)

(
xt−2 +

(
a1
a2

)2(
1− a1x

a2

)t−2
)
.

Since t ∈ (0, 1), (∥f(x)∥t)′′ is negative for all x in (0, 1/a1), so is concave down. Looking
at (∥f∥t)′, we find that

lim
x→0+

(∥f∥t)′ = ∞ and lim
x→(1/a1)−

(∥f∥t)′ = −∞.

Therefore, (∥f∥t)′ has at least one zero. Since the derivative of this function is negative,
we also know that this is the only zero. This implies ∥f∥t has a maximum that is
achieved at a single point in (0, 1/a1). We may also confirm that ∥f(0)∥t < ∥f(1/a1)∥t.
Now focus specifically on ∥f∥ϵ. As x increases from 0 to the point in (0, 1/a1) that

achieves the maximum, continuity of ∥f∥ϵ guarantees there exists an x with ∥f(x)∥ϵ =
∥f(1/a1)∥ϵ. Call this point c and consider the function

∥f(c)∥t
∥f(1/a1)∥t

= (a1c)
t +

(
a1 − a21c

a2

)t
of t on (0, 1). Since c < 1/a1 and a1 < a2, both terms being raised to the tth power are
positive and less than 1 (a1 − a21c < a1). Therefore, this function is strictly decreasing.
This implies ∥f(c)∥t < ∥f(1/a1)∥t when t ∈ (ϵ, 1).

Suppose that x ∈ [0, c), y ∈ (x, 1/a1], and t ∈ (ϵ, 1). We wish to show that ∥f(x)∥t <
∥f(y)∥t. Because ∥f∥t is concave down and ∥f(c)∥t < ∥f(1/a1)∥t, the function must
be increasing on [0, c). If y ∈ (x, c], then ∥f(x)∥t < ∥f(y)∥t. If y ∈ (c, 1/a1], then
∥f(c)∥t < ∥f(y)∥t, so ∥f(x)∥t < ∥f(y)∥t.
Let N be an integer satisfying Nc > a2 and suppose n in S is greater than N . Let

x be the factorization of n with the smallest first component. For any factorization
w, the vector w+ (−a2, a1) is also a factorization, provided the first component is not
negative. Since nc > a2, the first component of x must be less than nc. This means
that x takes the form nf(x) for some x ∈ [0, c). Suppose y is a different factorization
of n. It must take the form nf(y) for some y in [0, 1/a1]. If y < x, then y must have
a smaller first component than x. Since we assume this to be false, y ∈ (x, 1/a2]. It
follows that for all t in (ϵ, 1), ∥f(x)∥t < ∥f(y)∥t. Therefore, ∥x∥t < ∥y∥t. □

Proposition 3.5. Let t > 1, and let a, b ∈ R satisfy a, b > 0. Then (a+ b)t > at + bt.

Proof. Without loss of generality, assume that a ≥ b. We fix a, t and study f(b) =
(a + b)t − at − bt for b ∈ [0, a]. We calculate f ′(b) = t(a + b)t−1 − tbt−1. If this were
zero, a + b = b, so a = 0, which is impossible. Hence f ′(b) does not change sign.
Since f ′(0) = tat−1 > 0, the function f(b) is strictly increasing for all b ∈ [0, a]. Since
f(0) = at − at = 0, the function f(b) is strictly positive for all b ∈ (0, a]. □

Note that we can apply this repeatedly, e.g. (a+ b+ c)t > (a+ b)t + ct > at + bt + ct.
Also, if a > b > 0, we have (a− b+ b)t > (a− b)t + bt, so (a− b)t < at − bt.
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Proposition 3.6. Let t > 1 and let x1, x2, a1, a2 ∈ N0 with a2 > a1 ≥ 1 and x1+x2 ̸= 0.
Consider the function f(u) = (x1+ a2u)

t+(x2− a1u)
t for u ∈ [−x1

a2
, x2
a1
]. This function

is decreasing from the left endpoint down to a single minimum, then is increasing to the
right endpoint, which is the maximum on the whole interval. Further, if x1a1 + x2a2 >
a1−1
a2−a1a

2
2, then f(⌊x2a1 ⌋) gives the maximum value of f(u) on all integers in that interval.

Proof. We calculate f ′(u) = ta2(x1 + a2u)
t−1 − ta1(x2 − a1u)

t−1, and set to zero. We

get
(
a2
a1

)1/(t−1)

(x1 + a2u) = x2 − a1u. This equation, linear in u, has some single

solution u⋆, which might (for now) not be in our interval for u. Next, we calculate
f(−x1

a2
) = (x2+

a1
a2
x1)

t = a−t2 (a2x2+a1x1)
t and f(x2

a1
) = (x1+

a2
a1
x2)

t = a−t1 (a1x1+a2x2)
t.

Comparing these, we see that f(x2
a1
) > f(−x1

a2
). Next we calculate f ′(−x1

a2
) = −ta1(x2+

a1
a2
x1)

t−1 < 0 and f ′(x2
a1
) = ta2(x1 +

a2
a1
x2)

t−1 > 0. Because f ′(u) enjoyed a sign change,

in fact u⋆ ∈ [−x1
a2
, x2
a1
].

If we only wanted to maximize f(u), we would be done; however, we seek the largest
value of f(u) for integer u. We know that f(u) is maximal at the right endpoint x2

a1
,

so if f(⌊x2
a1
⌋) is larger than its value at the left endpoint1, f(−x1

a2
), we have found that

largest integer u.
We begin with our assumption x1a1 + x2a2 >

a1−1
a2−a1a

2
2. Setting X = x1a1 + x2a2 for

convenience, we have
(
a2−a1
a2

)
X > (a1−1)a2, which rearranges toX−(a1−1)a2 >

a1
a2
X,

and hence (X − (a1 − 1)a2)
t >

(
a1
a2

)t
X t.

If x2
x1

∈ Z we are done; otherwise, choose α ∈ (0, 1) with x2
a1

− α ∈ Z. By considering

x2 modulo a1, we see that in fact α ≤ a1−1
a1

, and consequently −a1a2α ≥ −a2(a1 − 1).

Now, we calculate f(x2
a1
−α)−f(−x1

a2
) = (x1+

a2
a1
x2−a2α)t+(a1α)

t−a−t2 (a2x2+a1x1)
t >

a−t1 (X−a1a2α)t+(a1α)
t−a−t1

(
a1
a2

)t
X t > a−t1 (X−(a1−1)a2)

t+(a1α)
t−a−t1

(
a1
a2

)t
X t >

a−t1

(
a1
a2

)t
X t + (a1α)

t − a−t1

(
a1
a2

)t
X t = (a1α)

t > 0.

□

Proposition 3.7. If x = (x1, y1) is a factorization of n with x1 ≤ n
a1+a2

, then x1 ≤ y1.

Proof. By definition, we have a1x1 + a2y1 − n = 0. When x1 ≤ n
a1+a2

,

0 = a1x1+a2y1−n ≤ a1n

a1 + a2
+a2y1−n = n

(
a1

a1 + a2
− 1

)
+a2y1 = − a2n

a1 + a2
+a2y1.

We continue the chain, rearrange, and rewrite

0 ≤ a2y1 −
a2n

a1 + a2
= a2

(
y1 −

n

a1 + a2

)
,

1Strictly speaking, we just need f(⌊x2

a1
⌋) > f(⌈−x1

a2
⌉), but this is harder to calculate.
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since the rightmost quantity above is non-negative it follows that y1 ≥ n
a1+a2

≥ x1, as
desired. □

Let S = ⟨a1, a2⟩, n ∈ S. If x = (x1, x2) is a real factorization of n then y can be
expressed in terms of x1, x2(x1) = n−a1x1

a2
. Define the function f(x1, t) = xt1 + xt2 =

||(x1, x2)||tt.

Lemma 3.8. (Baton is passed once in each interval.)

