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Abstract

In order to predict the spread of outbreaks of vector-host diseases such as dengue
fever and malaria, researchers create compartmental models which employ ordinary dif-
ferential equations. It is an expanding problem of interest to investigate the structural
or a priori identifiability and the practical identifiability of compartmental models. We
compare the accuracy and efficiency of multiple methods for computing structural and
practical identifiability of an SIS (Susceptible-Infected-Susceptible) vector-host model.
We performed structural identifiability analysis of the model via a differential algebra
approach, an approximation of the differential algebra approach using truncated power
series and modulo arithmetic, and a combination of the differential algebra approach
and the Taylor series approach. We also performed practical identifiability analysis of
the model via the Monte Carlo and Profile Likelihood methods. We found that there
were instances where the approximation of the differential algebra approach differed
from the results of the combination of the differential algebra approach and Taylor se-
ries approach, and computed the structural identifiability of models with certain fixed
parameters and initial conditions. For the Monte Carlo method, we found that the
choices of both the error model and the initial guess of parameters have a large impact
on practical identifiability results. For profile likelihood, we derive formula for comput-
ing profile likelihood for relative normal noise distribution, and we explore how data
and different noise distributions can impact parameter estimation, confidence intervals,
and identifiability.
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1 Introduction

The study of vector borne diseases is pivotal in mitigating the mortality rate in countries
with tropical climates. According to the World Health Organization, vector borne diseases
comprise at least 17% of all infectious diseases[WHO, 2020]. In 2020, there were approxi-
mately 670,000 deaths worldwide due to malaria alone, with dengue fever contributing to
approximately 22,000 deaths, most of which were children [NIAID, 2016]. Vector-borne
diseases are infectious diseases that spread through some other organism, called a vector,
to humans, rather than directly from human to human [Brauer et al., 2008]. The Bubonic
plague, which spread through rats, decimated Europe’s population in the 14th century, pro-
viding an early example of a vector-borne disease [Glatter and Finkelman, 2021]. Malaria
and dengue fever are both caused parasites which are transmitted through mosquitoes.

With the advent of the Severe Acute Respiratory Syndrome Corona Virus Infection
(SARS-CoV-1), epidemiological data is more prevalent than ever. This great increase in
the prevalence of epidemiological data in recent years may cause researchers to experience
the pitfall of trying to predict the spread of a disease solely based on available data or on
the basic reproductive number R0. R0 is a decisive tool in infectious disease modelling, and
is defined as the expected number of secondary infections produced by an index case in a
completely susceptible population [Brauer et al., 2008]. R0 can be used to determine the
peak infection and final size of an epidemic [Brauer et al., 2008]. Issues arise in predicting
the spread of an infectious disease occurs at the beginning of a pandemic or epidemic, when
epidemiological data is widely unavailable and unreliable. While an expression for R0 can be
easily created based on the model’s equations, the parameters within the expression cannot
be easily estimated when there is a lack of available data. The beginning of a pandemic is
the time communities must implement measures to combat the disease’s spread, and thus
one of the most important times to be able to predict the spread disease. It is extremely
difficult to accurately estimate R0 at this point in an epidemic based on data, as the
majority of the data does not exist. The lack of clinical data at this point in a pandemic
also renders most data-based methods of prediction mute, calling for other methods of
mathematical prediction. Compartmental models can be used to predict the spread of an
epidemic or pandemic without relying on data. Compartmental models are deterministic
models comprised of systems of Ordinary Differential Equations (ODEs). These models
divide the population into time-based sections which represent the status of an individual
with respect to the disease [Brauer et al., 2008].

Identifiability is a measure of whether the parameters of a model can be uniquely iden-
tified with the measurement data of input and output variables. Structural identifiability
deals with continuous, noise-free data, while practical identifiability deals with data which
contains noise. In order to estimate the true parameters of a compartmental model, that
model must be both structurally and practically identifiable. Our goal is to compare differ-
ent methods of calculating structural and practical identifiability of simple SIS vector-host
compartmental models. To compute structural identifiability we use the differential algebra

3



approach, a combination of the differential algebra approach and the Taylor series approach,
and the Exact Arithmetic Rank approach (EAR). We compute practical identifiability via
the Monte Carlo simulation method as well as the profile likelihood approach.

2 Epidemiological Model

We focus on a Susceptible-Infected-Susceptible (SIS) vector-host model, where hosts can
only be infected by vectors, and vice versa. Hosts do not gain immunity after recovering
from infection, nor do vectors recover from infection at all. It is assumed that a vector’s
lifespan is too small to encompass recovery. The model has the following form:

S′
h = Πh − µhSh − βhShIv + γIh,

I ′h = βhShIv − (µh + γ)Ih,

S′
v = Πv − µvSv − βvSvIh,

I ′v = βvSvIh − µvIv.

(1)

with initial conditions Sh(0) = S
(0)
h , Sv(0) = S

(0)
v , Sv(0) = S

(0)
v , Iv(0) = I

(0)
v [Brauer et al., 2008,

p. 170]. In this model, µh represents the removal or death rate of the host population, while
µv represents the removal or death rate of the vector population. Πh represents the birth
rate of the host population, while Πv represents the birth rate of the vector population.
The infection rate for hosts is βh, while the infection rate for vectors is βv. Notice that βh
interacts with the susceptible population of hosts and infected population of vectors, indi-
cating that hosts can only be infected by an infected vector, and the situation is vice versa
for βv. γ represents the recovery rate of infected hosts. It is assumed that once a host is
no longer infected, they return to the susceptible compartment, and do not gain immunity.
It is assumed that the lifespan of a vector is too small for a vector to experience recovery,
thus there is no recovery rate for vectors. Another version of this model we studied can
be found by scaling our infection terms by population size, depicted in the following ODE
system:

S′
h = Πh − µhSh −

βhShIv
Nv

+ γIh,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

S′
v = Πv − µvSv −

βvSvIh
Nh

,

I ′v =
βvSvIh
Nh

− µvIv.

(2)

where Nh = Sh + Ih and Nv = Sv + Iv. We see that these satisfy the differential equations
dNh
dt = Πh − µhNh,dNv

dt = Πv − µvNv. Additionally, when our population is fixed (Inital
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Conditions S
(0)
h + I

(0)
h = Πh

µh
, S

(0)
v + I

(0)
v = Πv

µv
), these models can be made equivalent by

setting the βh and βv in 1 to the values of βh
Nv

and βv

Nh
from 2.

Additionally, as long as the population size is fixed, the model 2 is invariant to what the
population size is. If we consider the percentages of the population in each compartment,(

Sh

Nh

)′
= Πh − µh

Sh

Nh
− βhShIv

NhNv
+ γ

Ih
Nh

,(
Ih
Nh

)′
=

βhShIv
Nv

− (µh + γ)Ih,(
Sv

Nv

)′
= Πv − µvSv −

βvSvIh
Nh

,(
Iv
Nv

)′
=

βvSvIh
Nh

− µvIv.

(3)

We see that 3 is 2, with percentage of the population in each compartment substituted in.
Next, we analyze the model by calculating the R0 value using the next generation matrix

method.

R0 =

√
βh
µv

βv
µh + γ

(4)

This is the product of the new infections from an infected vector
(
βh
µv

)
and the new infections

from an infected host
(

βv

µh+γ

)
. Since it takes two generations for an infection to go from a

host to a vector and then back to a host, the R0 value is the square root is this product.
We then find the equilibria of the model. When R0 ≤ 1, the only equilibrium is the

disease-free one of Sh = Πh
µh

, Sv = Πv
µv

, Ih = Iv = 0. However, when R0 > 1, we have the
endemic equilibrium of

Sh = Nh

µh + γ + βh

R2
0

µh + γ + βh

Ih = Nhβh
1− 1

R2
0

µh + γ + βh

Sv = Nv

µv +
βv

R2
0

µv + βv

Iv = Nvβv
1− 1

R2
0

µv + βv

(5)

At this equilibrium, we see that the ratio

Ih/Nh

Iv/Nv
=

βh
βv

µv + βv
µh + γ + βh
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3 Structural Identifiability

In order to estimate the true parameters of an epidemiological model via practical identifi-
ability, it is first necessary to determine whether or not a model is structurally identifiable.
Identifiability is a measure of whether or not a model can be uniquely identified with the
measurement data of input-output variables. To compute structural identifiability, we as-
sume both that our data is noise free and that our model experiences no errors. We used
3 methods to quantify structural identifiability: the differential algebra approach, a mix of
the Taylor series approach and differential algebra approach, and finally the exact arith-
metic rank approach. The corresponding programs we used to generate results are the
Differential Algebra Identifiability of SYstems software (DAISY) in Reduce, the Systems
Identifiability ANalyzer (SIAN) software in Maple, and the IdentifiabilityAnalysis package
in Wolfram Alpha.

3.1 Differential Algebra Approach

DAISY stands for Differential Algebra for Identifiability of SYstems . DAISY implements
a mixed differential algebra algorithm [Bellu et al., 2007]. The software implements Ritt’s
algorithm to eliminate state variables which happen to be non-observable in order to cal-
culate coefficients of an input-output relation [Bellu et al., 2007]. The coefficients of the
input-output relation are linearly parameterized by algebraic functions of unknown param-
eters, called the exhaustive summary [Bellu et al., 2007]. This input-output relation is then
solved via the Buchberger algorithm, and returns a gröbner basis [Bellu et al., 2007]. This
basis is used to determine the number of solutions to the system, which in tern determines
the identifiability of the system.

One reason why one may choose to use DAISY over other software for computing struc-
tural identifiability is that the accuracy of DAISY is not determined via a given probability.
Some cons about DAISY occur when testing the structural identifiability of a non-linear
systems. When compared with the other algorithms used to compute structural identifia-
bility, DAISY was the slowest method. Running structural identifiability on systems which
were not quickly solved often took weeks, and many of the models we ran returned no
answer in terms of identifiability due to a memory error. Compared to the SIAN and EAR
methods, DAISY took the largest toll on the hardware it was being run on, using large
amounts of RAM and memory.

