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1 Introduction

Let T'C Ny. T is a numerical set if it includes 0 and is cofinite, and a numerical
semigroup if it is also closed under addition. In this paper, S will be reserved
for numerical semigroups, and 7" for numerical sets.

For every T, the set A(T) = {t € T | t+T C T} is a numerical semigroup
contained in T'; this is referred to as the associated numerical semigroup. Our
paper concerns P(S) = #{T | A(T) = S}; in other words, we wish to count the
numerical sets which associate to a given .S, which shall henceforth be referred
to as “good” numerical sets. In particular, we wish to classify P~1(n) for n > 1,
with special attention paid to small n.

We introduce the notion of the void which is defined as B(S) = {ala ¢
S, F —a ¢ S} and give it a poset structure in a natural way. This ensures that
if A(T) =S then T'\ S must be an order ideal of the Void poset. We further
introduce to notion of red triangles which are particular triples of the void in
terms of which we give necessary and sufficient conditions for an order ideal to
be a good numerical Set.

We apply this machinery to prove several results relating the pseudofrobe-
nius numbers and type of a semigroup to the good numerical sets it has. We
also give an algorithm for computing P(S) that works significantly faster than
a brute force search specially for semigroups of small type.

In later sections we consider several families of numerical semigroups for
e.g. the staircase family St(m,n) = {m,2m, ... ,mn,—} and several others and
obtain polynomial growth of P(S) in each case.

We finally consider the kunz polyhedron that has all numerical semigroups
of a fixed multiplicity and investigate the density of different P values on the
polyhedron. The geometry of the polyhedron seem to play a key role in de-
termining P(S) with certain hyperplanes separating different values of P(S),
the behaviour on the hyperplanes being more complicated. We prove that for
multiplicity 3, P(S) = 2 has density 1; for m = 4, P(S) = 2,4 have positive
density with the density of 4  0.62, density of 2 ~ 0.38 and for multiplicity 5,
P(S) = 4,8 are precisely the values of P that have positive densities which are
~ 0.29, =~ 0.71 respectively. Finally we make a conjecture for multiplicity m in
general based on collected data.

1.1 Basic Definitions

For every numerical semigroup, there exists a unique minimal set .4(S) which
generates S under addition; this set is known as the atoms of S. The minimum
of A(S) is called the multiplicity and is denoted m(S); note that it is also the
minimal nonzero element of S.

For this paper, the minimal elements of S in each residue class modulo m(S)
are of particular note; this set is called the Apery Set Ap(S), and its elements
will be denoted A;, where i is the residue class containing it.

It is often useful to endow Ap(S) with the poset structure A; < A; <=
A; — A; € S. From this, we derive the Pseudo-Frobenius Numbers PF(S) =



{A—m | A€ Ap(S) maximal} = {P € Ng\ S | P+ S € {P} US}. The
largest Pseudo-Frobenius numbers is called the Frobenius Number F(S) (simply
F when the choice of S is clear); this is equivalent to the standard definition
F(S) = maxNg \ S. All other Pseudo-Frobenius numbers will be labelled P;
when the residue class ¢ modulo m is known. In general, P, Q, R will be reserved
for labelling Pseudo-Frobenius numbers. Finally, the type t(S) = |PF(S)].

1.2 Prior Results

A semigroup S is symmetric if a € S <= F —a ¢ S. It is known that S is
symmetric <= t(S) =1 < P(S) =1.

Similarly, a semigroup S is pseudo-symmetric if 2 | F(S) and a # F/2 € § <—
F —a ¢ S (note that F/2 € S would violate additive closure). It is also known
that S is pseudo-symmetric = t(S) = 2, P(S) = 2.

2 The Void

Definition 2.1 (The Void). B, the Void of a Numerical Semigroup is defined
as B :={ala ¢ S,F(S) —a & S}. The elements of B are known as the paired

gaps of S.

Note that the paired gaps are particularly useful elements. For instance,
since a € S implies F' — a € PF(S), PF(S)\ {F(S)} C B. For the purposes
of this paper, they are relevant because of their connection to good numerical
sets, as shown below:

Theorem 2.2 (TBUS Theorem). For a numerical semigroup S, the set T =
B U S must satisfy A(T) = S. Furthermore, A(T) = S implies T C BUS.

The proof of the TBUS Theorem, as well as several proofs to follow, relies
on the following lemma:

Lemma 2.3. BCB+SCBUS

Proof of Lemma 2.3: The left inequality is trivial, as 0 € S. For the sake
of contradiction, suppose there exist b € B, s € S such that b+s & BUS. Then
we must have F'—b—s € S, but that implies (F—b—s)+s= F—b € S, which
is impossible. [

Proof of Theorem 2.2: Let T = B U S. Firstly note that F(S) ¢ T,
as F(S) ¢ S,F(S)—F(S) =0¢ S. Now if a € B, then F(S) —a € B so
a & A(T); thus A(T) CT\ B =S. By Lemma 23, BUS C (B+S)US =
(B+S)U(S+S)=(BUS)+ S, implying S C A(T).

Now suppose A(T') = S. Then firstly F'(S) ¢ T as otherwise F(S) € A(T).
Next if a € T\ S and a € B then F —a € S. And F —a € A(T) implies
F—a+TCT;thus F=F —a+a €T, contradiction. Therefore T\ S C B
and T C BUS. O



With this established, we can now offer more concise proofs for the previously
known results on P(S):

Proposition 2.4. The numerical semigroups with P(S) = 1 are precisely the
symmetric semigroups.