Fix x1 so that x1 + a2 ≤ n
a1+a2

. Let T (x1) = 1 + ln(a2/a1)
ln(x2(x1)/x1)

, so that m(T (x1)) =

(x1, x2). That is, T (x1) gives the value of t such that (x1, x2) is the real factorization
of n with minimal t-norm.

The function

F (t) = f(x1, t)− f(x1 + a2, t),

has exactly one zero for t ∈ [T (x1), T (x1 + a2)].

Proof. First, we notice that F (T (x1)) < 0 and F (T (x1 + a2)) > 0, since m(T (x1)) =
(x1, x2(x1)) andm(T (x1+a2)) = (x1+a2, x2(x1+a2)) have minimal T (x1) and T (x1+a2)
norms respectively, at the endpoints of our interval. By the IVT, F has at least one
zero in this interval. It remains to show that F has at most one zero in this interval.
Notice that x2(x1 + a2) =

n−a1(x1+a2
a2

= n−a1x1
a2

− a1 = x2(x1)− a1. We use this and the
definition of f , to rewrite F as

F (t) = f(x1, t)− f(x1 + a2, t) = xt1 + xt2 −
[
(x1 + a2)

t + (x2 − a1)
t
]
.

We use algebra to decompose F into a difference of two positive quantities, namely

F (t) = (xt2 − (x2 − a1)
t)︸ ︷︷ ︸

F2(t)

− ((x1 + a2)
t − xt1)︸ ︷︷ ︸

F1(t)

.

It is easy to see that F1 and F2 are strictly positive. When F1 = F2, clearly ln(F1) =
ln(F2). Let X1(t) = ln(F1(t)) and X2(t) = ln(F2(t)). We see that the zeroes of F must
agree with the zeroes of the difference

∆(t) = x2(t)−X1(t).

To prove our claim, we will show that ∆′(t) > 0 for t ∈ [T (x1), T (x1 + a2)]. We can
use algebra to rewrite X1 and X2 in the forms

Y (t) = ln(xt2−(x2−a1)t) = ln

(
xt2

(
1−

[x2 − a1
x2

]t))
= t lnx2+ln

(
1−

[x2 − a1
x2

]t)
.

and

X1(t) = ln((x1+a2)
t−xt1) = ln

(
(x1 + a2)

t

(
1−

[ x1
x1 + a2

]t))
= t ln(x1+a2)+ln

(
1−

[ x1
x1 + a2

]t)
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For brevity, let ξ(w, t) = ln(1 − wt), A = x2−a1
x2

and B = x1
x1+a2

Notice that both A
and B are non-negative and strictly less than 1. We can write

X2(t) = t lnx2 + ξ(A, t) X1(t) = t ln(x1 + a2) + ξ(B, t).

We differentiate X2 and X1 with respect to t, obtaining

X ′
2(t) = ln x2 +

∂ξ(A, t)

∂t
and X ′

1(t) = ln(x1 + a2) +
∂ξ(B, t)

∂t
.

The difference of these derivatives gives us

∆′(t) = X ′
2−X ′

1 = lnx2+
∂ξ(A, t)

∂t
−ln(x1+a2)−

∂ξ(B, t)

∂t
= ln

(
x2

x1 + a2

)
+

(
∂ξ(A, t)

∂t
− ∂ξ(B, t)

∂t

)
.

By assumption, x1+a2 ≤ n
a1+a2

, which, by Proposition 3.7, implies that x1 ≤ x1+a2 ≤
x2 − a1 ≤ x2. As such,

x2
x1+a2

≥ 1 and therefore ln
(

x2
x1+a2

)
≥ 0. Our problem has been

reduced to showing that
(
∂ξ(A,t)
∂t

− ∂ξ(B,t)
∂t

)
is non-negative.

A and B can be rewritten

A =
x2 − a1
x2

= 1− a1
x2

B =
x1

x1 + a2
=
x1 + a2 − a2
x1 + a2

= 1− a2
x1 + a2

.

Now, since x2 ≥ x1 + a2, it follows that

1

x2
≤ 1

x1 + a2
⇒ a1

x2
≤ a2
x1 + a2

⇒ −a1
x2

≥ − a2
x1 + a2

⇒ 1− a1
x2

≥ 1− a2
x1 + a2

,

or equivalently, 1 ≥ A ≥ B. If ∂2ξ(w,t)
∂w∂t

≥ 0 i.e. ∂ξ(w,t)
∂t

is non-decreasing with respect
to w ∈ (0, 1), we are done. Recall that ξ(w, t) = ln(1− wt). We take the partial with
respect to t, which gives

∂ξ(w, t)

∂t
=

−wt lnw
1− wt

.

We differentiate once more, this time with respect to w after rewriting

∂

∂w

(
∂ξ(w, t)

∂t

)
=

∂

∂w

(
−w

t lnw

1− wt

)
= − ∂

∂w

(
wt lnw

1− wt

)
We will use the quotient rule, first calculating the derivative of the numerator and
denominator seperately. Let u = wt lnw and v = 1−wt. Then uw = wt−1+twt−1 lnw =
wt−1(1 + t lnw) and vw = −twt−1. We are ready to take the partial with respect to w,
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giving

∂

∂w

(
∂ξ(w, t)

∂t

)
= − ∂

∂w

(u
v

)
= −

(
vuw − uvw

v2

)
= −

(
(1− wt)wt−1(1 + t lnw) + tw2t−1 lnw

(1− wt)2

)
= −

((
(1− wt)(1 + t lnw) + twt lnw

) wt−1

(1− wt)2

)
= −

((
1 + t lnw − wt − twt lnw + twt lnw

) wt−1

(1− wt)2

)
= −

(
−wt + t lnw + 1

) wt−1

(1− wt)2

=
(
wt − t lnw − 1

) wt−1

(1− wt)2

The fraction wt−1

(1−wt)2
is positive, so we need only show that the quantity W = wt −

t lnw − 1 is non-negative in (0, 1). W can be rewritten W = wt − ln(wt)− 1. Letting
Q(z) = z − ln(z) − 1, we notice that W = Q(wt). We can finally verify our claim by
showing that Q(z) is non-negative for all z ∈ (0, 1). We evaluate Q(1) = 1− ln(1)−1 =
0, and differentiate to see that

Q′(z) = 1 = 1− 1/z.

Since z < 1, it follows that 1 < 1/z, and hence Q′(z) = 1 − 1/z < 0 for all z ∈
(0, 1). Since Q has negative derivative for all z ∈ (0, 1) and is non-negative at its
right endpoint, it must take on non-negative values everywhere in this interval. This
completes the proof. □

Theorem 3.9. Fix a ∈ N2
0 and let S = ⟨a1, a2⟩. Fix n ≥ a1−1

a2−a1a
2
2 ∈ S. For t ∈ [1,∞),

let q(t) = t
t−1

, and let zm(t) and zM(t) denote the factorizations of n with minimal
(resp. maximal) t-norm as t varies. Let α = (a2,−a1), the unique minimal trade in
S.

There exists a partition {s0, s1, . . . , sc} of [1,∞) where s0 = 1, and for 1 ≤ j ≤ c−1,

sj lies in the open interval

(
T (zm(1) +α(j − 1)), T (zm(1) + jα)

)
, ρt(n) =

||zM ||t
||zm(t)t||

,

with zM fixed as t varies, and zm(t) defined piece-wise as

zm(t) = zm(1) +


0 t ∈ [1, s1)

jα t ∈ (sj, sj+1)

cα t ∈ (sc,∞).
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Proof. By the Baton Lemma, each factorization, x = (x1, x2) of n with x1 ≤ x2 is the
minimal t-length factorization for all t in an interval containing T (x1, x2) in order of
increasing x1, these factorizations can be ordered based on how many applications of
the minimal trade are applied to the factorization with minimal t-length. Furthermore,
we have that zm is fixed for all t by 3.6. □
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Figure 6

3.1. Optimistic, Pesemistic and Crepusuculum Elements.

Definition 3.10. Given a numerical semi group, S = ⟨a1, a2, ..., ak⟩, an element, n ∈ S,
is called optimistic if for t large enough, the t-elasticity of n, ρt(n), is always increasing.