3.2 Differential Algebra and Taylor Series Approach

Some of the models which we studied were too computationally heavy to determine iden-
tifiability via the differential algebra approach DAISY uses. In these cases, we decided to
switch from the DAISY software in reduce to the SIAN software in Maple. SIAN stands
for Structural Identifiability ANalyzer [Hong et al., 2020]. SIAN is a Monte Carlo random-
ized algorithm [Hong et al., 2020]. Because assessing global identifiability is an extremely
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complex problem, many software first attempt to determine local identifiability, which is
a much less computationally expensive problem [Hong et al., 2020]. In terms of outputs,
SIAN returns whether or not each unknown parameter or initial condition is globally iden-
tifiable, locally but not globally identifiable, or non-identifiable. SIAN’s algorithm is based
on a combination of a differential algebra approach and a Taylor Series approach. The
fact that SIAN uses user-defined probability to set the correctness of it’s resulting outputs
makes SIAN stand out from other identifiability programs [Hong et al., 2020].

A simple abstraction of the identifiability problem is to think of the problem as a
map between unknown parameters and unknown initial conditions which are connected by
fibers to the output data, which represents the functions of the corresponding solution.
The next step is to formalize this mapping using differential algebra, reducing this map
to a new map between finite dimensional spaces [Hong et al., 2020]. The method used
to reduce this map to a map between finite dimensional spaces is to replace the output
function with a truncation of its Taylor series using theorem 3.16 to provide criterion
which contains enough information for the identifiability checking. This is accomplished
via choosing the fiber of a randomly chosen point as opposed to a generic fiber, using the
Demillo-Lipton-Schwartz-Zippel Lemma [Hong et al., 2020]. After considering a fiber at a
random point, the problem turns into checking the consistency of a system of polynomial
equations and inequations [Hong et al., 2020]. There are 3 approaches to this problem:
symbolic, symbolic-numeric, and numeric. Researchers were surprised to find that Gröbner
bases computations are efficient enough for moderate-size problems and significantly out
preformed numerical algebraic geometry software [Hong et al., 2020].

3.3 Exact Arithmetic Rank Approach

The most computationally efficient approach we found for computing the structural iden-
tifiability of various SIS models was the Exact Arithmetic Rank approach (EAR) soft-
ware available in the IdentifiabilityAnalysis package in Mathematica. This software uses
an approximation of the differential algebra approach to compute structural identifiabil-
ity [Karlsson et al., 2012]. Some reasons why the EAR approach might not be used to
compute structural identifiabililty include the fact that the approach is only accurate to a
specified probability, as well as the fact that the Wolfram Alpha package is only capable of
identifying whether or not a parameter is locally identifiable [Karlsson et al., 2012]. This
is evident in cases when the output of the Mathematica software differs from the output
of the Maple software. Some reasons why many would prefer the EAR approach to other
methods of computing structural identifiabililty include that EAR produces results faster
than the Maple or DAISY approaches, as well as the fact that the EAR approach uses
much less RAM and space in memory than the other approaches. The EAR software was
created to be a more computationally efficient alternative to DAISY, specifically to combat
the expression swell DAISY often encounters. Expression swell occurs when the integers
in computations become too large for the device calculating the computations to handle.
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DAISY usually encounters expression swell when it uses repeated Lie Derivatives to directly
calculate the Jacobian matrix [Karlsson et al., 2012]. Rather than using Lie Derivatives,
EAR software indirectly calculates the entries of the Jacobian using truncated power se-
ries expansion of partial derivatives of the output with respect to initial conditions and
parameters [Karlsson et al., 2012]. Another difference between DAISY and EAR is that
EAR software cuts down on time by doing calculations using modulo of a large prime num-
ber, rather than the exact values, which prevents the risk of switching to slow software
arithmetics for large integers [Karlsson et al., 2012].

4 Practical Identifiability

4.1 Monte Carlo Simulation

1. We start by solving the model numerically at the true parameters θ0 at the discrete
points in time {ti}ni=0. We used MATLAB ode45, and chose tj to be the data for day
j. This gives n+1 evenly spaced points, one for every day between day 0 and day n.
We then take our observations of this data, defined as the function g(ti,θ0).

We generally have these observations be prevalence data, the size of the population
currently in the infected compartments. But they can also be incidence data, the
number of new infections since the last observation, or cumulative data, the current
total of infections in the epidemic.

2. We create M (generally 1000) sets of data with noise using the following model

yi = g(ti,θ0) + (g(ti,θ0))
ξϵi (6)

where ϵi are error distributions. We chose ϵi to be normally distributed with variance
σ2, which makes them i.i.d.

The amount in which noise scales with the size of our observations is determined by ξ.
When ξ = 0(absolute noise), the noise does not scale with the size of our observations.
When ξ = 1(relative noise), the noise is percentage error, completely scaled with the
magnitude of the observations[Capaldi et al., 2012]. We chose relative noise, following
[Tuncer and Le, 2018],

3. Next, we define an objective function to measure how parameters fit the noisy data.
We used the least squares method, which results in 7[Capaldi et al., 2012]. In addi-
tion, in order to decrease the computation time of ode45, we set our objective function
to return 1010 if any parameter was either negative or greater than 100.

θj = argmin
θ

n∑
i=1

1

(g(ti,θ))2ξ
|yi − g(ti,θ)|2 (7)
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For our objective function, we chose ξ = 0, ordinary least squares(OLS). To solve for
θj in 7, we used the Nelder-Mead algorithm implemented by the MATLAB function
fminsearch[Lagarias et al., 1998].

4. Finally, we find the average relative error value for each parameter

ARE(θ(k)) = 100%
1

M

M∑
j=1

∣∣∣θ(k)j − θ
(k)
0

∣∣∣
θ
(k)
0

(8)

We consider θ(k) practically identifiable if ARE(θ(k)) ≤ σ[Tuncer and Le, 2018].

4.1.1 Factors Independent of Model Structure

When running the Monte Carlo method on a model, there are many factors which influence
results but are independent of the model structure. Some of these are from the data used
when fitting parameters, and others are from the methods of fitting parameters to the data.
But they each have an impact on the practical identifiability results.

These factors include the time span that observations occur over, as well as how fre-
quently they occur. They also include the type of data we use, and which populations
we have data for. For the vector-host model, it is possible that there is data for only one
of the populations, as obtaining accurate vector data may be difficult. For each of these
possibilities, we investigated the identifiability of prevalence, incidence, and cumulative
data.

For cumulative data, we can have our usual error model, which scales noise based on
cumulative data. Or we can view cumulative data as the sum of noisy incidence data. Let
I(ti,θ) be incidence observations, and C(ti,θ) be cumulative observations. When our error
is in cumulative observations, our noisy data is

yi = C(ti,θ) + C(ti,θ)N (0, σ2)

= C(ti,θ) +N

0, σ2

 i∑
j=0

I(tj ,θ)

2 (9)

But if it’s in incidence observations,

yi =

i∑
j=0

I(ti,θ) + I(ti,θ)N (0, σ2)

= C(ti,θ) +
i∑

j=1

N (0, σ2(I(ti,θ))
2)

= C(ti,θ) +N

0, σ2
i∑

j=0

(I(tj ,θ))
2


(10)
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Since
∑i

j=0(I(tj ,θ))
2 ≤

(∑i
j=0 I(tj ,θ)

)2
, if the noise is in incidence data, the variance is

less than if it is in cumulative data.
In the process of fitting parameters to the data, there are also the choices of error model

and objective function. We can choose between relative noise and absolute noise, as well as
between ordinary and generalized least squares. And for the vector-host model, we must
choose if the absolute noise and ordinary least squares scale with population size.

Finally, we must choose the optimization method. This includes the choice of optimiza-
tion algorithm, and if the algorithm takes in bounds, the choice of bounds. It also includes
the initial guess for the value of parameters.

4.2 Profile Likelihood

The maximum likelihood approach to estimating parameters view the ODE model as a
statistical model and try to answer the question, “What parameters of the ODE model
best generate the observed data?” Rather than viewing the observed data as random, the
data is fixed and the parameters are unknown. The maximum likelihood approach exploits
the fact that information is known about the distribution that the observed data come
from to better estimate parameters. For instance, if the noisy data come from a Poisson
distribution, then the objective function should use this fact to better fit the parameters.
The maximum likelihood approach give us a natural way to incorporate knowledge of the
noise distribution into the objective function. Furthermore, pointwise and simultaneous
likelihood-based confidence intervals can be easily calculated for each parameter. Lastly,
profile likelihood allows for a graphical method to check for identifiability through confidence
intervals.

4.2.1 Maximum Likelihood Approach

The following two definitions are attributed to Larson’s “An Introduction to Mathematical
Statistics and Its Applications” [Larsen and Marx, 2006].

Definition 4.1. Let y = (y1, y2, . . . , yn) be a random sample of size n from the probability
distribution function/probability mass function fY (yi;θ), where θ is a vector of unknown
parameters. The likelihood function is

L(θ|y) =
n∏

i=1

fY (yi;θ). (11)

Definition 4.2. Let L(θ|y) = fY (yi;θ) be the likelihood function corresponding to the
random samples y = (y1, y2, . . . , yn) sampled from a probability distribution, where θ is
an unknown parameter. Let θ̂ be a value of the parameter such that L(θ̂) ≥ L(θ) for all
possible values of θ. Then, θ̂ is called a maximum likelihood estimate for L(θ|y).
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For parameter estimation, we need to maximize the likelihood function. We will now
reframe the system of ordinary differential equations and the observed data as a statistical
model [Raue et al., 2009].

Definition 4.3. A model can be described by

ẋ(t) = f(x(t),θ) (12)

where x denotes the state variables and θ denotes the parameters. Furthermore, let

y(t) = g(x(t),θ) + ε(t) (13)

where g is the observation function and ε is the measurement noise.

We will now find the maximum likelihood estimate when the measurement error ε(t) ∼
N (0, σ2), the observed data y ∼ Poi(g(ti,θ)), and the measurement error ε(t) ∼ N (0, (η ·
g(ti,θ))

2). Note that instead of writing g(x(t),θ), we will write g(t,θ).