Proof: If S is symmetric, then B is empty. Therefore by Theorem 2.2 if
A(T) =S then T C BUS =S, ie. T =S. In the other direction, if S is not
symmetric, then B is non empty and BU S # S and hence P(S) > 2 O

Proposition 2.5. Pseudosymmetric semigroups have P(S) = 2.

Proof: For Pseudosymmetric semigroups, B = {%} Since T' C BU S,
either T = S or T'= SU{L} = BUS. Therefore P(S) = 2. Note that the

converse is not true. OJ

2.1 Determining Semigroups with a Given Void

With the void established, the natural following step is to determine its pre-
image.

Lemma 2.6. A void with Frobenius number F' has an even number of elements
if F'is odd, and odd if F' is even. If the Frobenius number is even, g s always
in the void.

For finite B C N, we say B is a self-dual set if there exists N € N such
that be B <— N —be B.

Lemma 2.7. Every self-dual set is the void of some numerical semigroup.

Proof: Represent the complement of the void as {aj, as, ...an, N—ap,..., N—
ai}. Let S be {O,N —a,,N—ap_1,...,N —a1, N+ 1 —}. This is a semigroup
closed under addition whose void is precisely the elements not in {a1, as, . .. an, N—
Qp, ..., N —ay} (note that F(S) = N). O

Definition 2.8. For a self-dual set B, the Diov V(B) is the set of semigroups
which have B as their void; i.e. V(B) ={S | B(S) = B}

The following examples serve to illustrate the properties of V(B) (note
that by Lemma 2.6, 2 F' — | B|):

Example 2.9. If |B| = F — 1, every number less than the Frobenius number is
in the void, so clearly the only possible semigroup is {0, F+1 —}, so |V(B)| = 1.

Example 2.10. If|B| = F —3, the complement of the void is simply (a, F —a),
so the only possible semigroup is the one described in lemma 2.7, {0, F —a, F +
1=}, so |[V(B)|=1.

Example 2.11. If |B|=F -5, |V(B)|=1 or |V(B)| = 2.



Proof: By default, the semigroup described in lemma 2.7 has void B.
Denoting the complement of the void as {a,b,F — b, F — a}, there is also an
additional semigroup if some combination of (a, F —b), (b, F —a), and (a, b) is in
S. Note a 5, because if a,b € S, then a+b < F so a+b € S which is impossible,
and if a, F —b € S, since a < b, a+ F — b € S which is also a contradiction. So
the only additional possibility is b, FF —a € S. Then, 2b = F — a, and in this
case, V(B) = 2.

Example 2.12. If |B|=F — 7, [V(B)| = 1,2,3.

Proof: If the complement of the void is {a,b,¢, F — ¢, F — b, F — a}, the
nontrivial semigroups with void B must contain {¢, F — b, F — a} or {b, F —
¢, F —a}. From the same argument as the previous example, a cannot be in S,
so FF—a € S. Then, b and ¢ cannot simultaneously be in S because 2b < 2¢ < F,
so these are the only two possibilities.

For {¢,F —b,F —a},2c=F —aor 2c=F —b. For {b,F —¢,F — a},
2b=F —cand 3b=F —a. If both 2c=F —a and 2b = F —c and 3b = F — a,
then 2¢ = 3b, so if the complement of the void has form {n,2n,3n,4n, 5n,6n},
it is the void of three different semigroups. Otherwise, it has V(B) = 2 or
V(B) =1.

Theorem 2.13. For a given F and for each possible length |B| # 1,3 there is
at least one B with N = F,V(B) = 1.

Proof: If F is odd, we must have |B| = 2k, so let B = {1,2,...,k, F —
k,F—k+1,...F —1}. We claim [V(B)| = 1.

If S is a semigroup with void B, then it cannot contain any elements less
than F'/2. Suppose this was not the case; i.e., let m(S) < F/2. Then, F —m
must not be in S. Since F —1 ¢ S, FF—m — 1 also cannot be in S, but since
F—-m—-1¢ B, m+1 € S. Continuing this process, we eventually find that
|£] € S. But then, 2| £ ] = F—1 € S, which is a contradiction. So [V(B)| = 1.

Similarly, if F' is even we must have |B| = 2k + 1 and k£ > 1, so let
B={1,2,...,k, £ F—k,F—k+1,...F — 1}. We again claim |V(B)| = 1.

Again, suppose m(S) < g Since F,/F —1¢ S, F—m & S and F —
m—1¢ S, but then m 4+ 1 € S. Continuing, we get g —1 € S. But then,
2(£ —1) = F—2 € S, which is a contradiction as F' —2 € B. Thus, |[V(B)| = 1.
O

2.2 The Void Poset

Definition 2.14 (Void Poset). For a Numerical semigroup S, consider the poset
on B(S) witha,b € B, a < biffb—a € S. This poset shall henceforth be referred
to as the Void Poset.

Example 2.15. The B poset of S ={0,4,8,10 =}, B =1{2,3,6,7} is
6 7

2 3



And the B poset of S = (6,25,29) is

52
7N
23 46
N/
17

The void poset has many useful structural properties, as outlined below:

Recall a poset is self-dual if there exists an isomorphism ¢ : P — P such
that a x b < ¢(b) < ¢(a)

Proposition 2.16. The B poset is self-dual.

Proof: If a x b, then F —b<x F—qa,asb—a=(F—a)—(F-0b) 0O

This transformation will serve several purposes in the future, so we shall
name it:

Definition 2.17 (Conjugation). For a € B, we define a = F(S) — a as the
conjugate of a.