Definition 3.11. Given a numerical semi group, S = ⟨a1, a2, ..., ak⟩, an element, n ∈ S,
is called pessimistic if for t large enough, the t-elasticity of n, ρt(n), is always decreasing.

Definition 3.12. Given S = ⟨a1, a2⟩ where a1 < a2 and some n ∈ S for 1 ≤ t has
max Lt(n) = a1x1 + a2x2 and min Lt(n) = a1w1 + a2w2, if x2 > w1, then n is called a
crepusculum element.

Theorem 3.13. Given S = ⟨a1, a2⟩, n ∈ S, and t > 1. Let x = (x1, x2) be the
factorization of n with maximum length and w = (w1, w2) be the factorization of n
with the minimum length where x1 > w1 ≥ w2 > x2. Then for t large enough, n is an
optimistic element of S.

Proof. we are given that S = ⟨a1, a2⟩ where n ∈ S and t > 1. Since (x1, x2) is the
factorization of n with the maximum length and (w2, w1) is the factorization of n with
the minimum length then the elasticity of n is given by

ρt(n) =

(
xt1 + xt2
wt1 + wt2

) 1
t
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For simplicity, let f(t) =
xt1+x

t
2

wt
1+w

t
2
so ρt(n) = (f(t))

1
t . Taking natural log of ρt(n) and

then differentiating we get

ln(ρt(n)) = ln(f(t))
1
t

ρ′t(n) =
ρt(n)

t2

(
f ′′(t)

f(t)
t− ln(f(t))

)

Notice that ρt(n)
t2

> 0 so we can ignore that term and focus on showing that
(
f ′′(t)
f(t)

t− ln(f(t))
)
>

0. For simplicity, let r(t) =
(
f ′′(t)
f(t)

t− ln(f(t))
)
. It is difficult to show that r(t) > 0 just

from this equation. Instead, we will show that lim
t→∞

r(t) = 0 and that r(t) is decreasing.

This combination of facts will show that r(t) > 0 which is what we want.

First, let us define some functions that will help us throughout the proof. Let
g(t) = xt1 + xt2 and h(t) = wt1 + wt2, so then we have that

f(t) =
g(t)

h(t)

f ′(t) =
g′(t)h(t)− h′(t)g′(t)

(h(t))2

f ′′(t) =
g′′(t)(h(t))2 − g(t)h′′(t)h(t)− 2g′(t)h′(t)h(t) + 2g(t)(h′(t))2

(h(t))3

Additionally,

g(t) = xt1 + xt2 h(t) = wt2 + wt1

g′(t) = xt1lnx1 + xt2lnx2 h′(t) = wt2lnw2 + wt1lnw1

g′′(t) = xt1(lnx1)
2 + xt2(lnx2)

2 h′′(t) = wt2(lnw2)
2 + wt1(lnw1)

2

Now we are ready to show that lim
t→∞

r(t) = 0 Expanding r(t) we get

r(t) =
f ′′(t)

f(t)
t− ln(f(t))

=
g′(t)h(t)− h′(t)g(t)

(h(t))2
∗ h(t)
g(t)

t− ln(f(t))

=
g′(t)

g(t)
t− h′(t)

h(t)
t− ln(f(t))
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Recall that x1 > w1 ≥ w2 > x2. will will now substitute in for g(t), g′(t), h(t), h′(t) and
takes the limit of r(t) as t→ ∞. So we have

lim
t→∞

r(t) = lim
t→∞

(
xt1 lnx1 + xt2 lnx2

xt1 + xt2

)
t− lim

t→∞

(
wt2 lnw2 + wt1 lnw1

wt2 + wt1

)
t− lim

t→∞
ln
xt1 + xt2
wt2 + wt1

= lim
t→∞

(
lnx1 + (x2

x1
)t lnx2

1 + (x2
x1
)t

)
lim
t→∞

t− lim
t→∞

(
(w2

w1
)t lnw2 + lnw1

(w2

w1
)t + 1

)
lim
t→∞

t− ln

(
lim
t→∞

( x1
w1
)t + ( x2

w1
)t

(w2

w1
)t + 1

)

= (lnx1) lim
t→∞

t− (lnw1) lim
t→∞

t− ln

 lim
t→∞

( x1
w1
)t + lim

t→∞
( x2
w1
)t

lim
t→∞

(
(w2

w1
)t + 1

)


= lim
t→∞

(t lnx1)− lim
t→∞

(t lnw1)− lim
t→∞

ln

(
x1
w1

)t
= lim

t→∞

(
ln

(
x1
w1

)t
− ln

(
x1
w1

)t)
= 0

Since we know that r(t) is tending towards zero, we will now show that r′(t) < 0 in
order to show that r(t) is increasing. Taking the derivative of r(t) we get

r′(t) = f ′′(t)f(t)− (f ′(t))2

r′(t) =
(g(t))2(h′(t))2 − (g(t))2h′′(t)h(t) + g′′(t)(h(t))2g(t)− (g′(t))2(h(t))2

(h(t))4

Since (h(t))4 > 0 we only need to show that the numerator of r′(t) is less than zero,
since a negative number divided by a positive number is still negative. Denote the
numerator as num(r′(t)). we want to expand num(r′(t)) and take its limit as t → ∞,
since we are looking at large t.

First, we will expand num(r′(t)). we will do this by first expanding each of the four
terms in it, and then adding those together where we will see many simplifications. Our
term order will be correspond to the fact that x1 > w1 ≥ w2 > x2. The coefficients
of the variables will not affect the term order. Here are the expansions of the four
different terms:
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(g(t))2(h′(t))2 =
(
x2t1 + 2(x1x2)

t + x2t2
) (
w2t

2 (lnw2)
2 + 2wt2w

t
1 lnw2 lnw1 + w2t

1 (lnw1)
2
)

= (x1w1)
2t(lnw1)

2 + 2x2t1 (w2w1)
t lnw2 lnw1 + (x1w2)

2t(lnw2)
2 + 2(x1x2)

tw2t
2 (lnw2)

2

+ 2(x1x2)
tw2t

1 (lnw1)
2 + 4(x1x2w2w1)

t lnw2 lnw1 + (x2w1)
2t(lnw2)

2

+ 2x2t2 lnw2 lnw1 + (x2w2)
2t(lnw2)

2

−(g(t))2h′′(t)h(t) = −
(
x2t1 + 2(x1x2)

t + x2t2
) (
wt2(lnw2)

2 + wt1(lnw1)
2
) (
wt1 + wt2

)
= −(x1w1)

2t(lnw1)
2 − x2t1 (w1w2)

t(lnw1)
2 − x2t1 (w1w2)

t(lnw2)
2 − (x1w2)

2t(lnw2)
2

− 2(x1x2)
tw2t

1 (lnw1)
2 − 2(x1x2)

tw2t
2 (lnw2)

2 − 2(x1x2w2w1)
t(lnw2)

2 − 2(x1x2w2w1)
t(lnw1)

2

− (x2w1)
2t(lnw1)

2 − x2t2 (w1w2)
t(lnw2)

2 − x2t2 (w1w2)
t(lnw1)

2 − (x2w2)
2t(lnw2)

2

g′′(t)(h(t))2g(t) =
(
xt1(lnx1)

2 + xt2(lnx2)
2
) (
wt2 + wt1

)2 (
xt1 + xt2

)
= (x1w1)

2t(lnx1)
2 + 2x2t1 (w1w2)

t(lnx1)
2 + (x1w2)

2t(lnx1)
2 + (x1x2)

tw2t
1 (lnx1)