Example 4.4 (Measurement error follow a normal distribution with known variance σ2

[Raue et al., 2009].). Suppose that the measurement errors follow the distribution N (g(ti,θ), σ
2)

with unknown parameter θ and known mean µ = 0 and variance σ2. We wish to find the
parameter vector θ̂ that maximize the likelihood. The likelihood is

L(θ|y) = 1

(2πσ2)n/2
e−(1/2)

∑n
i=1(yi−g(ti,θ))

2/σ2
. (14)

We will find the negative log-likelihood as this transform the maximization problem to a
minimization problem. The negative log-likelihood is

− 2 logL(θ|y) = n log 2π + n log σ2 +
n∑

i=1

(yi − g(ti,θ))
2/σ2 (15)

or

− 2 logL(θ|y) = const +
n∑

i=1

(yi − g(ti, u,θ))
2/σ2. (16)

Thus, the maximum likelihood estimate is

θ̂ = argmin
θ

n∑
i=1

(yi − g(ti, u,θ))
2/σ2. (17)

Note 4.5. Example 4.4 can be extended to for arbitrary number of observations. It can
be shown that

χ2(θ) =
m∑
j=1

n∑
i=1

(
yij − g(tij ,θ)

σij

)2

(18)

where yij is the ith data point of the jth observable and g(tij ,θ) is the ith data point of
the jth observable predicted by the parameter θ at time point tij . [Raue et al., 2009].
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Note 4.6. For n observations y1,y2, . . . ,yn, the negative log-likelihood function is

−2 logL(θ|y1,y2, . . . ,yn) =
n∑

i=1

−2 logL(θi|yi)

where −2 logL(θi|yi) is the negative log-likelihood function for the observation yi. The
maximum likelihood estimation of −2 logL(θ|y1,y2, . . . ,yn) is

θ̂ =

n∑
i=1

θ̂i

where θ̂i is the maximum likelihood estimate of the negative log-likelihood −2 logL(θi|yi).

In the paper Identifiability and observability analysis for experimental design in non-
linear dynamical models by Raue et. al., they were studying biochemical reactions in the
field of system biology and specifically, the erythropoietin (Epo) and Epo receptor inter-
action. Due to a systematic error in their measurement device, there choose for their
measurement error to follow normal distribution with mean µ = 0 and known variance
σ2. The concentration of Epo is expected to follow the measurement error sampled by
N (0, σ2) at each time step [Raue et al., 2010]. However, while this assumption might be
reasonable in the context of system biology, it might not be reasonable to choose a mea-
surement error that follow the normal distribution N (0, σ2). It have been shown and
justified that epidemiological data can follow a Poisson distribution [Capaldi et al., 2012,
Flanders and Kleinbaum, 1995]. Furthermore, if the error is relative to the number of in-
fected cases, then it would also be reasonable to consider a relative error model. As such,
we will find the maximum likelihood estimate when the observed data follow the Poisson
distribution and the measurement error follow a relative error distribution.

Example 4.7 (Observed data follow a Poisson distribution [Eisenberg, 2009].). Suppose
that the observed data are given by Poisson random variables with mean g(ti, u, θ) for
1 ≤ i ≤ n. Let the observed data be denoted by y = (y1, y2, . . . , yn) and assume that the
data is independent. Then, the likelihood is

L(θ|y) =
n∏

i=1

g(ti,θ)
yie−g(ti,θ)

yi!
. (19)
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The negative log-likelihood function is

−2 logL(θ|y) = −2 log

(
n∏

i=1

g(ti,θ)
yie−g(ti,θ)

yi!

)
(20)

= −2
n∑

i=1

log

(
g(ti,θ)

yie−g(ti,θ)

yi!

)
(21)

= −2
n∑

i=1

(
log(g(ti, u,θ)

yi) + log(e−g(ti,θ))− log(yi!)
)

(22)

= −2
n∑

i=1

log(g(ti, u,θ)
yi) + 2

n∑
i=1

g(ti,θ) + 2
n∑

i=1

log(yi!). (23)

Since the last term is a constant, the maximum likelihood estimate is

θ̂ = argmin
θ

−2
n∑

i=1

log(g(ti, u,θ)
yi) + 2

n∑
i=1

g(ti,θ). (24)

Example 4.8 (Measurement error follow a relative error distribution.). Suppose that the
measurement errors follow a normal distribution with mean µ = 0 and variance (η·g(ti,θ))2.
We wish to find the parameter vector θ̂ that maximize the likelihood. Then, the likelihood
is

L(θ|y) =
n∏

i=1

1

η · g(ti,θ)
√
2π

e−
1
2
(yi−g(ti,θ)/ηg(ti,θ))

2

(25)

=
1

(η22π)n/2
e
− 1

2η2

∑n
i=1(yi−g(ti,θ)/g(ti,θ))

2
n∏

i=1

1

g(ti,θ)
. (26)

The negative-log likelihood is

−2 log(θ|y) = n log η2 + n log 2π +
1

η2

n∑
i=1

(
yi − g(ti,θ)

g(ti,θ)

)2

+ 2

n∑
i=1

log g(ti,θ) (27)

or

− 2 log(θ|y) = const +
1

η2

n∑
i=1

(
yi − g(ti,θ)

g(ti,θ)

)2

+ 2

n∑
i=1

log g(ti,θ). (28)

Thus, the maximum likelihood estimate is

θ̂ = argmin
θ

1

η2

n∑
i=1

(
yi − g(ti,θ)

g(ti,θ)

)2

+ 2
n∑

i=1

log g(ti,θ). (29)
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Likelihood-based confidence intervals can be constructed for each parameter using the
negative log-likelihood function and a threshold ∆α. The following definitions for confidence
intervals, profile likelihood, and identifiability is attributed to Raue et. al.’s Structural and
practical identifiability analysis of partially observed dynamical models by exploiting the
profile likelihood [Raue et al., 2009].

Definition 4.9. The likelihood-based confidence interval is

CI = {θ|χ2(θ)− χ2(θ̂) < ∆α} (30)

where χ2 is the negative-log likelihood, θ̂ is the fitted parameters, and ∆α is the α-quantile
of the Chi-squared distribution χ2 of degree of freedom df . We choose df = 1 for pointwise
confidence interval and df = number of unknown parameters for simultaneous confidence
intervals.

4.2.2 Profile Likelihood

The idea behind profile likelihood is that we explore a one-dimensional space of the negative
log-likelihood function by keeping one parameter fixed while optimizing the rest of the
unknown parameters.

Definition 4.10. Profile likelihood is defined as

χ2
PL(θi) = min

θj ̸=i

χ2(θ) (31)

where χ2 is the negative log-likelihood.

The likelihood-based confidence region is determined by the intercepts of the χ2
PL and

the threshold.

Definition 4.11. If the likelihood-based confidence region is infinitely extending in one or
both directions, then the parameter estimate θ̂i is practically non-identifiable.

If a parameter estimate θ̂i is practically non-identifiable, then any other parameter
within the neighborhood of θ̂i is as likely as θ̂i to generate the observed data.

Definition 4.12. If a parameter θi has a finite confidence interval and a unique minimum,
then the parameter θi is practically identifiable.

If an unique minimum does not exists, then there is more than one parameter values
that is equally as likely to generate the observed data. Then, the parameter θi is locally
non-identifiable.
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5 Results

5.1 Structural Identifiability

We computed structural identifiability, and recorded the results per parameter according
to the key below. The outputs of each model is depicted on the y axis, while the inputs
are depicted on the x axis. Initial conditions are depicted with Ih(0), Iv(0), Sh(0), Sv(0).
Fixed parameter values are represented in the chart by the value itself. Locally identifiable
parameters are represented in blue, while globally identifiable parameters are represented in
purple, non identifiable parameters are represented in red, and finally, errors are represented
in orange.

Key
Black Text Fixed parameter

Not applicable
Locally Identifiable
Globally identifiable
Non-identifiable
Error

5.1.1 DAISY

The structural identifiability results from DAISY are depicted in the chart below. The
DAISY codes used to generate these results are available in the appendix. Because DAISY
took approximately 3 to 7 days to reach error conclusions, we stopped using DAISY for
structural identifiability results.

DAISY All Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0)

Ih, Iv
Ih
Iv
Ch, Cv
Ch
Cv

5.1.2 SIAN

The structural identifiability results from SIAN are depicted in the chart below. The SIAN
codes used to generate these results are available in the appendix. The first model we tested
the structural identifiability of is depicted below.
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S′
h = Πh − µhSh −

βhShIv
Nv

+ γIh

S′
v = Πv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(32)

Below are the structural identifiability results of the above model. SIAN gave Kernel
Errors for the outputs of Ih and Iv.

SIAN No Fixed Parameter Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv .922 s
Ih
Iv

This is the model used to generate cumulative cases with no fixed parameters.

S′
h = Πh − µhSh −

βhShIv
Nv

+ γIh

S′
v = Πv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(33)

Below are the structural identifiability results of the above model. SIAN gave Kernel
Errors for the outputs of Ch and Cv.

SIAN Cumulative Case No Fixed Parameter Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 269.092 s
Ch
Cv
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Here is the fixed demographic model. By setting the birth rates equal to the death
rates, we keep the population constant.

S′
h = µh − µhSh −

βhShIv
Nv

+ γIh

S′
v = µv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(34)

Below are the structural identifiability results of the above model. SIAN gave Kernel
Errors for the outputs of Ih and Iv.

SIAN Fixed Demographic Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv µh µv 1.440 s
Ih µh µv

Iv µh µv

Here is the cumulative case model for fixed demographics.

S′
h = µh − µhSh −

βhShIv
Nv

+ γIh

S′
v = µv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(35)

Below are the structural identifiability results of the above model. SIAN gave Kernel
Errors for the outputs of Ch and Cv.
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SIAN Cumulative Cases Fixed Demographic Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv µh µv 31.727 s
Ch µh µv

Cv µh µv

Here is the model with fixed µh and µv values.