Corollary 2.17.1. P is marimal <= P is minimal

Theorem 2.18. The set of mazimal elements of B poset is precisely PF(S) \

{F(9)}

Proof: Let a be a maximal element of B(S). Then, Az € B such that for
some s € S, a+s=2x. SoVs € S, either a+s €S, or a+ s € Gaps\ B. In the
latter case, then FF—a—s € .5, but then F —a—s+s=F —a € S which is a
contradiction, so a + s € S. By definition, then a € PF(S) \ {F(95)}.

In the other direction, since we know PF(S)\ {F(S)} C B(S), we only
need to show these elements are also maximal. Let a € PF(S)\ {F(S)}. For
the sake of contradiction, assume there exists some z € B such that ds € S
with a + s = . But @ € PF(S) implies a + s € S, which is a contradiction, so
a must be maximal. [J

Proposition 2.19. If y covers x, then y —x € A(S)

Proof: If z,y € B and y — x = s1 + s2 where s1,s2 € S\ {0}, then let
z=x+s81. z€ (B+S)C(BUS).

If z € S then y = z 4+ so € S which is impossible. So z € B,z < 2 < vy
and z # x, z # y. Therefore y does not cover z, contradiction.

Corollary 2.19.1. If S has r atoms less than F', then each point of the B-Poset
can have at most r direct edges above it, one for each atom.

Proposition 2.20. Ifa € A(S), t+a ¢ B, and z 5 y, theny+ a & B.



Proof: We are given z,y € B and z 4+ a,y — xz € S. It follows that
y+a=(x+a)+(y—z)€S.

Corollary 2.20.1. If z,y € B, x < y then number of edges directly above y is
at most the number of edges above x

Proposition 2.21. Suppose a < x <b; theny=a+b—x € Bwitha<y=<xb

Proof: If y € S then b = y + (x — a) € S which is impossible.

IfF—-yeSthen F—y=F+z—a—-bsoF—a=(F—-y)+(b—2z)€ S
which is again impossible.

Soye Bandb—y=z—a€S,y—a=b—zxz€Ssoa<xy=<b

As it turns out, the Void Poset can be obtained from the Apery Set by first
constructing the Gap-Poset, which is the set of Gaps with z S y iff y — 2 € 5,
and then deleting everything below the Frobenius Number.

3 The Void Poset and Good Numerical Sets

Recall that an Order Ideal of a poset is a subposet I where x € I, x < y implies
yel

Proposition 3.1. Let I C B, then S C A(IUS) iff I is an order ideal of the
Void Poset

Proof: First, assuming I is an order ideal, if s € S we want to show
s+ICSUI. Pickael

e Case 1: if s+ a € 5, this works.

e Case 2: if s+a€Gap\B,F—s—a€S,soF—a=F—s—a+s€S,
so a ¢ B, which is a contradiction, so this case is not possible.

e Case 3: if s+a€ B,axs+ain B, so s+ a € I, so this works.

Thus, S C A(JUS).
Conversely if S C A(I U S) then given s € S and a,a+s € B,Ifa €
then s+ 1€ SUI, here s+a € Bsos+aé€l. Thus I is an order ideal. [J
With this refinement of Theorem 2.2 in hand, we now have enough theory
in place to tackle the following theorem:

Theorem 3.2. For a semigroup S, t(S) = 2 implies that P(S) = 2.
Lemma 3.3. If P = max(B) and A(T) = S then P € T implies P € T

Proof: Since P € T\ A(T), we need € T such that P+ z ¢ T. Since
P=max(B),P+x2¢B,soP+z=F. O

Proof of Theorem 3.2: If ¢(S) = 2, |PF(S) \ {F(S)}| = 1, and so B has
a unique maximal element. Thus, B must have a unique minimal element by
2.17.1.



In the B poset, by Proposition 3.1, if an element x is in a numerical set
T, then every element above z in the poset must also be in the numerical set.
Thus if any element of B is in T, we must have P € T’; furthermore, by Lemma
3.3 P € T; since this the unique minimal element, all of B lies above it and
hence T'= BUS. Thus, either T =5, or T =BUS, so P(S)=2. O

3.1 Self-Dual Order Ideals

We’ve seen the importance of order ideals and the self-duality of the Void Poset
previously; combining these properties yields even more powerful results.
Note: When a self-dual order ideal I is referred to in this paper, it will be
assumed that the isomorphism under which I is self-dual is the same as the
original poset.

Proposition 3.4. If I is a self-dual order ideal of the Void Poset, then A(I U
S)y=S

Proof: Given a self dual order ideal I, we know by Proposition 3.1 that
S CA(IUS). Given a € I, by definition F —ac€landa+F —a ¢ IUS. So
a+(IUS)Z(IUS)and a g A(TUS). Hence A(TUS) = S.

Proposition 3.5. If I is a self-dual order ideal, thena € I,ba=0b¢el
Proof: ac I =acl=bcl=bclO

Proposition 3.6. A self dual order ideal is determined by which Pseudo-Frobenius
numbers are contained in it.

Proof: If 1 N PF(S) = I, N PF(S) then given x € I; pick a maximal
element above it z < a. Now a € I1 N PF(S) so a € I and by lemma 3.5
x € I. So I; C I, and by symmetry I; = Iy

Definition 3.7. The Pseudo-Frobenius Graph GPF(S) is the graph with ver-
tices PF(S)\ {F} and edges PQ <= P+ Q — F € S (Note that this happens
ffP<Q < Q<P)

Theorem 3.8. If I is a self dual order ideal then I N PF(S) forms a union of
connected components of GPF(S)

Conversely if we take a union of connected components of GPF(S) and
then the order ideal generated by the conjugates of the chosen Pseudo-Frobenius
numbers is a self dual order ideal.

Proof: Say the connected components of the graph are C; LUCs LI+ - - U Cy,
and a subset of {1,...,k} as J.