2

+ (x1x2)
tw2t

1 (lnx2)
2 + (x1x2)

tw2t
2 (lnx1)

2 + (x1x2)
tw2t

2 (lnx2)
2

+ 2(x1x2w2w1)
t(lnx1)

2 + 2(x1x2w2w1)
t(lnx2)

2 + (x2w1)
2t(lnx2)

2

+ 2x2t2 (w1w2)
t(lnx2)

2 + (x2w2)
2t(lnx2)

2

−(g′(t))2(h(t))2 = −
(
x2t1 (lnx1)

2 + 2(x1x2)
t lnx1 lnx2 + x2t2 (lnx2)

2
) (
w2t

2 + 2(w2w1)
t + w2

1t
)

= −(x1w1)
2t(lnx1)

2 − 2x2t1 (w2w1)
t(lnx1)

2 − (x1w2)
2t(lnx1)

2 − 2(x1x2)
tw2t

1 lnx1 lnx2

− 2(x1x2)
tw2t

2 lnx1 lnx2 − 4(x1x2w2w1)
t lnx1 lnx2 − (x2w1)

2t(lnx2)
2

− 2x2t2 (w2w1)
t(lnx2)

2 − (x2w2)
2t(lnx2)

2

Now, summing all of those terms together, and keeping with the above term order
convention, we get

num(r(t)) = 2x2t1 (w2w1)
t lnw1 lnw2 − x2t1 (w1w2)

t(lnw1)
2 − x2t1 (w1w2)

t(lnw2)
2 + . . .

− 2x2t2 (w1w2)
t lnw1 lnw2 − x2t2 (w1w2)

t(lnw1)
2 − x2t2 (w1w2)

t(lnw2)
2

The limit and sign of num(r′(t)) will be determined by its leading terms. Define
those leading terms as L(num(t)) = 2x2t1 (w2w1)

t lnw1 lnw2 − x2t1 (w1w2)
t(lnw1)

2 −
x2t1 (w1w2)

t(lnw2)
2. We can re-write this as

L(num(t)) = 2x2t1 (w2w1)
t lnw1 lnw2 − x2t1 (w1w2)

t(lnw1)
2 − x2t1 (w1w2)

t(lnw2)
2

= x2t1 (w2w1)
t
(
2 lnw1 lnw2 − (lnw1)

2 − (lnw2)
2
)

= −x2t1 (w2w1)
t(lnw1 − lnw2)

2
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Notice that x2t1 (w2w1)
t(lnw1 − lnw2)

2 > 0, but −1 < 0. Since L(num(t)) is going to
determine the sign of the limit we can conclude that lim

t→∞
num(r′(t)) < 0. This implies

that lim
t→∞

(r′(t)) < 0. Since lim
t→∞

(r(t)) = 0 and r(t) is decreasing, then we know that

r(t) is positive. Therefore, we know that ρ′t(n) > 0 so n is optimistic.

□

Figure 7. Apery Table of S = ⟨15, 17⟩ where green=pessimistic and
red=crepusculum

Theorem 3.14. In S = ⟨a1, a2⟩ where a1 < a2 ∃ some element for n ≤ a22 + (a1 −
2)(a1 + a2) where n is pessimistic.

Proof. Consider the Apery set of S with respect to a1. Then the smallest non-zero
element of Ap(S) = a2.

Consider an element n ∈ S such that, n = a2 + (a1)(a2). Then the factorizations of
n are (0, a1 + 1) or (a2, 1) since the only trade for a 2-generated semigroup is (a2, 0)
~(0, a1).
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Then the max Lt(c) = (at2+1t)1/t and the min Lt(c)) = ((a1+1)t+0t)1/t for 1 ≤ t.

Then ρt(n) =
(at2+1t)

1
t

((a1+1)t+0t)
1
t
=

(at2+1)
1
t

a1+1
To see if the elasticity decreases, meaning n is

a pessimistic element, we must show that for ϵ > 0, ρt+ϵ(n) < ρt(n), or
ρt+ϵ(n)
ρt(n)

< 1.

Then,

(at+ϵ
2 +1)

1
t+ϵ

a1+1

(at2+ϵ)
1
t

a1+1

= (
(at+ϵ2 + 1)

1
t+ϵ

a1 + 1
)(

a1 + 1

(at2 + 1)
1
t

) =
(at+ϵ2 + 1)

1
t+ϵ

(at2 + 1)
1
t

.

We must show that (at+ϵ2 + 1)
1

t+ϵ < (at2 + 1)
1
t

By Hölders inequality (see [9]), we know that for some 1 ≤ s < t where y ∈ Rn,

∥y∥t ≤ ∥y∥s. Therefore, since 1 ≤ t < t+ϵ, (at+ϵ2 +1)
1

t+ϵ ) < (at2+1)
1
t . So as t increases,

ρt(n) decreases or is asymptotic.

Theorem 3.15. There exists a2 − a1 pessimistic elements in Apa2(S) column for a2 −
a1 < a1 If a2 − a1 + 1 < a1, then there exists crepusculum elements in this numerical
semigroup.

Proof. By the theorem above we know that n ∈ S where n = a2+a2(a1) is pessimistic.
Consider this for the next element n+ a2, or 2a2 + a2(a1). Since this only includes one
more copy of a2, we can use the same method we used to show n is pessimistic. We
can continue this pattern until we get to the element (a2 − a1 + 1)a2 + (a2)a1 which
we will call r. Then r can be factored into (a2, a2 − a1 + 1) and (0, a2 + 1). Then

max Lt(r) = ((a2 + 1)t + (0)t)
1
t and the min Lt(r) = ((a2)

t + (a2 − a1 + 1)t)
1
t for t

large enough, meaning this is a crepusculum element. Then ρt((r) =
((a2+1)t+0t)

1
t

(at2+(a2−a1+1)t)
1
t
=

a2+1

(at2+(a2−a1+1)t)
1
t
We must show that ρt+ϵ(r) > ρt(r), or

ρt(r)
ρt+ϵ(r)

< 1. Consider

a2+1

(at2+(a2−a1+1)t)
1
t

a2+1

(at+ϵ
2 +(a2−a1+1)t+ϵ)

1
t+ϵ

= (
a2 + 1

(at2 + (a2 − a1 + 1)t)
1
t

)(
(at+ϵ2 + (a2 − a1 + 1)t+ϵ)

1
t+ϵ

a2 + 1
)

=
(at+ϵ2 + (a2 − a1 + 1)t+ϵ)

1
t+ϵ

(at2 + (a2 − a1 + 1)t)
1
t

<
(at+ϵ2 + (a2 − a1 + 1)t+ϵ)

1
t+ϵ

(at+ϵ2 + (a2 − a1 + 1)t+ϵ)
1
t

= (at+ϵ2 + (a2 − a1 + 1)t+ϵ)
1

t+ϵ
− 1

t = (at+ϵ2 + (a2 − a1 + 1)t+ϵ)
−ϵ

t(t+ϵ) < 1. Therefore,
ρt(r) is not decreasing, so ∃ only a2−a1 pessimistic elements in the column created by
Ap(S) + a2. □

There are a lot of questions that about 2-generated elasticity curves that we have
yet to answer, but have some thoughts about. here are some conjectures regarding
2-generated elasticity curves. □
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Conjecture 3.16. Given a numerical semigroup, S = ⟨a1, a2, ..., an⟩. Then there is
some n ∈ S such that for all ni > n each ni is optimistic.

Conjecture 3.17. In S = ⟨a1, a2⟩ where a1 < a2, if a2 − a1 < a1, then ∃ a2 − a1 at
most pessimistic elements from the element a2 + a2(a1) to (a1 − 1)a2 + (a2 + a1 − 1)a1
in a triangular form organized in the Apery Set.