S′
h = Πh −

1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = Πv −

9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

(36)

Below are the structural identifiability results of the above model. It is of interest to
note that these parameter results differ from the outputs given by the exact arithmetic
rank software. The EAR software ran the same model with Iv as the output, and found
Πv and Sv(0) to be locally structurally identifiable rather than unidentifiable, and βv being
non-identifiable. This also happened with the Ih output, with βv being locally structurally
identifiable according to the EAR software.

SIAN Fixed µh, µv

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ih, Iv 1

25000
9

100 11.7 s
Ih 1

25000
9

100 27.835 s
Iv 1

25000
9

100 27.720 s
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Here is the model used to generate cumulative case results with fixed µh and µv values.

S′
h = Πh −

1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = Πv −

9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(37)

Below are the structural identifiability results of the above model.
SIAN Cumulative Case Fixed µ

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ch, Cv 1/25000 9/100 3.454 s
Ch 1/25000 9/100
Cv 1/25000 9/100

Here are the equations with 3 fixed parameters: µh, µv, and γ.

S′
h = Πh −

1

72.6 · 365
Sh −

βhShIv
Nv

+
1

10
Ih

S′
v = Πv −

1

46
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

72.6 · 365
+

1

10
)Ih,

I ′v =
βvSvIh
Nh

− 1

46
Iv

(38)

Below are the structural identifiability results of the above model. It is of interest to
note that these parameter results differ from the outputs given by the exact arithmetic
rank software. The EAR software ran the same model with Iv as the output, and found
Πv and Sv(0) to be locally structurally identifiable rather than unidentifiable, and βv being
non-identifiable. This also happened with the Ih output, with βv being locally structurally
identifiable according to the EAR software.

SIAN Fixed µh, µv, γ

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ih, Iv 1/(72.6 · 365) 1/46 0.1 1.297 s
Ih 1/(72.6 · 365) 1/46 0.1 1.372 s
Iv 1/(72.6 · 365) 1/46 0.1 1.291 s
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Here is the cumulative case system of equations with 3 fixed parameters: µh, µv, and γ.

S′
h = Πh −

1

72.6 · · · 365
Sh −

βhShIv
Nv

+
1

10
Ih

S′
v = Πv −

1

46
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

72.6 · · · 365
+

1

10
)Ih,

I ′v =
βvSvIh
Nh

− 1

46
Iv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(39)

Below are the structural identifiability results of the above model. It is of interest to
note that these parameter results differ from the outputs given by the exact arithmetic
rank software. The EAR software ran the same model with Cv as the output, and found
Πv and Sv(0) to be locally structurally identifiable rather than unidentifiable, and βv being
non-identifiable. This also happened with the Ch output, with βv being locally structurally
identifiable according to the EAR software.

SIAN Cumulative Case Fixed µh, µv, γ

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv
1

72.6 · 365
1

46

1

10
1.677 s

Ch
1

72.6 · 365
1

46

1

10
65.985 s

Cv
1

72.6 · 365
1

46

1

10
57.212 s

Below is the model with fixed values for µh, µv,Πh, and Πv.

S′
h =

100

25000
− 1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = 90− 9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

(40)

Below are the structural identifiability results of the above model, which agree with the
EAR results.
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SIAN Fixed µh, µv,Πh,Πv

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ih, Iv 1

25000
9

100
100

25000 90 .683 s
Ih 1

25000
9

100
100

25000 90 1.677 s
Iv 1

25000
9

100
100

25000 90 1.001 s

Below is the cumulative case model with fixed values for µh, µv,Πh, and Πv.

S′
h =

100

25000
− 1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = 90− 9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv,

C ′
h =

βhShIv
Nv

,

C ′
v =

βvSvIh
Nh

(41)

Below are the structural identifiability results of the above model, which agree with the
EAR results.

SIAN Cumulative Case Fixed µh, µv,Πh,Πv

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ch, Cv 1

25000
9

100
100

25000 90 1.206 s
Ch 1

25000
9

100
100

25000 90 557.188 s
Cv 1

25000
9

100
100

25000 90 15.245
Below is the model with fixed values for Πh, and Πv.

S′
h =

100

25000
− µhSh −

βhShIv
Nv

+ γIh

S′
v = 90− µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(42)

Below are the structural identifiability results of the above model, which agree with the
EAR results.
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SIAN Fixed Πh,Πv

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ih, Iv 100/25000 90 1.322 s
Ih 100/25000 90
Iv 100/25000 90 3343.054

Below is the cumulative case model for fixed values of Πh and Πv.

S′
h =

100

25000
− µhSh −

βhShIv
Nv

+ γIh

S′
v = 90− µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv,

C ′
h =

βhShIv
Nv

,

C ′
h =

βvSvIh
Nh

(43)

Below are the structural identifiability results of the above model, which agree with the
EAR results.

SIAN Cumulative Case Fixed Πh,Πv

µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing
Ch, Cv 100/25000 90 11.618
Ch 100/25000 90
Cv 100/25000 90

5.1.3 EAR

The structural identifiability results from the Wolfram Alpha IdentifiabilityAnalysis package
are depicted in the charts below. These results treat initial conditions as variables. We also
ran structural identifiability for all of the models below in EAR for fixed initial conditions,
and found all of the parameters for all of the models to be structurally identifiable. and
found The EAR codes used to generate these results are available in the appendix. The
first model we tested the structural identifiability of in Wolfram Alpha is depicted below.
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S′
h = Πh − µhSh −

βhShIv
Nv

+ γIh

S′
v = Πv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(44)

Below are the structural identifiability results of the above model. No errors were given
for the outputs of Ih and Iv.

EAR No Fixed Parameter Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv 0.640625 s
Ih 0.5625 s
Iv 0.546875 s

This is the model used to generate cumulative cases with no fixed parameters.

S′
h = Πh − µhSh −

βhShIv
Nv

+ γIh

S′
v = Πv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(45)

Below are the structural identifiability results of the above model. This method gave
no errors for the outputs of Ch and Cv.

EAR Cumulative Case No Fixed Parameter Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 0.8125 s
Ch 1.34375 s
Cv 1.45313 s
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Here is the fixed demographic model. By setting the birth rates equal to the death
rates, we keep the population constant.

S′
h = µh − µhSh −

βhShIv
Nv

+ γIh

S′
v = µv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(46)

Below are the structural identifiability results of the above model. EAR gave no errors
for the outputs of Ih and Iv.

EAR Fixed Demographic Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv µh µv 0.421875 s
Ih µh µv 0.421875 s
Iv µh µv 0.453125 s

Here is the cumulative case model for fixed demographics.

S′
h = µh − µhSh −

βhShIv
Nv

+ γIh

S′
v = µv − µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(47)

Below are the structural identifiability results of the above model. EAR gave no errors
for the outputs of Ch and Cv.
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EAR Fixed Cumulative Case Demographic Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv µh µv .75 s
Ch µh µv .5625 s
Cv µh µv 0.53125 s

Here is the model with fixed µh and µv values.

S′
h = Πh −

1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = Πv −

9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

(48)

Below are the structural identifiability results of the above model. It is of interest to
note that these parameter results differ from the outputs given by the SIAN software. The
EAR software ran the model with Iv as the output, and found Πv and Sv(0) to be locally
structurally identifiable rather than unidentifiable, and βv being non-identifiable. This also
happened with the Ih output, with βv being locally structurally identifiable according to
the EAR software.

EAR Fixed µh, µv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv 1/25000 9/100 0.640625 s
Ih 1/25000 9/100 1.125 s
Iv 1/25000 9/100 0.578125 s

Here is the model used to generate cumulative case results with fixed µh and µv values.
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S′
h = Πh −

1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = Πv −

9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(49)

Below are the structural identifiability results of the above model.

EAR Cumulative Fixed µh, µv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 1/25000 9/100 .8125 s
Ch 1/25000 9/100 0.5625 s
Cv 1/25000 9/100 .625 s

Here are the equations with 3 fixed parameters: µh, µv, and γ.

S′
h = Πh −

1

72.6 · 365
Sh −

βhShIv
Nv

+
1

10
Ih

S′
v = Πv −

1

46
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

−
(

1

72.6 · 365
+

1

10

)
Ih,

I ′v =
βvSvIh
Nh

− 1

46
Iv

(50)

Below are the structural identifiability results of the above model. It is of interest to
note that these parameter results differ from the outputs given by the SIAN software. The
EAR software ran the model with Iv as the output, and found Πv and Sv(0) to be locally
structurally identifiable rather than unidentifiable, and βv being non-identifiable. This also
happened with the Ih output, with βv being locally structurally identifiable according to
the EAR software.
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EAR Fixed µv, µh, γ Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv 1/(72.6 · 365) 1/46 0.1 0.20312 s5
Ih 1/(72.6·365) 1/46 0.1 0.828125 s
Iv 1/(72.6·365) 1/46 0.1 0.296875 s

Here is the cumulative case system of equations with 3 fixed parameters: µh, µv, and γ.

S′
h = Πh −

1

72.6 · 365
Sh −

βhShIv
Nv

+
1

10
Ih

S′
v = Πv −

1

46
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

72.6 · 365
+

1

10
)Ih,

I ′v =
βvSvIh
Nh

− 1

46
Iv

C ′
h =

βhShIv
Nv

C ′
v =

βvSvIh
Nh

(51)

Below are the structural identifiability results of the above model. It is of interest to note
that these parameter results differ from the outputs given by the SIAN. The EAR software
ran the model with Cv as the output, and found Πv and Sv(0) to be locally structurally
identifiable rather than unidentifiable, and βv being non-identifiable. This also happened
with the Ch output, with βv being locally structurally identifiable according to the EAR
software.

EAR Cumulative Case Fixed µv, µh, γ
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 1/(72.6·365) 1/46 0.1 0.84375 s
Ch 1/(72.6·365) 1/46 0.1 0.734375 s
Cv 1/(72.6·365) 1/46 0.1 0.546875 s

Below is the model with fixed values for µh, µv,Πh, and Πv.
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S′
h =

100

25000
− 1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = 90− 9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv

(52)

Below are the structural identifiability results of the above model, which agree with the
SIAN results.

EAR Fixed µh, µv,Πh and Πv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv 1
25000

9
100

100
25000 90 0.21875 s

Ih 1
25000

9
100

100
25000 90 0.328125 s

Iv 1
25000

9
100

100
25000 90 0.359375 s

Below is the cumulative case model with fixed values for µh, µv,Πh, and Πv.