First assuming I is an self dual order ideal. If a € INPF(S), and a,b € C;
for some component of the graph, @ € I, anda 5 b, sob € I so C; CINPF(S9).

Conversely, let I be the order ideal generated by the conjugates of |J,.;
for some J. If a € I, then 3b € C; such that b < a, and 3 maximal ¢ such that
a < c. Then b < ¢ so b and ¢ are connected. Then, ¢ € C; so € € I, so since
¢=<a,a€ I. Thus, I is self dual.



Corollary 3.8.1. P(S) > 2%, where k is the number of connected components
of GPF(S).

3.2 General Order Ideals

Definition 3.9 (Red Triangles). Unordered triple (a,b,c)” where a,b,c € B is
called a Red triangle ifa+b+c=F.

Lemma 3.10. (a,b,c)" is a red triangle iff a+b=¢ iffb+c=a iffa+c=10b
Theorem 3.11. Let I C B, then S = A(IUS) iff
e [ is an order ideal of the B poset

e Va € I either F'—a € I or there is a red triangle (a,b,c)" for which b € I
and F—c &I

Proof: Let a € I; we need to ensure a ¢ A(I U S), which happens iff
a+ (IUS)ZIUS. Because [ is an order ideal, a+ S C I U S, so we need to
ensure a + I Z I U S, which happens iff 3b € I such that a+b & I U S

Case l: a+beGap\ B,so F—a—b=s¢€ Sie b= F —a and hence
F—-ael

Case 2: a+be€ B\I,let c = F—(a+b) € B then (a,b,c)" is a red triangle
andbel, F—c=a+b¢gI

The converse is trivial. [J

Corollary 3.11.1. If |B(S1)| = |B(S2)| and the B Poset of So is a refinement
of the B poset of S1 and the set of red triangles of Sy is a subset of red triangles
Of Sl. Then P(SQ) S P(Sl)

(Both the properties are checked under a common identification between
the two Posets)

Definition 3.12. We say that a € T satisfies a triangle (a,b,c)” ifbe T, ¢ ¢ T
We can refine the previous theorem in the following manner:

Theorem 3.13. Let I C B; then S = A(IUS) iff

1) I is an order ideal of the B poset

ii) VP € INPF(S) either F — P € I or there is a red triangle (P,b,c)"
which P satisfies

Proof: Say A(JUS) =T # S; then T is a numerical semigroup, with
S C T. It follows that T\ S is an order ideal of the Void Poset, so it must con-
tain a maximal element P. However, P € I N PF(S) implies either F — P € I,
in which case P+ 1 ¢ I, or P satisfies some (P,b,¢)", i.e. P+b=F —c¢ I,
so again P+ 1 ¢ I. Thus P ¢ A(I U S) and we have a contradiction. [J

This Theorem allows for the current algorithm we use to determine P(S)
(see Appendix A). It also allows us to henceforth ignore red triangles which do
not include Pseudo-Frobenius numbers.



3.3 Structure among Red Triangles

Proposition 3.14. If Q € PF(S)\ {F} and (Q,a,b)" is a red triangle then
x < a impliesx < F —b

Proof: We know that @ +a =F —b. Say x = a—s, s € S\ {0}; then
(F—b)—z=Q+ s € S because @ is a Pseudo-Frobenius number and s # 0

Corollary 3.14.1. If P,Q € PF(S)\{F} and P—Q € B thenx < P — Q
implies © < P

Proof: (Q,P — Q,F — P) is a red triangle

Corollary 3.14.2. If Q € PF(S)\ {F} and (Q,a,b)" is a red triangle then
b < x implies a < x

Proof: b<1 — T<b — T<ad — a<=zx

If (Q,a,b)" is satisfied then Q,a € T, F — b¢ T and so x < a implies z ¢ T', so
a is a minimal element of T'. Furthermore, b <y = y € T, so b is a maximal
element of B\ T.

Corollary 3.14.3. If (a,b,¢)" is a red triangle with b < ¢ and we pick an
intermediate element b < x < ¢, then if y =b+c—x, (a,z,y)" is another red
triangle.

Lemma 3.15. If (a,b,¢)" is a red triangle, x < a and x £ ¢, theny = a+b—x €
B, b=<y and (z,y,c)" is another red triangle.

Proof: Ify € S,y =a+b—x=F —c—x = (F — ) — ¢ which contradicts
cAF—x

fF-yeS F-y=F—-a-bt+zsoF-b=(F—-y)+(a—x)€ S
which is a contradiction.

Therefore y € B,y —b=a—x € S and (x,y,¢)" is a red triangle. OJ

Notice that this theorem does not rely on the order of the triple, and thus is
true for any permutation of (a,b,c)".

Corollary 3.15.1. IfIf (P,a,b)" is a red triangle, x < a theny = a+b—x € B,
b=<y and (P,z,y)" is another red triangle.