Conjecture 3.18. If a2 − a1 > a1, then there exists a1 − 1 pessimistic elements in the
column Ap(S) + (a2)a1 ,and no crepusculum elements.

4. Elasticity Curves

One very interesting question that I did not ask in the initial problem list2 was whether
the elasticity curve of a numerical semigroup (i.e. ρt(S) for all t) uniquely determines
the semigroup. However we can solve it now, using a theorem we found3 and a theorem
we proved.

Theorem 4.1. Let T be an infinite subset of R≥1 containing a limit point. Let k ∈ N.
Let a, b ∈ Rk. Assume that a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤ bk. Now, if
∥a∥t = ∥b∥t for all t ∈ T , then a = b.

Theorem 4.2. Let k ∈ N. Let a ∈ Nk
0. Assume that a1 ≤ a2 ≤ · · · ≤ ak, and

that A = ⟨a⟩ is a numerical semigroup. Let t ∈ [1,∞). Then ρt(A) = ∥a∥q
a1

, where

q = t/(t− 1).

Theorem 4.3. Let T be an infinite subset of R≥1 containing a limit point. Let k ∈ N.
Let a, b ∈ Nk

0. Assume that a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤ bk, and that
A = ⟨a⟩, B = ⟨b⟩ form numerical semigroups. Now, if ρt(A) = ρt(B) for all t ∈ T ,
then A = B.

Proof. By Theorem 4.2, for all t ∈ T we have ρt(A) = ρt(B) = ∥a∥q
a1

= ∥b∥q
b1

. Now, set

Q = {t/(t − 1) : t ∈ T}. Q is itself a subset of R≥1, and must have a limit point
since T does (if t, t′ are close, then t/(t − 1), t′/(t′ − 1) are close). Consider now the
vectors a = a

a1
= (1, a2

a1
, . . . , ak

a1
), b = b

b1
. Because the q-norm is homogeneous, we have

∥a∥q = 1
a1
∥a∥q = 1

b1
∥b∥q = ∥b∥q, for all q ∈ Q. By Theorem 4.1, we must have a = b.

Hence, a = a1
b1
b. Consider a1

b1
= u

v
, in simplified form. Since a, b ∈ Zk, we must have

v| gcd(b), so v = 1 since B is a numerical semigroup. But now u| gcd(a), so u = 1 since
A is a numerical semigroup. Hence a1 = b1, and thus a = b. □

NOTE: For t ∈ (0, 1), all bets are off! We do not have a version of Theorem 1, we do
not yet have a version of Theorem 2, and the homogeneity of the q-norm for negative
q has not been established.

2I thought it might be too hard.
3Not fully proved in the form given here, but I for one believe it’s true.
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5. Accepted Elasticity

Lemma 5.1. Let n = a1m ∈ S = ⟨a1, a2⟩ with factorization (z1, z2). Then, a1 | z2.

Proof. We have that n = a1m = a1z1 + a2z2. Then, a1m = a1(z1 + a2z2
a1

). Since

gcd(a1, a2) = 1, a1 ∤ a2. Thus, a1 | z2. □

5 10 15 20 25 30 35
x

5

10

15

20

y

Figure 8. Elements n = 4m in the semigroup ⟨4, 7⟩ and their integer
factorization points (x, y) for which x ≤ y

Theorem 5.2. Let S = ⟨a1, a2⟩ and τ(S) = {t ∈ (1,∞) | ∃n ∈ S satisfying ρt(n) =
ρt(S)}. For each fixed k ∈ Z>0, define

τk(S) =

{
t =

ln(a2k
j
)

ln(a1k
j
)

∣∣∣∣j ∈ [1, a1k − 1]

}
.

Then,

τ(S) =
∞⋃
k=1

τk(S).
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Proof. For 1 < t < ∞, ρt(S) = ∥M∥t
∥µ∥t where M is the real maximum factorization

and µ is the real minimum factorization of an element in the semigroup. In order for
ρt(n) = ρt(S), the real factorization of n with maximal length, M = ( n

a1
, 0) must be

an integer point. It follows that ρt(n) = ρt(S) implies that n = a1m for some positive
integer m.

Let µ(t) = (x, y). When t = 1, we know that x = 0 and when t = ∞, we know that
x = y by Proposition 2.9. So, in order for a factorization to have minimal t-length for
the values of t ∈ (1,∞) we must have that 0 < x < y. If y ∈ Z, then, by Lemma 5.1,
we know that a1 | y. So, we can write y = a1k for k ∈ Z>0. Now, we have that all
possible integer factorizations of a1m with minimal t-length can be written in the form
(j, a1k), where 1 ≤ j ≤ a1k− 1. By Proposition 2.11 and Corollary 2.12, we know that
∥(j, a1k)∥t = ∥µ∥t only when

t = T ((j, a1k)) =
ln
(
(a2
a1
)(a1k

j
)
)

ln(a1k
j
)

=
ln(a2k

j
)

ln(a1k
j
)
.

Thus, any t for which ρt(S) is accepted must be of the aforementioned form. In other
words,

⋃∞
k=1 τk(S) ⊆ τ(S).

Now, we must also ensure that τ(S) ∖
⋃∞
k=1 τk(S) = ∅. Let 1 < q < ∞ such that

q /∈ τk(S), so q ̸=
ln(

a2k
j

)

ln(
a1k
j

)
. Assume, by way of contradiction, that q ∈ τ(S), so ρq(n) =

ρq(S) =
∥M∥t
∥µ∥t . By the above reasoning, we must have that n = a1m for m ∈ Z>0 and

that all (x, y) = µ where x, y ∈ Z>0 are of the form (j, a1k) for j, k ∈ Z>0. Then,

∥(j, a1k)∥q = ∥µ∥q ⇐⇒ q = T ((j, a1k)). However, since q ̸= ln(
a2k
j

)

ln(
a1k
j

)
= T ((j, a1k)),

∥(j, a1k)∥q ̸= ∥µ∥q. And thus, ρq(n) ̸= ρq(S). Hence, we cannot have an element of
τ(S) that is not contained in any τk(S). Therefore,

τ(S) =
∞⋃
k=1

τk(S).

□

Proposition 5.3. Let t ∈ τ(S). Then, {n | ρt(n) = ρt(S)} = {n ∈ Z | ∃k ≥
1 for which n = a1k((

at1
a2
)

1
t−1 + a2)}.

Proof. If t ∈ τ(S), then there exists a k ≥ 1 such that t ∈ τk(S). So, t =
ln(

a2k
j

)

ln(
a1k
j

)
. Then,

t ln

(
a1k

j

)
= ln

(
a2k

j

)
⇒
(
a1k

j

)t
=
a2k

j
⇒ at1k

t−1 = a2j
t−1 ⇒

(
j

k

)t−1

=
at1
a2

⇒ j

k
=

(
at1
a2

) 1
t−1

.
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Since t ∈ τ(S), we know that ρt(n) = ρt(S) only when (j, a1k) is a factorization of n.

So, we can write n = a1j + a2(a1k) = a1k
(
j
k
+ a2

)
= a1k((

at1
a2
)

1
t−1 + a2).

□

Proposition 5.4. Fix t =
ln(

a2k
j

)

ln(
a1k
j

)
. Let P = a1(

a2k+j
q

) where q = gcd(k, j). Then,

ρt(n) = ρt(S) ⇐⇒ P | n.

Proof. First, we will prove that P | n ⇒ ρt(n) = ρt(S). If P | n, then n = αP for
some α ∈ Z>0. Then, n = αj

q
a1 +

αa1k
q
a2. So, we can write the factorizations (x, y)

of n for which x < y in the form (α j
q
, αa1k

q
). We know that ρd(n) = ρd(S) when

d = T ((α j
q
, αa1k

q
)) =

ln(
a2(α

a1k
q )

a1(α
j
q )

)

ln(
α

a1k
q

α
j
q

)

=
ln(

a2k
j

)

ln(
a1k
j

)
= t.