S′
h =

100

25000
− 1

25000
Sh −

βhShIv
Nv

+ γIh

S′
v = 90− 9

100
Sv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (
1

25000
+ γ)Ih,

I ′v =
βvSvIh
Nh

− 9

100
Iv,

C ′
h =

βhShIv
Nv

,

C ′
v =

βvSvIh
Nh

(53)

Below are the structural identifiability results of the above model, which agree with the
SIAN results.

EAR Cumulative Cases Fixed µh, µv,Πh and Πv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 1
25000

9
100

100
25000 90 0.90625 s

Ch 1
25000

9
100

100
25000 90 0.90625 s

Cv 1
25000

9
100

100
25000 90 .75 s
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Below is the model with fixed values for Πh, and Πv.

S′
h =

100

25000
− µhSh −

βhShIv
Nv

+ γIh

S′
v = 90− µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv

(54)

Below are the structural identifiability results of the above model, which agree with the
SIAN results.

EAR Fixed Πh and Πv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ih, Iv 100
25000 90 0.640625 s

Ih 100
25000 90 0.421875 s

Iv 100
25000 90 0.4375 s

Below is the cumulative case model for fixed values of Πh and Πv.

S′
h =

100

25000
− µhSh −

βhShIv
Nv

+ γIh

S′
v = 90− µvSv −

βvSvIh
Nh

,

I ′h =
βhShIv
Nv

− (µh + γ)Ih,

I ′v =
βvSvIh
Nh

− µvIv,

C ′
h =

βhShIv
Nv

,

C ′
h =

βvSvIh
Nh

(55)

Below are the structural identifiability results of the above model, which agree with the
SIAN results.
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EAR Cumulative Case Πh and Πv Results
µh µv Πh Πv γ βh βv Ih(0) Iv(0) Sh(0) Sv(0) Ch(0) Cv(0) Timing

Ch, Cv 100
25000 90 0.9375 s

Ch 100
25000 90 0.546875 s

Cv 100
25000 90 0.421875 s

5.2 Practical Identifiability

5.2.1 Monte Carlo Simulation

We ran the Monte Carlo simulation method for the vector-host model with parameters set
to βh = 0.1, βv = 0.2, γ = 0.09996, µh = 0.00004, µv = 0.1,Πh = 0.00004,Πv = 0.1. We
chose µh and µv to fit the range of lifespans of humans and mosquitoes, and Πh and Πv

to set the equilibrium population sizes to 1. While the disease-specific parameters were
not chosen to model any specific disease, they produce a reasonable R0 value of 1.41, and
results in the endemic equilibrium of Ih = 0.25, Iv = 0.33.

When we set the initial guess to the correct parameters, we see in 1 that except for µh

and Πh, the parameters are practically identifiable. It seems likely that the unidentifiability

σ βh βv γ µh µv Πh Πv

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.08 0.05 0.09 2.99 0.08 3.22 0.14
5% 0.83 0.65 0.90 19.42 0.78 18.57 1.23
10% 2.30 1.98 2.41 30.10 1.96 29.95 2.90
20% 5.14 4.55 5.54 42.11 4.02 48.59 6.05
30% 8.30 8.38 9.24 68.22 6.70 62.09 9.68

Table 1: Practical Identifiability for Vector-Host Model

of these parameters is due to their small value, as they are chosen to fit the lifespan of
humans. The percentage of the host population that is born or dies over the 217 days we
measure is is only a small portion of the percentage of the host population that becomes
infected.

But this identifiability is fragile to the choice of initial guess given to the optimization
algorithm. When we had the initial guess of βh = 0.05, βv = 0.1, γ = 0.05, with the correct
guess for the demographic parameters µh,Πh, µv,Πv, we obtained the results in 2. We see
that none of the parameters meet the threshold for practical identifiability.

Next, we attempted to increase identifiability by fixing Πh to µh and Πv to µv. This
fixes the population size to 1, but allows the death rate to change freely. When we have
the correct initial guess, we obtain the results in 3. Once again, we find that all parameters
are practically identifiable, with the exception of the host demographic parameter µh. But
with the incorrect initial guess, we see in 4 that our parameters are not identifiable.
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σ βh βv γ µh µv Πh Πv

0% 2.16 12.94 8.92 98.40 33.21 87.23 48.90
1% 33.50 19.75 24.84 87.03 28.30 65.86 45.31
5% 34.58 14.97 21.55 66.02 35.37 69.85 52.23
10% 33.40 16.13 21.43 64.14 39.60 83.16 55.04
20% 35.08 16.87 23.11 59.10 41.43 76.71 56.28
30% 35.43 25.84 23.32 58.26 54.39 87.54 71.94

Table 2: Vector-Host Model with Incorrect Initial Guess

σ βh βv γ µh µv

0% 0.00 0.00 0.00 0.00 0.00
1% 0.21 0.13 0.23 3.90 0.16
5% 1.49 1.13 1.65 14.43 1.41
10% 4.13 3.51 4.57 34.33 4.25
20% 9.43 8.45 10.68 55.74 10.14
30% 14.30 12.67 16.22 96.86 15.10

Table 3: Fixed Population Sizes with Correct Initial Guess

σ βh βv γ µh µv

0% 39.18 18.77 41.63 100.00 14.90
1% 33.40 29.64 36.04 99.12 28.78
5% 30.33 26.34 33.41 97.94 25.70
10% 29.92 26.77 32.84 109.24 26.61
20% 30.82 29.24 33.55 98.99 29.42
30% 31.24 28.94 34.01 98.78 29.26

Table 4: Fixed Population Sizes with Incorrect Initial Guess

Next, we fixed all host demographic parameters, with βh, βv, γ, and µv free. Our results
are shown in 5 and 6 with little improvement from the previous scenario.

Finally, we fixed all demographic parameters, leaving only the disease-specific param-
eters of βh, βv, and γ free. Here, as shown in 7 and 8, our parameters remain practically
identifiable even with the incorrect initial guess.

5.2.2 Impact of Factors Independent of Model Structure

For this section, we look at the impact of factors independent of the model structure. We
used the Monte Carlo simulation method on both the fixed demographic version of the
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σ βh βv γ µv

0% 0.00 0.00 0.00 0.00
1% 0.21 0.11 0.25 0.18
5% 1.53 1.23 1.76 1.57
10% 4.72 4.18 5.25 5.01
20% 10.37 9.76 11.69 11.42
30% 17.25 14.63 19.47 17.23

Table 5: Fixed Host Demographics, Vector Population with Correct Initial Guess

σ βh βv γ µv

0% 0.02 0.02 0.02 0.02
1% 900.27 4.74 871.20 4.87
5% 601.01 98.16 573.87 92.82
10% 669.73 17.41 650.05 18.30
20% 354.24 31.84 340.94 33.46
30% 254.14 31.84 245.48 33.88

Table 6: Fixed Host Demographics, Vector Population with Incorrect Initial Guess

σ βh βv γ

0% 0.00 0.00 0.00
1% 0.31 0.12 0.30
5% 1.57 0.59 1.55
10% 3.16 1.18 3.10
20% 6.40 2.44 6.30
30% 9.53 3.51 9.24

Table 7: Fixed Demographic with Correct Initial Guess

σ βh βv γ

0% 0.02 0.00 0.02
1% 0.31 0.12 0.30
5% 1.58 0.59 1.56
10% 3.35 1.18 3.33
20% 6.51 2.47 6.43
30% 9.66 3.54 9.39

Table 8: Fixed Demographic with Incorrect Initial Guess
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vector-host model, as well as the SIR model

S′ = −βSI

N

I ′ =
βSI

N
− αI

R′ = αI

(56)

with initial conditions S(0) = S0, I(0) = I0, R(0) = R0. We have N = S + I + R, which
gives us dN

dt = 0.
The true parameters are α = 0.25, β = 0.5. We use 1000 iterations for the Monte

Carlo method, with prevalence observations daily over 51 days. The initial guess given to
fminsearch is α = 0.1, β = 0.1, and we use relative noise with ordinary least squares. For
the vector-host model, the setup is the one used for 7.

We first investigated the changes in identifiability when the number of observations is
decreased.

./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Num_Pts_2.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_numobs.png

Figure 1: Changing the Number of Observations

We see in 1 that with fewer observations, we have less information about parameters, and
our parameters are less identifiable. However, few observations are need for the parameters
to be under the threshold for practical identifiability. We only need 21 observations over our
216 days for all of the vector-host model parameters to be identifiable. And the ARE for
both parameters of the SIR model was underneath the threshold with only 3 observations.

Next, we investigated changing the final date of observations. In order to avoid the
effect shown in 1, no matter the final date, we have the same number of linearly spaced
observations. For the vector-host model, we set the initial guess to half of the true pa-
rameters. As seen in 2, the identifiability generally decreases as the time span decreases.
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./Figs/Plots/SIR_ARE_Plots/SIR_ARE_End_Date_2.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_findate_3.png

Figure 2: Changing The Final Date of Observations

Notably, before and during the rise in cases, the parameters are not practically identifiable.
For the Vector-Host Model, we investigated identifiability when only hosts, or only

vectors, were observable.

./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_species_betah.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_species_betav.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_species_gamma.png

Figure 3: Changing Which Populations are Observable

As shown in 3, the ARE values were significantly less when information on both populations
was known. However, the parameters were still identifiable from prevalence data of only
one population.

We looked at the identifiability of these models from different types of data. We have
been using prevalence data, but we can also fit using incidence or cumulative data. And
our cumulative data can be treated as the sum of noisy incidence data, or the noisy data
itself. As can be seen from comparing 9 and 10, we have less variance in our error when we
assume that the error occurs in incidence.

This improvement is visible in our numerical experiments, shown in 4 and 5. For
all parameters, when our error is in incidence data, the ARE is less than when it is in
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cumulative data. Thus, when considering the practical identifiability of cumulative data,
it is important to consider if error actually occurs in cumulative data, or if it occurs in
incidence data.