The next corollary is incredibly powerful, and will motivate the rest of the
section:

Corollary 3.15.2. If P is a Pseudo-Frobenius number, it has a triangle (P, a,b)"
if F—Q < b for some Pseudo-Frobenius number () then Q—P € B anda < Q—P

Proof: a+b—(F-Q)=(F—-P)—(F-Q)=Q—-P
Definition 3.16. Given a Pseudo-Frobenius number P, Tri(P) = {a € B|3b €
B s.t (Pya,b)" is a red triangle}

10
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Lemma 3.17. If P € PF(S)\ {F}. Then Tri(P) = {a|3Q € PF(S){F} s.t.
Q—PeBanda<x Q- P}

Proof: Corollary 3.15.2 tells us Tri(P) C {a|3Q € PF(S){F}s.t. Q—P €
Banda=x Q- P}

If @ — P € B then (P,Q — P,F — Q)" is a red triangle and by corollary
315.1laxQ—P = a€Tri(P)

Definition 3.18. If T is an order ideal of B, define Tri(T) = {(a,b) € B?
P € T N PF(S), P satisfies (P,a,b)"}, X1(T) = {a € B | 3b € B, (a,b
Tri(T)}, X2(T) = {b € B | 3a € B,(a,b) € Tri(T)}, and Mi(T) = {P | P
TNPF(S)}

Lemma 3.19. If (Pl,ahbl)r and (Py,a2,bs)" are red triangles, then by < ay
implies a1 = by or az < by

Proof: So a; — (F —by) € S, but ay +bs — F = (F— P, —by) + (F —
P; — a3)—F =F — P — P, —b; —ay. Now as Py and P» are Pseudo-Frobenius
numbers F —ag—by; € S (unless F— P — Py —b; —az = 0i.e. a3 — (F—b2) =0).
Finally F' —as — by € S means as < F — by

Corollary 3.19.1. X (T) U Xo(T) U Mi(T) is an anti-chain

Proof: Lemma 3.14 implies that if z,y € X;(T) then z || y. On the other
hand if z,y € X5(T). Then say (P,a;,T) and (Q, as,7y) are the corresponding
triangles. Then P+a+ 1 = 2 and Q + a; = y. If possible assume 2z |f y and
x#y. WLoGsayzxz <yie. y—xeS Buty—zr=y—P—ay. y—x #0and
P is a Pseudo-Frobenius number therefore y — a1 = (y — z) + P € S. But this
contradicts corollary ??7. Mi(T) U X5(T) is obviously an anti-chain. If possible
assume Mi(T) U X1(T) is not an anti-chain so Ja € X;(T'), F — P € Mi(T) s.t.
F — P < a. Say (a,b) € Tri(T) then by above F' — P < F — b which implies
F — b €T which is a contradiction.

3.4 Normalizations of Order Ideals

Definition 3.20. If I is an order ideal of B, define its Lower Normalization
NI(I) to be the order ideal of B generated I N PF(S), Mi(I) and X1(I)

Note that Mi(I) = Mi(NI(I)),I n PF(S) = NI(I)n PF(S) follow trivially
from the definition.

Lemma 3.21. Given an order ideal I of B, A(JUS) = S implies A(NI(I)US) =
S.

Moreover, Tri(I) C Tri(NI(I)) and X1 (NI(I)) C (INPF(S))UMi(I)U
Xi(I).

Proof: Firstly, observe that NI(I) C I and X;(I) C NI(I) imply Tri(I) C
Tri(NI(I)).

From theorem 3.13 it follows that A(TUS) =S5 = A(NI(I)US)=S.

Moreover (a,b) € Tri(NI(I)) implies 3z € (I N PF(S)) U Mi(I) U X1 (1)
s.t. < a. And hence X1 (NI(I)) C (INPF(S)UMi(I)U X (I). O
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Remark 3.22. We don’t necessarily have Tri(NI(T)) = Tri(T), even if we
assume mazx-embedding dimension

For e.g. S =<17,29,16,31,25,26,34 >, T = (3,5,9,10,12,17,18,19,24),
NI(T) = [18,9,3,10,17,24,19], Tri(T) = [[3,5]] and Tri(NI(T)) = [[3,15], [3,5]]

)
Definition 3.23. If T is an order ideal of B we define Nu(T) = {x|Vy €
Xo(T)x Ly and (x < P,P € PF(S) = PeT)}

Lemma 3.24. A(TUS)=S5 = A(Nu(T)uS)=S5
Proof: Follows from theorem 3.13
Lemma 3.25. NI{(T) C T C Nu(T)
Lemma 3.26. NI(NI(T)) = NI(T) and Nu(Nu(T)) = Nu(T)

Proof: It is clear that NI(NI(T)) = NI(T) because NI(T) N PF(S) =
TNPF(S), Mi(NI(T)) = NI(T) and X,(T) C X1 (NI(T))

Similarly Nu(Nu(T')) = Nu(T) because Nu(T) N PF(S) = T N PF(S5)
and X1 (T) C X1 (Nu(T))

Definition 3.27. An order ideal T of B is called lower Normalised if NI(T) =
T. It is called upper Normalised if Nu(T) =T.

Theorem 3.28. If A(ThYUS) = S and NI(Ty) C T C Nu(Ty) then A(TUS) =S

Proof: We know that NI(Ty) N PF(S) =T NPF(S) = Nu(Ti) N PF(S).
Now given P € TN PF(S)

e If P Ty then P NI(Ty) and P T

o If ﬁj{ T then by theorem 3.13 there is a red triangle (P, a,b) s.t. a€T
and b ¢ T1. Now a € NI(T1) and hence a € T. Also b & Nu(T1) sobg T

Corollary 3.28.1. IfT,T; are as in the theorem then TNPF(S) = T1NPF(S),
Mi(Ty) C Mi(T) and Tri(Ty) C Tri(T)

3.5 Differences of Pseudo-Frobenius Numbers

Remark 3.29. Our study of Numerical Semigroups of type 3 suggests that
differences of Pseudo-Frobenius numbers play a key role in determining P(S)

Lemma 3.30. If P,Q € PF(S)\ {F}, P —Q € B, moreover VR € PF(S) \
{P,F}R—Q ¢ B and 3Ry € PF(S)\ {F'} s.t. P—Q < Ry. Moreover if we
assume that every good numerical set that has Ry also has F — Ry. Then Q
cannot satisfy a red triangle.