Next, we must show that ρt(n) = ρt(S) ⇒ P | n. By Proposition 2.11, we can
use nm(t) to return the factorization of n whose t-length is equal to the real minimal
t-length. Note, by reasoning from Theorem 5.2, that among these factorizations is

(j, a1k), and consequently n = a1j + a2a1k. So, we must evaluate nm

(
ln(

a2k
j

)

ln(
a1k
j

)

)
. Let

u = t − 1 =
ln(

a2
a1

)

ln(
a1k
j

)
. We know that nm(1 + u) =

(
n

a1+a2
(
a2
a1

)1/u ,
n

a1
(
a1
a2

)1/u
+a2

)
. Let

us call the coordinates m1 and m2. First, we can evaluate nm1 at u, and take its
reciprocal.

1

nm1

∣∣∣∣
u

=
1

n

a1 + a2(
a2
a1

)

ln(
a1k
j )

ln(
a2
a1

)

 =
1

n

a1 + a2e
ln(

a2
a1

)
ln(

a1k
j )

ln(
a2
a1

)

 =
1

n
(a1 + a2e

ln(
a1k
j

))

=
1

n
(a1 + a2(

a1k

j
)) =

1

n
(
a1j + a2a1k

j
) =

1

j
.

Now, we will evaluate the reciprocal of nm2 at u.

1

nm2

∣∣∣∣
u

=
1

n

a1(a1
a2

)

ln(
a1k
j )

ln(
a2
a1

) + a2

 =
1

n

a1eln(a1a2 ) ln(
a1k
j )

ln(
a2
a1

) + a2


Since ln(a1

a2
) = − ln(a2

a1
),

1

nm2

∣∣∣∣
u

=
1

n
(a1e

− ln(
a1k
j

)+a2) =
1

n
(a1e

ln( j
a1k

)
+a2) =

1

n
(a1(

j

a1k
)+a2) =

1

n
(
a1k + a2a1k

a1k
) =

1

a1k
.

Therefore, nm(t) = (j, a1k) Then, we can write n = a1j + a2a1k = a1(j + a2k). Let
P
a1

= j+a2k
q

= r. Then, j + a2k = rq, so r | j + a2k = n
a1
. So, we have that P

a1
| n
a1
.

Therefore, P | n. □
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Proposition 5.5. Let us define K = Z ∩ ( n
a1(a1+a2)

, n
a1a2

) and τ(n) = {t | ρt(n) =

ρt(S)}. Then, given n ∈ S, τ(n) =

{
ln(

a2k
n
a1

−a2k
)

ln(
a1k

n
a1

−a2k
)
| k ∈ K

}
.

Proof. Since we have n such that ρt(n) = ρt(S), (j, a1k) must be a factorization of
n where j < a1k. If a1k ≥ n

a2
, then n ≥ a1j + a2(

n
a+2

) = a1j + n, which is untrue.
Thus, we must have that a1k < n

a2
, and so k < n

a1a2
. If a1k ≤ n

a1+a2
, then j =

n−a2a1k
a1

≥
n−a2 n

a1+a2

a1
= a1n+a2n−a2n

a1(a1+a2)
= n

a1+a2
. This implies that j ≥ n

a1+a2
≥ a1k,

which is also untrue since j < a1k. Thus, we must have that a1k > n
a1+a2

, and so
k > n

a1(a1+a2)
. Therefore, we can only examine factorizations with k-values within the

set K = Z ∩ ( n
a1(a1+a2)

, n
a1a2

). To find the t-values at which these factorizations accept

the minimal real t-length, we can use the function T ((j, a1k)) =
ln(

a2k
j

)

ln(
a1
j
)
. Since n =

a1j + a2a1k ⇒ j = n−a2a1k
a1

, we can write T ((j, a1k)) = T (( n
a1

− a2k, a1k)) =
ln(

a2k
n
a1

−a2k
)

ln(
a1k

n
a1

−a2k
)
.

Therefore, τ(n) =

{
ln(

a2k
n
a1

−a2k
)

ln(
a1k

n
a1

−a2k
)
| k ∈ K

}
. □

Proposition 5.6. |τ(n)| = |K|.

Proof. Fix t1, t2 ∈ τ(n). Then, t1 = T (( n
a1

− a2k1, a1k1)) for some k1 ∈ K. Similarly,

t2 = T (( n
a1

− a2k2, a1k2)) for some k2 ∈ K. Let t1 = t2. So, T (( n
a1

− a2k1, a1k1)) =

T (( n
a1

− a2k2, a1k2)). By Corollary 2.12, T (( n
a1

− a2k1, a1k1)) = 1 +
ln(

a2
a1

)

ln(
a1k1

n
a1

−a2k1
)
= 1 +

ln(
a2
a1

)

ln(
a1k2

n
a1

−a2k2
)
= T (( n

a2
− a2k2, a1k2)). It follows that this implies

a1k1
n
a1

− a2k1
=

a1k2
n
a1

− a2k2
⇒ a1k1(

n

a1
−a2k2) = a1k2(

n

a1
−a2k1) ⇒ nk1−a1a2k1k2 = nk2−a1a2k1k2

⇒ nk1 = nk2 ⇒ k1 = k2.

Since t1 = t2 ⇒ k1 = k2, we know that each distinct t ∈ τ(n) corresponds to a unique
k ∈ K. Hence, |τ(n)| = |K|. □
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Figure 9. Accepted t-elasticities for elements, n, of S where n=4x

5.1. Accumulation of τ . Notice that when plotting elements of τ(S) or, accepted
t-elasticities, there is a large grouping around t = 1. We conjectured that 1 would be
the only accumulation point of τ(S), but with further research we saw that was not
the case. First we found that the limits of τ(S) as k lim inf for different j values did
not always approach 1.

Lemma 5.7. For t(k, j) being an element of τ(S), where j = 1, then limk→∞ t(k, 1) =
1.

Proof. Consider t(k, 1) =
ln(

a2k
1

)

ln(
a1k
1

)
. Then

lim
k→∞

t(k, 1) = lim
k→∞

ln(a2k
1
)

ln(a1k
1
)
= lim

k→∞

ln a2 + ln k

ln a1 + ln k
= lim

k→∞

ln a2
ln a1 + ln k

+ lim
k→∞

ln k

ln a1 + ln k

= 0 + lim
k→∞

1
ln a1
ln k

+ 1
=

1

0 + 1
= 1

□

Lemma 5.8. For t(k, j) being an element of τ(S), where j = a1k−1, then limk→∞ t(k, a1k−
1) = ∞.

Proof. Consider, t(k, a1k − 1) =
ln(

a2k
a1k−1

)

ln(
a1k

a1k−1
)
. Then,
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lim
k→∞

t(k, a1k − 1) = lim
k→∞

ln( a2k
a1k−1

)

ln( a1k
a1k−1

)
= lim

k→∞

ln a2 + ln k − ln a1 − ln(k − 1
a1
)

ln a1 + ln k − ln a1 − ln(k − 1
a1
)

= lim
k→∞

ln a2
ln k − ln(k − 1

a1
)
+ lim
k→∞

ln k

ln k − ln(k − 1
a1
)
+ lim
k→∞

− ln a1
ln k − ln(k − 1

a1
)
+ lim
k→∞

− ln(k − 1
a1
)

ln k − ln(k − 1
a1
)

= lim
k→∞

ln a2
a1

ln k − ln(k − 1
a1
)
+ lim

k→∞

ln k − ln(k − 1
a1
)

ln k − ln(k − 1
a1
)
= lim

k→∞

ln a2
a1

ln k − ln(k − 1
a1
)
+ 1

Since limk→∞ ln k− ln(k − 1
a1
) = limk→∞ ln k− ln(k(1− 1

a1k
)) = limk→∞ ln k− ln k−

ln(1− 1
a1k

) = limk→∞− ln(1− 1
a1k

) approaches 0 , and ln a2
a1

is a positive constant,

lim
k→∞

ln a2
a1

ln k − ln(k − 1
a1
)
+ 1 = ∞

□

This led us to believe that every element in R≥1 would be an accumulation point of
τ(S).