./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Obs_Type_a.png./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Obs_Type_b.png

Figure 4: Observation Types for the SIR Model

./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_bobs_types_betah.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_bobs_types_betav.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_bobs_types_gamma.png

Figure 5: Observation Types for the Vector-Host Model

We also tested different observation types for when we had data for only one popula-
tion. The results are shown in 6, and match what our above observations for the error in
cumulative data.

Between 4,5, and 6, we see that neither prevalence nor incidence consistently outper-
forms the other. Prevalence has lower ARE values for the SIR model, and for βv and γ
in the vector-host model. But incidence outperforms prevalence when we only have one
species of observations. And cumulative data with incidence error performs similar to, if
slightly worse, than incidence data.
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./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_hobs_types_betah.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_vobs_types_betah.png

./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_hobs_types_betav.png./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_vobs_types_betav.png

Figure 6: Changing Observation Type for One Population

Next, we investigated changes in our error model and objective function. We tested
setting ξ = 0(absolute noise) and ξ = 1(relative noise) in 6, as well as ξ = 0 and ξ =
1(Ordinary Least Squares and Generalized Least Squares) in 7. As shown in 7, for relative
noise, the ARE is less when using GLS than OLS, but OLS still performs reasonably well.
The same cannot be said for GLS with absolute error. In this case, OLS performs well, but
our parameters are not practically identifiable when using GLS.

Now for our Vector-Host model, when considering the case where ξ = 0 for either 6
or 7, we are making the assumption that error is independent of the magnitude of our
observations. But we leave open the dependence of the error on the size of the population.
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./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Rel_Noise_b.png./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Abs_Noise_b.png

Figure 7: Changing the Error Model and Objective Function for the SIR Model

We assume that this is the case for absolute noise, which we weight to form

yi = g(ti,θ) +
N

10
ϵi

We can also use this weighting for ordinary least squares. We ran this for the vector-host
model, with a vector population of 100, 000 and a host population of 100.

Our results can be seen in 8. We see that adjusting for population decreases the error in
parameter estimates for absolute (population size dependant) noise, as expected. But the
weighting also improves the estimates for relative noise, although GLS still outperforms it.
With absolute noise, we once again see the using GLS as our optimization algorithm leads
to our parameters being unidentifiable. So we find that a population adjusted version of
ordinary least squares is the most versatile choice of objective function.

We next focus on the optimization method used for our parameter estimations. When
we ran the Nelder-Mead[Lagarias et al., 1998],interior point[Byrd et al., 1996], and quasi-
newton[Broyden, 1970] algorithms, we did not see any change in the ARE values, as seen
in 9.

The Interior Point optimization algorithm allows bounds to be set on its parameter
values. Additionally, the function fminsearchbnd in MATLAB allows bounds to be set for
the Nelder-Mead algorithm[D’Errico, 2022]. We investigated the impact of setting bound
on ARE values for cumulative data. As seen in 10, our bounds must be very close to the
true parameters in order to decrease the error in parameter estimations. This suggests
that with a correct initial guess, the choice of optimization algorithm and bounds does not
impact practical identifiability results.

But what if the algorithm does not have a correct initial guess? We have already seen in
1 and 2 that changing the initial guess can make the ARE measurements go from practically
identifiable to practically unidentifiable.
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./Figs/Plots/SISV_ARE_Plots/SISV_ARE_Rel_Noise_bh.png./Figs/Plots/SISV_ARE_Plots/SISV_ARE_Abs_Noise_bh.png

Figure 8: Changing the Error Model and Objective Function for the Vector-Host Model

./Figs/Plots/SISV_ARE_Plots/SISV_fdem_ARE_Optim_Algo_betah.png./Figs/Plots/SIR_ARE_Plots/SIR_ARE_Optimizer2.png

Figure 9: Changing the Optimization Algorithm

For multiple optimization algorithms, we made contour plots of the ARE value at σ =
10% for different initial guesses. These used 100 iterations of the Monte Carlo simulation
method, and were run for the Nelder-Mead[Lagarias et al., 1998], interior point[Byrd et al., 1996],
sqp[Nocedal, 2006], active set[Gill, 1981], and quasi-newton[Broyden, 1970] algorithms. These
plot the ARE of βh when changing the initial guess of βh and βv, and can be seen in 11. We
saw similar contour plots for the ARE value of γ. But our ARE values for βv were much
lower, as can be seen in 12.

Another interesting pattern is that for the algorithms besides Nelder-Mead, there is a
line of unidentifiability along βh = βv.

Adding bounds to an optimization algorithm can also change the impact of the initial
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./Figs/Plots/SISV_ARE_Plots/SISV_ARE_fmsb_bh.png./Figs/Plots/SIR_ARE_Plots/SIR_ARE_fmsb_a.png

Figure 10: Changing Bounds for the Optimization Algorithm

./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_nm.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_ip.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_qn.png

./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_sqp.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_acts.png

Figure 11: ARE of βh when Changing Initial Guess

guess. We investigated this impact for the Interior Point algorithm, as well as for the
MATLAB fminsearchbnd[D’Errico, 2022] implementation of Nelder-Mead. With 13, we
see that with moderately precise bounds (10x the true parameters), nearly all initial guesses
are identifiable. However, bounds of 100x the true parameters produce an entirely different
effect. For the interior point algorithm, this may be due to the true parameters being
much closer to the lower bound of 0 than the upper bound of 100x their true value. In
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./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bv_nm.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bv_ip.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bv_qn.png

./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bv_sqp.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bv_acts.png

Figure 12: ARE of βv when Changing Initial Guess

./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_nm.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_bhnm.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_btnm.png

./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_ip.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_bhip.png./Figs/Plots/Init_Guess_Contours/SISV_Init_bhbv_bh_btip.png

Figure 13: From Left to Right: No Bounds, 100x True Parameters, 10x True Parameters
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conclusion, the choice of bounds or optimization algorithm does not have a large impact
when we have a good initial guess. But with a poor initial guess, adding bounds or changing
the optimization algorithm can have a large effect.

5.2.3 Profile Likelihood

Program implementation. The code to find profile likelihood is written in Julia due to its
fast speed in solving differential equations which is important for parameter estimation
[Bezanson et al., 2017].∗ We use the Tsitouras 5/4 Runge-Kutta package from the Differ-
entialEquations.jl package to solve the SIS Vector-Host model with a relative tolerance
of 10−5 and an absolute tolerance of 10−10 [Rackauckas and Nie, 2017]. To find the max-
imum likelihood estimate, the global minimum must be found which is more difficult in
simulation-based optimization [Kolda et al., 2003]. Information such as the continuity and
differentiability of the objective function may or may not be well behaved. As such, we em-
ploy the generating set search from the BlackBoxOptim.jl package and differential evolution
from the Metaheuristics.jl package [Feldt and Stukalov, 2018, Mejía et al., 2022]. The basic
idea behind generating set search is that the method randomly choose a point to evaluate,
search in the neighborhood of the point and expand the neighborhood till it find a better
point, and then, repeat the process till a termination criteria is satisfied [Kolda et al., 2003].
Differential evolution have a population of points that evolve through mutation and cross-
over events to find the global minimum [Price, 2013]. Due to the difficulty of finding the
global minimum, it is recommend to use two global optimization methods where one opti-
mization method is used to find the profile likelihood and the other is used to check whether
the global optimization was successfully done. For most plots, generating set search was
used to create the plots and differential evolution was used to check whether the global
minimum was found through generating set search. To find the confidence intervals, linear
interpolation from the Interpolations.jl package was used to approximate χ2

PL and the simple
bisection method from the Roots.jl package was used to find the intercepts of χ2

PL and the
threshold. The code can be found at https://github.com/ph-kev/ProfileLikelihood.

Procedure A high-level description of the procedure for finding the profile likelihood is
described below.

1. Gather data either experimentally or numerically.

2. Choose the probability distribution that best describes the noise of the data and find
the negative log-likelihood function.

3. Find the fitted parameters by minimizing the negative log-likelihood function.

4. Compute the profile likelihood for each parameter:

χ2
PL(θi) = min

θj ̸=i

χ2(θ).

∗See appendix for work-precision benchmarks on solving differential equations.
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5. Compute the threshold ∆α = χ2(α, df).

6. Graph, find confidence intervals, and check identifiability.

Model and Parameters Recall the SIS vector-host model

I ′h = βhShIv − (µh + γ)Ih,

I ′v = βvSvIh − µvIv,

S′
h = Πh − µhSh − βhShIv + γIh,

S′
v = Πv − µvSv − βvSvIh.

The basic reproduction number R0 for this model is

R0 =

√
βhβvSh(0)Sv(0)

(µh + γ)µv
.

We fix the parameters Πh = 0.004, Πv = 90, µh = 0.00004, and µv = 0.09. These
parameters are fixed because these parameters are related to the demographics as opposed
to the disease itself. We will generate data numerically to use for profile likelihood. The
true parameters are

θ =
[
βh βv γ

]
=
[
0.0001 0.001 0.09

]
and the initial conditions are

u0 =
[
Ih Iv Sh Sv

]
=
[
1 1 1000 5000

]
.

Additional data points of the same observation. We first consider the scenario where we
add additional data points of the same observation and examine how that affect parameter
estimation, confidence interval, and identifiability.

The observation will be incidence data of hosts and we will generate noisy incidence
data of hosts using the Poisson distribution. Incidence data is taken at t = 0, 1, . . . , 46.
Since the data is generated from a Poisson distribution, the negative log-likelihood function
is equation 23:

−2 logL(θ|y) = −2
n∑

i=1

log(g(ti,θ)
yi) + 2

n∑
i=1

g(ti,θ) + 2
n∑

i=1

log(yi!).

and the maximum likelihood estimate is equation 24:

θ̂ = argmin
θ

−2

n∑
i=1

log(g(ti,θ)
yi) + 2

n∑
i=1

g(ti,θ).
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./plPlots/plt.png

Figure 14: Perfect host incidence data and noisy host incidence data generated from the
Poisson distribution.