Proof: Say @ satisfies a red triangle (Q,a,b) then by corollary 3.15.2
abxP-Q. aceT = P-QeT = RHeT = F-R €T =
F—-(P-Q)eT = F—becT. So the triangle cannot be satisfied.

Definition 3.31. A numerical semigroup is called P-minimal if P(S) = 2*.
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Lemma 3.32. If P,Q € PF(S)\{F}, P—Q € B, and VR € PF(S)\{Q, F}
P —Q £ R then S is not P-minimal

Proof: @ is the only maximal element above P — (Q, hence F — @ is the
only minimal element below FF — (P — Q). Let Y = {a|z x F — (P — Q)},
T' = B\'Y. Then T’ is an order ideal, all Pseudo-Frobenius numbers except
@ have their conjugates in T”. Moreover (Q,F — P,P — @) is a red triangle,
F—PeT and P—Q ¢ T', thus the triangle is satisfied and by theorem 3.13
AT'uS)=S

Finally 7" is not self dual since Q e T/, F —Q ¢T' (Q=F — (P — Q) iff
F = P which is impossible)

Theorem 3.33. Let PF(S) = P < P, < --- < P,_y < F, If for exactly one
pair i < j P; — P; € B then:

o If Ak #i s.t. Pj — P; < Py then P(S) > 2%, S then S is not P-minimal
o If3k #i s.t. Pj— P; < Py then P(S) =2F and S is P-minimal

Proof: The first case follows from lemma 3.32

In the second case P; is the only Pseudo-Frobenius number with a red
triangle by lemma 3.15.2. Moreover P, does not have a red triangle and hence
by lemma 3.30 Q does not satisfy a red triangle either. Therefore P(S) = 2*

Definition 3.34 (DPF-Poset). DPF-Poset is the poset whose set of vertices
is (PF(S)U{P — Q|P,Q € PF(S),P —Q € B})\ {F}. The poset structure is
induced from the B-Poset

Definition 3.35. DPF(S) = {P — Q|P,Q € PF(S)\{F},P - Q € B}

Lemma 3.36. Say P € PF(S)\{F}, AC PF(S)\{P,F}, A#01IfQ €
A = P-QeBandR¢g AAQe A = P—Q £ R then S is not
P-minimal.

Proof: Let T = {z|3Q € A,P — Q < =}

IfQeTNPF(S)then3Q € Ast. P-Q' Q. (Q,P—Q,F—P)is
a red triangle, P — Q € T and P ¢ T. Hence @ satisfies a red triangle and by
theorem 3.13 A(TUS) =5

We prove that T is not self dual. First notice that P — Q st. Q € A
are the minimal elements of T (P — Q1 < P— Q2 = Q2 < @1), so it
has |A| minimal elements. If it is self dual then it has |A| maximal elements
and hence A C T. Now let @ be the smallest (according to usual order in Z)
element of A, F—Q €T = F—Q =P — Q' for some Q' € A. Therefore
Q = (F — P)+ Q@ > @ which is a contradiction.

Definition 3.37. If Q € PF(S), Q # F then GPF(S) is the graph obtained
from GPF(S) by deleting all edges involving Q

Lemma 3.38. If PP+ P,=F+Q, Q # g and Py, Py are in different compo-
nents of GPFg(S) then S is not P-minimal
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Proof: Let Z be the order ideal generated by the conjugates of Pseudo-
Frobenius numbers in the component of P, in GPFg(S). Note P, ¢ Z. Let
T = ZU{Q}, T is also an order ideal. R € T N PF(S), R # @ implies
F — Ry < R for some R; in connected component of P, of GPF(S), therefore
R is in the same component and F—R € T. (Q, Py —Q, F — Py) is a red triangle,
Pp,—Q=F—P,ecTalso P, ¢T and hence A(T'U S) = S by theorem 3.13.
Moreover T is not self dual because Q € T, F —Q ¢ Z and F — Q # Q. And

hence S is not P-minimal.

Lemma 3.39. Q € PF(S)\{F}, Let C ={P|P—Q € DPF(S)}. IfVP e C
F—(P—-Q)¢PF(S) andVP e C 3Re€ PF(S)\{F} st. P—Q < R and R
cannot satisfy a triangle. We slso assume that each VP € C' P cannot satisfy a
triangle. Then Q) cannot satisfy a triangle either.

Proof: Say (Q,a,b) is a Red triangle, say FF — P; < b and F — P» < a.
Then by corollary 3.15.2 a < P, — Q and b < P, — Q. Also say P, — Q < Ry,
P, — Q < Ry s.t. Ry and Ry cannot satisfy red triangles. Next we know that
F — P, < P; — @ (They are not equal) so by lemma 3.15 F — P, < P;

NowaeT = P-Q€eT = Rie€T — F-R €T = P¢€
T —= F-PecelT — PelT —w F-P €T — R el — F—Ry €
T = F—-(Ph-Q)eT = F-beT

Lemma 3.40. Q € PF(S)\ {F}, Let C ={P|P —Q € DPF(S)}. IfVP e C
JdR e PF(S)\{F,Q} s.t. P—Q < R AndVP,,P, € C (if PL+ P, = F+Q then
Py, P, belong to the same component of GPFg(S)). Moreover if no Pseudo-
Frobenius number other than Q can satisfy a triangle.

Then Q) cannot satisfy a triangle.

Proof: Say (Q,a,b) is a Red triangle, say FF' — Py < band F — P < a.
Then by corollary 3.15.2 a < Py — Q and b < P, — Q. Alsosay P, — Q < Ry,
P, —Q < Ry st. Ry # Q and Ry # @ so they cannot satisfy red triangles.