Theorem 5.9. Every α ∈ R≥1 is an accumulation point of τ(S).

Proof. Consider the elements of τ(S); each t =
ln(

a2k
j

)

ln(
a1k
j

)
. For simplicity, call k

j
= r and

we want to find values of t that get infinitely close to any α.

Consider the dual of α as a function, where q(α) = α
α−1

= ln(a2r)
ln a2
ln a1

. Then,

q(α)(
ln a2
ln a1

) = ln(a2r) −→ a2r = e
q(α)(

ln a2
ln a1

)

So, r = e
q(α)(

ln a2
ln a1

)

a2
meaning r is either rational, or irrational. Either way, r ∈ R+.

We know that every real number is an accumulation point of the rationals, so r is an
accumulation point of Q. Then, ∃ Sk, a sequence of real numbers that converge to r.

Pick sk ∈ Sk where sk =
a
q(tk)−1
2

a
q(tk)
1

, where t ∈ τ(S). Then

|r − sk| = |q(r)− q(sk)| < ϵ

which we know to be true since q(r) is a continuous function. From this we can derive
that:

| ln(a2r)
ln(a2

a1
)
− ln(a2sk)

ln(a2
a1
)
| < ϵ −→ | ln(a2r)− ln(a2sk)

ln(a2
a1
)

| < ϵ −→ | ln( r
sk
)| < ϵ(ln(

a2
a1

))
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Next we want to see if |q(r)− q(sk)| = |q(q(α))− q(q(tk))| < δ. Notice that q(t) is its

own inverse, so for |α− tk| < δ, pick δ > |
ln(

a2
a1

)

ln(a1r) ln(a1sk)
||ϵ ln(a2

a1
)|.

This means that there is a sequence of tk-values that approaches α by using the
sequences of rationals, Sk that approach r. This means that we can find values of tk
that approach α for every α ∈ R≥1. Therefore, every α ∈ R≥1 is an accumulation point
of τ(S).

□

5.2. τ as a Unique Semigroup.

Proposition 5.10 (MORE STRONGERER). Fix S generated by a ∈ N2
0, and let γ

denote the greatest common divisor of all positive exponents appearing in the prime
factorization of a1a2. Then

τ(S) ∩Q = 1 +
(
{0} ∪ { c−d

d
: (c− d) | γ}

)
.

Proof. We will prove this claim by verifying containment in both directions. Suppose
t = c

d
∈ τ(S) ∩ Q. If ρt(S) = ρt(n), for some n, then n must have a factorization

achieving the minimum real t-length. This can occur if and only if m(t) falls on a
rational point or, equivalently, the reciprocal of each of its entries is rational. When m
has all rational entries, m(t) lifts to an integer point upon scaling by the least common
denominator of its entries, and can be scaled further by a1 to ensure that it has a
factorization that achieves the maximal length, so this is sufficient. Consider

1

m1(t)
= a1 + a2

(
a2
a1

)1/(t−1)

⇒ 1

a2

(
1

m1(t)
− a1

)
=
(
a2
a1

)1/(t−1)

.

As such, 1/m1(t) and
(
a2
a1

) 1
t−1

lie in the same coset of Q, so 1/m1 ∈ Q ⇐⇒
(
a2
a1

) 1
t−1

=
u
v
for some co-prime integers u and v. Rewrite t − 1 = c−d

d
, which we substitute to

obtain a new expression, ⋆ :
(
a2
a1

) d
c−d

= u
v
. By assumption, gcd(a1, a2) = 1 which means

we can write

a1a2 =
∏
pi| a1

pi prime

pγαi

i

∏
qi| a2

qi prime

qγβii

where each exponent αi and βi is positive and gcd({αi, βi}) = 1. We substitute these
products into ⋆ to see that(

a2
a1

)d/(c−d)
=

(∏
pi| a1 p

γαi

i∏
qi| a2 q

γβi
i

)d/(c−d)

=

∏
pi| a1 p

dγαi/(c−d)
i∏

qi| a2 q
dγβi/(c−d)
i

Each prime factor in the numerator and denominator of the ratio above must have a
positive integer exponent in order for our desired quantity to be rational, which requires
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that any cancellation be independent of αi and βi. If (c − d) | γ, then t ∈ τ(S) ∩ Q,
which verifies the containment

1 +
(
{0} ∪ { c−d

d
: (c− d) | γ}

)
⊆ τ(S) ∩Q.

We prove the reverse containment by way of contradiction. Suppose t = 1+ c−d
d

with
gcd(d, c− d) = 1, so that its rational part is written in lowest terms. If (c− d) ∤ γ and
dγ/(c− d) ∈ Z+, it must be true that (c− d) | dγ. Let g = gcd(γ, c− d), b′ = c−d

g
, and

write γ = gγ′ and c− d = gb′ with b′ > 1 and gcd(b′, γ′) = 1. By assumption, we must
have gb′ | gdγ′, which implies b′ | d. It follows that gcd(d, c − d) ≥ b′ > 1, which is a
contradiction.

A symmetric result holds for the reciprocal 1/m2(t), since it lies in the same Q-coset

as a1
a2

1/(t−1), which also lies in the same Q-coset as its reciprocal. □

Remark 5.11. Resuming notation from the preceding proposition, let D(γ) denote
the set of positive integer divisors of γ. We may notice that the preceding result induces
a natural decomposition of τ(S)∩Q, into (not-necessarily disjoint) subsets indexed by
positive integer denominators d ≥ 1. For brevity, write r = c− d and for each such d,
define τS(d) = 1 + { r

d
: r ∈ D(γ)}. We can say that

(τ(S) \ {1}) ∩Q =
∞⋃
d=1

τS(d).

Theorem 5.12 (THE STRONGEREST?!).

τ(S) ∩Q = 1 +
(
{0} ∪ { γ

n
: n ∈ Z+}

)
.

Proof. Since each rational t ∈ τ(S) lies in some τS(d) (or is equal to 1), it can be
written t = 1 + r

d
where r | γ. Let rz = γ. Then we can write

t = 1 +
γ/z

d
=

γ

zd
.

To see that every n value appears as a denominator in τ(S) ∩ Q, fix an arbitrary
positive integer n. If gcd(γ, n) = 1, we simply take 1 + γ/n ∈ τS(n). Otherwise, write

g = gcd(γ, n) > 1. Write n = gn′ and γ = gγ′. We can find 1 + γ
n
= 1 + γ′

n′ in τS(n
′)

since γ′ is, by definition, a positive divisor of γ. □

Theorem 5.13. The set

q(τ) =
τ

τ − 1
= { t

t−1
: t ∈ τ} = { log(a2k/j)

log(a2/a1)
: k, j ∈ Z>1, k/j > 1/a1}

is an additive semigroup. Moreover, (q(τ),+) ∼= (Q≥a2
a1
, ·).
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Proof. We will first show that every q ∈ q(τ) has the claimed form. We have seen that
every t ∈ τ can be written

t =
log(a2k/j)

log(a1k/j)
⇒ t− 1 =

log(a2/a1)

log(a1k/j)
.

Any t ∈ τ corresponds uniquely to its Hölder conjugate in q(τ), which we can write

q(t) =
t

t− 1
=

log(a2k/j)

log(a1k/j)
· log(a1k/j)
log(a2/a1)

=
log(a2k/j)

log(a2/a1)
,

as claimed. Associativity is clear since τ
τ−1

⊂ R, where addition is associative. To
show closure under addition, take two arbitrary elements, writing r1, r2 > 1/a1 for
their rational parts. Using algebra, we see that

t1 + t2 =
log(a2r1)

log(a2/a1)
+

log(a2r2)

log(a2/a1)
=

log(a2(a2r1r2))

log(a2/a1)
.