Before t ≈ 15, there is relatively very little noise compared to data at the peak and for
t > 15. To better evaluate the profile likelihood plots, it is important to take into account
of the data available as the fitted parameters might not accurately describe the incidence
data perfectly for t > 15 due to the amount of the noise. Profile likelihood plots will be
constructed for 16, 31, and 46 data points of noisy host incidence data and 95% confidence
intervals will be used.
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./plPlots/Poisson0-15/PLbeta_h.png ./plPlots/Poisson0-15/PLbeta_v.png

./plPlots/Poisson0-15/PLgamma.png

Figure 15: Profile likelihood of βh, βv, and γ for 16 data points of host incidence data.

For 16 data points of host incidence data, the fitted parameters are βh = 9.593 · 10−5,
βv = 0.00101, and γ = 0.0788. From Figure 15, βh, βv, and γ are practically identifiable.
Although there is no data about the peak of the host incidence data, the confidence interval
of βh is relatively smaller than the confidence interval of βv and the confidence interval of
γ. Although γ is practically identifiable by definition, the width of the confidence interval
of γ is large which indicate uncertainty in the parameter estimation of γ. Also, since the
profile likelihood of βv and γ flatten for t ⪆ 0.02 and t ⪆ 25 respectively, these parameters
might be practically non-identifiable if there are more unknown parameters.
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./plPlots/Poisson0-30/PLbeta_h.png ./plPlots/Poisson0-30/PLbeta_v.png

./plPlots/Poisson0-30/PLgamma.png

Figure 16: Profile likelihood of βh, βv, and γ for 31 data points of host incidence data.

For 31 data points of host incidence data, the fitted parameters are βh = 8.794 · 10−5,
βv = 0.00115, and γ = 0.106. Additional data points can only help better the identifia-
bility of parameters. Data points about the peak of the host incidence data resulted in a
tighter confidence intervals for all parameters which reduce the uncertainty in parameter
estimation. The width of the confidence interval of βh did not decrease as much compared
to the width of the confidence intervals of βv and γ. In other words, data about the peak
of host incidence data reduce uncertainty in parameter estimation the most in βh and γ as
compared to βh.
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Figure 17: Profile likelihood of βh, βv, and γ for 46 data points of host incidence data.

For 46 data points of host incidence data, the fitted parameters are βh = 8.433 · 10−5,
βv = 0.00122, γ = 0.118. Similar to the case of 31 data points of host incidence data, the
width of the confidence intervals decrease due to the additional data. However, the width
of the confidence intervals of βh and βv did not decrease as much as compared to the width
of the confidence interval of γ. Since information is already known about the beginning and
peak of the host incidence data, this could have contribute to the data not having as big as
an impact in decreasing the confidence interval of the parameters. In all, this suggests that
host incidence data is helpful in estimating βh and to some extent, βv with low uncertainty
but struggle to estimate γ with low uncertainty without a large amount of host incidence
data.
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./plPlots/varyingFittedParametersGraph.png

Figure 18: Incidence data plotted from fitted parameters using 16, 31, and 46 data points
of host incidence data. Host incidence data from the true parameters and noisy incidence
data is also plotted.

βh βv γ

16 Data Points [4.737 · 10−5, 0.00162] [0, 0.0215] [0, 21.166]

31 Data Points [5.019 · 10−5, 0.000146] [0.000611, 0.00497] [0, 1.183]

46 Data Points [5.452 · 10−5, 0.000133] [0.00069, 0.00309] [0.0753, 0.568]

Figure 19: Simultaneous confidence intervals for βh, βv, and γ for 16 data points, 31 data
points, and 46 data points of host incidence data.
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R0 Relative Error
True Parameters 7.855 0%
16 Data Points 6.973 11.2%
31 Data Points 7.265 7.5%
46 Data Points 6.974 11.2%

Figure 20: R0 values calculated from the fitted parameters for 16 data points, 31 data
points, and 46 data points of host incidence data.

In Figure 18, the host incidence data from the fitted parameters accurately describe
the true host incidence data for t ⪅ 10. Similarly, the host incidence data from the fitted
parameters mostly capture information after the peak of the host incidence data despite
the amount of noise. This contrasts with host incidence data at the peak since where none
of the fitted parameters is close to describing the peak of the true host incidence data. This
is due to the amount of noise and the data available at the peak of the host incidence data.

In Figure 19, since the confidence intervals are finite and there is an unique minimum
for χ2

PL for each parameter, each parameter is identifiable. However, the width of the
confidence interval of γ is large relative to the rest of the confidence intervals. This indicate
that there is a high uncertainty in estimating γ. As such, more data is required to estimate
γ with low uncertainty.

In Figure 20, R0 values was calculated for each fitted parameters which use 16, 31, and
46 data points. The closest value of R0 was calculated using the fitted parameters that use
31 data points of host incidence data with a relative error of 7.5%. Meanwhile, the value
of R0 calculated with fitted parameters that use 16 and 46 data points of host incidence
data both have a relative error of 11.2%. Even though there is not that much noise for
t ⪅ 15, the value of R0 still have a relative error of 11.2% for the fitted parameters using
16 data points. As such, the addition of data may not necessarily improve the parameter
estimation due to overfitting to the noisy data.

Additional data points of a different observation. Adding more data may not necessar-
ily improve parameter estimation due to overfitting. However, adding data of a different
observation could better the parameter estimation rather than adding data of the same
observation. Thus, we now examine how adding data points of a different observation can
affect parameter estimation, confidence interval, and identifiability.
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Figure 21: Perfect host incidence data and noisy host incidence data generated from the
Poisson distribution. Perfect vector incidence data and noisy vector incidence data gener-
ated from the Poisson distribution.

In Figure 21, 31 data points of both host and vector incidence data are shown. We will
only analyze the case of 16 and 31 data points of incidence data for hosts and vectors. We
choose this amount of data to analyze as the data include information of the beginning and
peak of the incidence data. Furthermore, as seen in the last example, there is a limiting
effect of improving the parameter estimation and confidence intervals through the addition
of more data.

We will use the same noisy incidence data for hosts as in the previous example. The
noisy incidence data for vectors is generated using a Poisson distribution and compared to
the host incidence data, very little noise is present in the incidence data for vectors.
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Figure 22: Profile likelihood of βh, βv, and γ for 16 data points of both host incidence data
and vector incidence data.

For 16 data points of both host incidence data and vector incidence data, the fitted
parameters are βh = 9.593 · 10−5, βv = 0.00101, γ = 0.0788. Compared to the confidence
intervals constructed using 46 data points of host incidence data in Figure 19, the width
of the confidence intervals from only using 16 data points of both host incidence data and
vector incidence data is smaller. Also, the lower bound of the confidence interval for γ is 0
since a value of γ < 0 is meaningless to interpret in the context of this model.
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Figure 23: Profile likelihood of βh, βv, and γ for 31 data points of both host incidence data
and vector incidence data.

For 31 data points of both host incidence data and vector incidence data, the fitted
parameters are βh = 9.329 · 10−5, βv = 0.00107, and γ = 0.0978. The additional data
reduce the most uncertainty in estimating γ while having marginal effects in reducing
uncertainty in βh and βv. This again illustrate that it is difficult to estimate γ with low
uncertainty compared to βv and βh using incidence data.
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Figure 24: Host incidence data and vector incidence data plotted from fitted parameters
using 16 and 31 data points of both host incidence data and vector incidence data. Host
incidence data and vector incidence data from the true parameters and noisy host incidence
data and noisy vector incidence data is also plotted.

βh βv γ

16 Data Points [7.942 · 10−5, 0.000119] [0.000753, 0.00140] [0, 0.266]

31 Data Points [7.897 · 10−5, .000111] [0.000903, 0.00128] [0.0727, 0.139]

Figure 25: Simultaneous confidence intervals for βh, βv, and γ for 16 and 31 data points of
both host incidence data and vector incidence data.

R0 Relative Error
True Parameters 7.855 0%
16 Data Points 8.263 5.2%
31 Data Points 7.518 4.3%

Figure 26: R0 values calculated from fitted parameters using 16 and 31 data points of both
host incidence data and vector incidence data.

In Figure 24, the host incidence data from the fitted parameters also have trouble
describing the peak of the true host incidence data. However, the fitted parameters using
both types of data fare better than using only host incidence data. Furthermore, since
there is very little noise in the vector incidence data, the host incidence data from the
fitted parameters accurately describe the true host incidence data. Although the fitted
parameters using 16 and 31 data points of both host incidence data and vector incidence
data are different, the vector incidence data produced remains the same while the host
incidence data differ after the peak. This possibly indicates that host incidence data is
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more sensitive to parameter estimation. A parameter sensitivity analysis must be done to
verify this.

In Figure 25, since all confidence intervals are finite and an unique minimum exists for
the profile likelihood of each parameter, all parameters are identifiable. Furthermore, since
the width of the confidence intervals are small, there is a low uncertainty in estimating the
parameters.

In Figure 26, the additional vector incidence data help reduce the relative error of the
R0 value compared to the observations being only the host incidence data. This decrease
in relative error is about 2% which is noticeable. Furthermore, since the R0 value differ for
16 and 31 data points of both host incidence data and vector incidence data, this indicates
that there is a large variability in the R0 value and suggests that more data is required to
reduce the uncertainty in the R0 value.

Mischoosing probability distribution. When fitting to experimental data as opposed
to simulated data, we will not know the distribution that generated the observed data.
We will examine what happen when the “wrong” probability distribution is chosen for the
measurement error and its consequences on the estimated parameters, confidence intervals,
and identifiability.

We will only choose 31 data points of noisy host incidence data which is the same as in
Figure 14. This amount of data points was chosen since the data have information about
the peak which was crucial in reducing the uncertainty in estimating γ.

The distribution of the noise will be assumed to follow relative error and constant
variance error. The negative log-likelihood when the measurement error follow a relative
error distribution is equation 27:

−2 log(θ|y) = n log η2 + n log 2π +
1

η2

n∑
i=1

(
yi − g(ti,θ)

g(ti,θ)

)2

+ 2

n∑
i=1

log g(ti,θ)

and the maximum likelihood estimate is equation 29:

θ̂ = argmin
θ

1

η2

n∑
i=1

(
yi − g(ti,θ)

g(ti,θ)

)2

+ 2

n∑
i=1

log g(ti,θ).