First we assume F + Q # Py + P5 so we know that F — P, < P; —Q (They
are not equal) so by lemma 3.15 F— P, x Pi. Nowa €T — P -QcT =
RieT — F-RieT — PclT — F-PecTlT — PeT — F-—
PLeT — Ry€T —= F-RoeT — F-(Phb—-Q)eT = F-beT.
So the triangle cannot work.

Nextif F+Q =P+ Pythenax PL—-Q=F—Pysoa=P,—Q =F—P,,
similarly b = P, — Q = F — P;. We know that there is a path in GPFg(S)
from P to P;: PQ,Ql,QQ,...,Qn7P1. Nowa=F-P el — Ql el —
F-Q1e€lT = QeT-- = Q€T = F-Q,€T = P T,
P, = F — b so the triangle cannot work.

Theorem 3.41. Say S has type 4, PF(S)=R < Q <P < F, GPF(S) has k
connected components. Then S is P-minimal iff all of the following holds:

e not both P—Q,P — R are in B
e [fP—QeBthenP—-Q=<R
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e fP-ReBthenP-R<Q
e fQ-RecBthenQ—R<P

The only exception being if F — P = Q — R, F # 2R in which case S is not
P-minimal

Proof:

Case 0: None of P—Q, P— R, Q— R are in B: Then P(S) = 2* by lemma
77

Case 1: Exactly one of them is in B
This case has been done in Theorem 3.33

Case 2: P—@Q and P— R arein B
e P-QHAP,P-—R%£P,soA={Q,R}in lemma 3.36 P(S) > 2*

Case 3: P—Q,Q — R are in B: By lemma 3.15.2 FF — P < P — @ and
F-Q<Q-R
e P-QARorQ—R#ZP
then by lemma 3.32 P(S) > 2F

e P-Q<RandQ—-R<xP
By lemma 3.30 R cannot satisfy a red triangle (as P cannot)
And by a further application of lemma 3.30 @) cannot satisfy a red triangle
either Therefore P(S) = 2*

Case4: P—R, Q—R are in B: Notice that F—Q < P-Riff F—P x Q—R.
P — R,Q — R cannot be above F' — R by lemma 3.15.2
e Q—RLPorP-RZQ
Then by Lemma 6.2 P(S) > 2F

o '=2R
Then R = F — R and every nemerical set is self dual, P(S) = 2% (Note
that F=2R — Q—R#AR = @ — R < P, similarly F = 2R =
P-R<Q)

e P-RxQand Q—R=< P, F+#2R

Note that R is the only Pseudo-Frobenius number with a triangle by corol-
lary 3.15.2.

If F+ R # P+ @ then by lemma 3.39 S is P-minimal

If F+R = P+Q then P—(F—Q) = R ¢ S hence GPFR(S) is completely
disconnected and hence by lemma 3.38 S is not P-minimal (R # g)

Case 5: P—Q,P—R,Q— Rareallin BLet A={Q,R}, P-R#AP
and P — Q % P so by lemma 3.36 P(S) > 2F
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Theorem 3.42. If the graph GPF(S) is completely disconnected then S is not
P-minimal iff AR1, Ro, R3 € PF(S) \ {F} s.t. F+ Rs = R1+ Ry with Ry # Ro
Ry # %

Proof: First assuming no such R1, Rs, R3 exist. Say the Pseudo-Frobenius
numbers are F' > P, > P, > --- > P,. We proceed by strong induction to show
that no P; can satisfy a red triangle. The base case is clear, P; cannot satisfy a
red triangle.

If Py,... P, cannot satisfy a red triangle. If P,,, = g then F—P,, = P,,
so it doesn’t need a triangle, so now assume P, # L. Say (P,,,a,b) is a red
triangle. a = F — P, —b< F —P,,,s0 F — P, <xa = 1 <m — 1, similarly
say F' — P; < b then j < m — 1. If possible assume i # j. Now by corollary
31562b<x P—Prpanda< Pj—Pp. SoOF-P,<P;— P, (F-P, #P;— P,
otherwise F' + P,, = P; + P;) so by lemma 3.14 F — P; < P;. Now GPF(S)
being completely disconnected implies i = j, so F — P; < a,b. Also GPF(S)
being completely disconnected implies a,b < P;. Finally a € T — P; €
T — F-P,eT = F—b¢eT (here we used F — P, < F — b which is
obtained from conjugation from b < P;). So the triangle cannot work. And by
strong induction S is P-minimal.

Next if F 4+ R3 = Ry + Rp with Ry # Ry and Ry # £. Let Z be the
order ideal generated by FF — Ry and T' = Z U {R3}. GPF(S) is completely
disconnected sox € 72 — r <R — F-RixF -1 = F—-zx¢€Z.
(Rs, F'— Ry, F — Ry) is a red triangle, FF — Ry € T, Ro ¢ T (as Ry # R; and
Ry = R3 = F = R; which is impossible).

Therefore A(T'US) = S, T is not self dual because F — R3 # Ry —
F—R3¢T but Rz €T. So S is not P-minimal.

Lemma 3.43. If 3P € PF(S)\ {F}, s.t. VP|,Py € B,(P, — P, € B =
Py, = P) Then S is not P-minimal iff 3A C PF(S)\ {F} st. A+ 0VQ € A
P-QeBandVQe AP-Q<R = ReA

Proof: If such an A exists then by lemma 3.36 S is not P-minimal.