We need only verify that a2r1r2 > 1/a1. Since a2 > a1 and r1 > 1/a1, we have that
a2r1 > 1. It follows that a2r1r2 > r2 > 1/a1, as desired.
By considering the sequence of maps

φ : (q(τ),+)
ψ1−−−−−−→

· log(a2/a1)
({log(a2r) : r ≥ 1/a1},+)

ψ2−−−−−−−→
exp(log(a2r))

(Q≥a2
a1
, ·).

the semigroup isomorphism is easily verified. □

Corollary 5.14. q(τ) is atomic, and its set of atoms is precisely

A(q(τ)) = φ−1
(
Q ∩ [a2

a1
, a2
a1

2)
)
=

{
log(a2r)

log(a2/a1)
: r ∈ [a2

a1
,
a22
a21
)

}
.

Proof. For ease of notation, let r denote a2
a1
. We will prove that A(Q≥r, ·) = [r, r2).

Any rational s ∈ [r, r2) is clearly an atom, since s ≥ r > 1, it cannot factor into a
product of smaller atoms in the semigroup. To see that every s outside this interval
is not an atom, take s ≥ r2. Then s = r · s/r, with s/r ≥ r, which completes the
proof. □

Proposition 5.15. Fix q = log(a2r)
log(a2/a1)

∈ q(τ) for some r ∈ Q
≥ 1
a1

. Then

q − 1 =
log(a1r)

log(a2/a1)
.

Further, q − 1 ∈ q(τ) ⇐⇒ r ≥ a2
a21

Proof. Using algebra,

q − 1 =
log(a2r)

log(a2/a1)
− log(a2/a1)

log(a2/a1)
=

log(a1r)

log(a2/a1)
,
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as claimed. If q−1 ∈ τ , by definition, we must have a1r ≥ a2
a1
, hence r ≥ a2

a21
. Conversely,

r ≥ a2/a
2
1, then a1r ≥ a2/a1, which means that q − 1 ∈ Q(τ), as desired. □

Remark 5.16. The bijection q : τ → q(τ) induces a commutative semigroup structure
(τ,⊕) under the binary operation ⊕, given by

s⊕ t = q−1 (q(s) + q(t)) .

We derive the formula for this operation as follows.

s⊕ t = q−1(q(s) + q(t)) = q−1

(
s

s− 1
+

t

t− 1

)
= q−1

(
s(t− 1) + t(s− 1)

(s− 1)(t− 1)

)
=

(
s(t− 1) + t(s− 1)

(s− 1)(t− 1)

)
·
(

(s− 1)(t− 1)

s(t− 1) + t(s− 1)− (s− 1)(t− 1)

)
The denominator of the rightmost fraction above simplifies

s(t− 1) + t(s− 1)− (t− 1)(s− 1) = s(t− 1) + t(s− 1)− t(s− 1) + (s− 1) = st− 1.

Which we substitute, cross-cancelling (s− 1)(t− 1) to obtain

s⊕ t =

(
s(t− 1) + t(s− 1)

st− 1

)
=

2st− (s+ t)

st− 1
.

Notice that

t⊕ t =
2t2 − 2t

t2 − 1
=

2t(t− 1)

t2 − 1
=

2t

t+ 1
.

Remark 5.17. We will use the notation k ⊗ t to denote the result of t ⊕ t . . . ⊕ t,
where the semigroup operation ⊕ is applied k − 1 times,and k is the number of t’s in
the expression.

Proposition 5.18. For all k ≥ 2,

k ⊗ t =
kt

(k − 1)t+ 1
.

Proof. We proceed by induction on k. We first verify the base case. Using algebra, we
see that

2⊗ t = t⊕ t =
2t2 − 2t

t2 − 1
=

2t(t− 1)

t2 − 1
=

2t

t+ 1
,

which completes the base case. Now, we assume k ⊗ t agrees with the claimed expres-

sion, and we wish to show that (k + 1)⊗ t = (k+1)t
kt+1

.
First, we rewrite

(k + 1)⊗ t = t⊕ (k ⊗ t) = t⊕
(

kt

(k − 1)t+ 1

)
=
Nk(t)

Dk(t)
,
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where numerator and denominator are given by the rational functions

Nk(t) =
2t(kt)

(k − 1)t+ 1
−
(
t+

kt

(k − 1)t+ 1

)
and Dk(t) =

t(kt)

(k − 1)t+ 1
− 1.

We will use algebra to simplify Nk and Dk seperately. For Nk, we have

Nk(t) =
2kt2 − (kt+ t [(k − 1)t+ 1])

(k − 1)t+ 1

=
2kt2 − (k − 1)t2 − (k + 1)t

(k − 1)t+ 1

=
(2k − (k − 1))t2 − (k + 1)t

(k − 1)t+ 1

=
(k + 1)t2 − (k + 1)t

(k − 1)t+ 1

=
(k + 1)t(t− 1)

(k − 1)t+ 1

Similarly,

Dk(t) =
t(kt)

(k − 1)t+ 1
− 1 =

kt2 − (k − 1)t− 1

(k − 1)t+ 1

=
kt2 + t− kt− 1

(k − 1)t+ 1

=
t(kt+ 1)− 1(kt+ 1)

(k − 1)t+ 1

=
(t− 1)(kt+ 1)

(k − 1)t+ 1
.

After combining these two, we see that

Nk(t)

Dk(t)
=

(k + 1)t(t− 1)

(k − 1)t+ 1
· (k − 1)t+ 1

(t− 1)(kt+ 1)
=

(k + 1)t

(kt+ 1)
,

as claimed. □

Proposition 5.19. Fix a non-integer rational r > 1. If φ : Q≥r → R satisfies

i) φ(xy) = φ(x)φ(y),
ii) x < y ⇒ φ(x) < φ(y),
iii) φ(r) = s ∈ Q>1,

then φ(x) = xlogr s.
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Proof. For any x ∈ R≥r \Q≥r, there exists a monotone increasing sequence of rational
numbers {yk} → z. We can uniquely extend the domain of φ to R≥r by defining the
sequence of functions

φk(x) =

{
φ(x) x ∈ Q≥r

φ(yk) {yk} → x ∈ R≥r \Q≥r
.

Define φ̃(x) = limk→∞ φk(x). By ii), the sequences {φ(yk)} are monotone increasing
and bounded by φ(s) for any rational s > x, which ensures that φ̃(x) and that {φk(x)}
is uniformly continuous and that {φk(x)} converges uniformly to φ̃(x) for irrational x.
Continuity then follows immediately. Further, for all x1, x2 ∈ R≥r, let {yk} → x1 and
{zk} → x2. We can write

φ̃(x1x2) = lim
k→∞

φ(ykzk) = lim
k→∞

φ(yk)φ(zk) = φ̃(x1)φ̃(x2),

so φ̃ also satisfies i) and ii) and iii). We will now write φ to mean the unique con-
tinuous extension of our original map that satisfies these three properties.

For x ≥ 1, define ψ(x) = log (φ(rx)). Since φ is continuous, so too is ψ. Then for
x, y ≥ 1,

ψ(x+ y) = log
(
φ(rx+y)

)
= log (φ(rx)φ(ry)) = log(φ(rx)) + log(φ(ry)) = ψ(x) + ψ(y).

Which means that ψ satisfies Cauchy’s functional equation 4. As such, we have that
ψ(x) = cx for some real value x. Using algebra, it follows that ecy = φ(ry). When
y = 1, we have ec = φ(r) = s, which implies that c = log s, and hence φ(ry) = ex log s.
Given x in the domain, we can write x = rlogr x, where the exponent is larger than 1,
which means that

φ(x) = φ(rlogr x) = e
log x log s

log r = xlogr s,

as desired. □
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