The negative log-likelihood when the measurement error follow a normal distribution N (0, σ2)
is equation 15:

−2 logL(θ|y) = n log 2π + n log σ2 +

n∑
i=1

(yi − g(ti,θ))
2/σ2

and the maximum likelihood estimate is equation 17:

θ̂ = argmin
θ

n∑
i=1

(yi − g(ti,θ))
2/σ2.
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For these noise distributions, we must choose σ and η respectively for constant variance error
and relative noise error. For experimental data, this is typically done by examining the data
and performing literature review. However, since this is simulated data, we cannot perform
the same analysis to determine σ and η. One method to determine an appropriate value for
σ and η is to fit the noise distribution using maximum likelihood estimation. The relative
error distribution N (0, (η ·g(ti, θ̂))2) should follow the distribution of (yi−g(ti, θ̂))/g(ti, θ̂)
where ˆthetab is the fitted parameter using equation 29. Similarly, the normal distribution
N (0, σ2) should follow the distribution of yi− g(ti, θ̂) where θ̂ is the fitted parameter using
equation 17. Using this method, we choose η = 0.3 and σ = 5.7.

./plPlots/Misfit/RelativeNoiseError/PLbeta_h.png./plPlots/Misfit/RelativeNoiseError/PLbeta_v.png

./plPlots/Misfit/RelativeNoiseError/PLgamma.png

Figure 27: Profile likelihood of βh, βv, and γ where the measurement error is assumed to
follow relative error with a noise level of η = 0.3.

If the measurement error is assumed to follow relative error with a noise level of η = 0.3,
then the fitted parameters are βh = 4.910 · 10−5, βv = 0.00356, and γ = 0.593. Despite the
wrong distribution is chosen for the measurement error, the identifiability and confidence
intervals of the parameters exhibit similar trends to the case of 31 data points of host
incidence data. All parameters are identifiable and the width of the confidence interval of
γ is relatively larger than the width of the confidence intervals of βh and βv respectively.
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However, the width of the confidence intervals constructed using relative error are larger
than the width of the confidence intervals in the case of 31 data points of host incidence
data in Figure 19.
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Figure 28: Profile likelihood of βh, βv, and γ where the measurement error follow N (0, 5.72).

If the measurement error is assumed to follow constant variance error with σ = 5.7,
then the fitted parameters are βh = 8.700 · 10−5, βv = 0.00116, and γ = 0.109. Unlike the
previous case where the measurement error is assume to follow relative error, the width of
the confidence intervals are reasonably close to the actual confidence intervals constructed
using the maximum likelihood estimate where the measurement error follow a Poisson
distribution.
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Figure 29: Host incidence data plotted using fitted parameters where the measurement
errors is assumed to follow relative error and constant variance error respectively. Host
incidence data using the true parameters and the noisy host incidence data is also plotted.

βh βv γ

Relative Error [4.001 · 10−5, 0.000195] [0.000448, 0.0283] [0.0525, 10.336]

Constant Variance Error [5.0748 · 10−5, 0.000122] [0.000748, 0.00646] [0.0710, 1.685]

Figure 30: Simultaneous confidence intervals for βh, βv, and γ for relative error and constant
variance error.

R0 Relative Error
True Parameters 7.855 0%
Relative Error 4.047 48.4%

Constant Variance Error 7.176 8.6%

Figure 31: R0 values calculated from the fitted parameters where the measurement error is
assumed to follow relative error and constant variance error respectively.
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In Figure 29, both fitted parameters correctly describe the true host incidence data
for t ⪅ 10. The host incidence data from the fitted parameters using constant variance
error was able to describe the true host incidence data for t ⪆ 20, but was unable to fully
capture information about the true host incidence data at the peak. In contrast, the host
incidence data from the fitted parameters using relative error was not able to describe the
true host incidence data for t ⪆ 10. This is because the maximum likelihood estimate look
at the difference between the predicted host incidence data and the noisy host incidence
data relative to each other. This results in host incidence data that is unable to capture
information about the peak and end behavior where a large amount of noise is present.

In Figure 31, the R0 value calculated from the fitted parameter using relative error
performs the worst with a R0 value of 4.047 and a relative error from the true R0 value
of 48.4%. In contrast, the R0 value calculated from the fitted parameter using constant
variance error performs reasonably well with a R0 value of 7.176 and a relative error of
8.6%. For comparison, the R0 value calculated from fitted parameters using a maximum
likelihood estimate where the measurement errors is assumed to follow a Poisson distribution
is 7.265 with a relative error of 7.5%. This illustrates that ordinary least squares or constant
variance error perform reasonably well even when the measurement error does not follow
the normal distribution N (0, σ2).

6 Conclusion

Compartmental models are a decisive tool for predicting the spread of an infectious disease
early in a pandemic. However, without proper understanding of the identifiability of a
model, one is unable to accurately predict the parameters of that model. We investigated
the structural and practical identifiability of multiple variations of a simple vector-host SIS
model.

In terms of Structural Identifiability, we found that a mix of the the differential algebra
approach and the Taylor series approach often returned different results for identifiability
of a few particular parameters. Specifically for variations of our simple vector-host model,
we also found that DAISY, while being the most accurate method of computing structural
identifiability, is the most computationally inefficient and often becomes less useful when
working with more complex models. SAN was the second most computationally efficient
method we used, with the IdentifiabilityAnalysis package in Wolfram Alpha being the most
computationally efficient. However, this came at the cost of probabilistic accuracy, as shown
by the difference in particular parameters. We found that in the software where we could
fix initial conditions, all the models we ran were structurally identifiable, which matches
our practical identifiability results.

From the Monte Carlo simulation method, we saw that with prevalence data from both
populations, all parameters except for the host demographic parameters µh and Πh were
practically identifiable. But this was fragile to the choice of initial guess. We then fixed
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all demographic parameters, leaving only βh, βv, and γ free. Here, all parameters were
practically identifiable, even with an incorrect initial guess.

Next, we investigated factors independent of the model structure that impact the results
of the Monte Carlo simulation method. We saw that having fewer observations increase
the ARE values. However, only a small number of observations were needed to meet the
threshold for identifiability. We also changed the final date of observations, and found that
parameters became unidentifiable when estimating from before the sharp rise in cases. This
shows the difficulties in predicting the future course of an epidemic.

Next, we investigated different types of observation data. We saw that when fitting
from cumulative data, the practical identifiability depends greatly on whether the error is
in incidence or cumulative data, as error in incidence data is more identifiable. Apart from
this, no form of data consistently outperformed the other. We also saw that all parameters
were practically identifiable with prevalence data from only vectors or only hosts, although
the ARE values were lower with information from both populations.

We also looked at choices of error models and objective functions. We found that when
adjusted for population size, ordinary least squares performs decently well on relative noise,
whereas generalized least squares does not perform well on absolute noise.

Finally, we investigated the impacts of changes in objective functions, bounds, and
initial guess. We found that with a correct initial guess, the objective functions and bounds
had little impact on practical identifiability. However, when optimization algorithms may
not find the correct minimum, the choice of bounds and optimization algorithm can have a
large impact.

So when measuring practical identifiability, it is important to choose conditions that
match the way parameters are estimated from real-world data.

Lastly, our analysis using profile likelihood reveals that βh, βv, and γ are practically
identifiable with as few as 16 data points of host incidence data. However, there is a high
uncertainty in estimating γ which require more incidence data to reduce the uncertainty.
In estimating parameters and checking identifiability, information about the beginning and
peak was the most helpful while information after the peak did not have the nearly the
same effect. Also, we shown that more data of the same observation does not necessarily
help with parameter estimation due to overfitting. However, data of different observations
help much more in estimating parameters and constructing smaller confidence intervals.
Lastly, we analyzed how parameter estimation, confidence intervals, and identifiability be-
have when the wrong distribution is chosen when finding the likelihood function. If the
data is generated from the Poisson distribution, then using constant variance error leads to
reasonable results while using relative error leads to poor results in estimating parameters
and constructing confidence intervals.
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7 Future Work

The impact on the bounds and initial guess given to optimization algorithms is a topic
for future work. We made a first attempt at using global optimization algorithms for
parameter estimation. But none of ga, particleswarm, patternsearch, surrogateopt, or
GlobalSearch were able to identify the parameters of the vector-host model when using
default settings.

The choice of noise distribution is another topic for future work. For the Monte Carlo
simulation method, noise distributions besides relative and absolute noise can be looked at,
such as Poisson noise. The impact of noise distributions that are not iid is another topic
worthy of investigation.

The maximum likelihood approach for parameter estimation show that more data is
not necessarily going to help fit the parameters due to overfitting. A point of future work
is to perform a global sensitivity analysis of the parameters of the SIS Vector-Host model.
The sensitivity of the parameters can be used to find the best data to fit the parameters
as parameters that are sensitive might require more data to estimate with low uncertainty.
Exploring sensitivity of the model is also related to Fisher Information Matrix which can
be used for checking identifiability. Another point of future work is parameter estimation
using Bayesian methods.

For finding profile likelihood, the code can be further optimized. Parallel processing
can be used to compute multiple profile likelihood plots at once. Furthermore, different
interpolation schemes such as spline interpolation can be used to reduce the number of
points that need to be computed. This can provide a substantial speed up at a cost of
a possibly less precise interpolation of χ2

PL. Another technique to speed up the profile
likelihood code is to use adaptive step size as opposed to a fixed step size when finding
points to compute for χ2

PL.
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A Benchmark on Solving Differential Equations

./plPlots/speed/benchmarkPlot.png

Figure 32: Work-precision benchmark done on the SIS Vector-Host Model using the Dif-
fEqDevTools package from DifferentialEquations ecosystem [Rackauckas and Nie, 2017].
Comparison between Julia, Matlab, and Scipy’s Differential Equations Solvers. Calling
from Julia: ≈ 2 ms overhead for Matlab and ≈ 3 times speed up for SciPy. Similar bench-
marks can be found at https://github.com/SciML/SciMLBenchmarks.jl.
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