Conversely if no such A exists, say C = {Q|P—Q € B}. C does not satisfy
the condition of A, so 3Q1 € C s.t. P — Q1 < R for some R ¢ C. It follows
that R does not have a red triangle and hence by lemma 3.30 ()7 cannot satisfy
a red triangle either. Now C; = C'\ {@1} does not satisfy the condition of A, so
Q2 € C1, P — Q2 X Ry, Ry & C1 and Ry & C; implies Ry cannot satisfy a red
triangle, so by lemma 3.30 ()2 does not satisfy a Red triangle. Continuing this
way no Pseudo-Frobenius number satisfies a triangle and hence S is P-minimal.

Lemma 3.44. If 3A C PDF(S) st. P-Q € A — AR st. R— P € A.
Define C = {Q|3P,P—Q € A}. If we further have that V(P —Q) € AP—-Q =
R = R € C then S is not P-minimal.

Proof: Let T be the order ideal generated by A, then we know that T'N
PF(S)C Csogiven @ € TNPF(S) 3P st. P—Q € A, hence (Q,P—Q,F—P)
is a red triangle, moreover P ¢ C' so P ¢ T. Hence A(TUS) =S5
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Conjecture 3.45. The DPF'- Poset determines whether or not S is P-minimal.
Here we assume not just the poset structure, but the knowledge of which elements
are differences of which Pseudo-Frobenius numbers.

Conjecture 3.46. The stronger conjecture is that if we look at the containment
poset of Non-Self-Dual Numerical sets that have the given Numerical Set as
their associated semigroup. Then the minimal Numerical Sets in that poset are
generated by elements of DPF(S)

Remark 3.47. The DPF-Poset cannot determine P(S) in general, this is be-
cause for example in type 4 P(S) can take arbitrary large values, but there are
only finitely many DPF-Posets possible.

Remark 3.48. A common occurrence in Numerical Semigroups is that the
only red triangles involving a Pseudo-Frobenius number that work are of the
form (Q,P — Q, F — P). However this is not always the case for e.g. consider
S =<17,38,40,65,73,81 >, T = {x]25 < =}.

Moreover all examples I could find of numerical semigroups in which tri-
angles not of this form are satisfied have Py, Py, P3, Py € PF(S){F} s.t. P, —
Py, P3 — Py € B(S) and P, — Py < P3 — Py (which is quite rare)

Definition 3.49. If A(TUS) = S then we define DP(T) = {P — Q|P,Q €
PF(S)\{F},P-Q€ B,Q €T,Q ¢ T 3 red triangle (Q,a,b),a < P —Q,a €
T.b& T}

Conjecture 3.50. IfVP;, P>,Q € PF(S)\{F} PA—Q,P,—Q € DPF(S) =

P, = P,. Then given T s.t. A(TUS) =S Let T' be the order ideal generated
by DP(T) then A(T"US) =S

4 Containment Poset

Definition 4.1. If I C B, I ={z| 7€} The adjoint of I is defined as
I*"=B\1I
Lemma 4.2. If I is an order ideal then I* is also an order ideal
Proof: If e xy,z € I*thenx & I, ie. T¢I. y<Tsoyglie y&lI
ie.yel”
Theorem 4.3. A(I*US)=AIUS), 1 CLh < I CIfand (I*)*=T
Proof: a € A(I*US) iff Vo € I*US a4z € I"USiff Vy & TUS a+7 & IUS
iftvye I"US y+aecl*US
And hence A(I*US) = A US).
LCLiffT, ChLiff B\, CB\T, iff I C I}
FinallyaeliffacliffagI*if ag I* iff a € (I*)*. O

Under the adjoint, by the above theorem, we have that the containment poset of
numerical sets satisfying A(T'US) = S, ordered by inclusion, is self dual under
the adjoint operation.
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Theorem 4.4. If I US is a Numerical Semigroup then I* =1
Proof: FIUS)=F(I)=Fsocacl = F—-—a¢l] = acl*

Theorem 4.5. IfVP € PF(S)\{F}, for every triangle (P,a,b)", a,b are above
conjugates of Pseudo-Frobenius numbers in the connected component of P in
GPF(S), then for any numerical set T satisfying A(T) =S, A(TNI)US) =S
for every self-dual order ideal I.

This shows that the containment poset is the product of smaller posets
consisting of good numerical semigroups inside minimal self dual order ideals.

Proof: Follows from Theorem 3.13
Theorem 4.6. If F' is even then P(S) is even

Proof: % el — g ¢ T* therefore T £ T*

5 P(95) for Numerical Semigroups with fixed Frobe-
nius Number

Theorem 5.1. Sy is a fized numerical semigroup
ZSOQS,F(S):F(SO) P(S) = # order ideals of B(Sp)

Proof: If 7" is an order ideal of B(Sp) then A(T" U Sp) is a numerical
semigroup that contains Sy and has the same Frobenius number as Sy.

Conversely, if S C S and F(S) = F(Sp), A(T) = S. Then we must have
T C So U B(Sp) because otherwise Ja € T s.t. F —a € Sy now F —a € Sy C
S =A(T)so (F—a)+T C T which implies F = (F — a) + a € T which is
impossible.

It follows that Numerical Sets corresponding to Numerical semigroups
containing Sy and having the same Frobenius number as Sy are precisely the
order ideals of B(Sp) union with Sy and the result follows.

Theorem 5.2. Given m, F s.t. m JF, say F =mq+r with1 <r <m-1
Yomesres)—r P(S) = (¢ +2)"" g+ 1)™"

Proof: Let So =<m,F+1,F+2,...,F+m > (Note F(Sy) = F).

Next if m € S, F(S) = F then Sy C S. And conversely if Sp C S and
F(S)=F thenme S

Now the only atom of Sy less than F' is m, so the B-poset is very simple, it
is the disjoint union of » — 1 chains with ¢+ 1 points each and m —r chains with
q points each. And hence the number of order ideals is (¢ + 2)" " 1(g + 1)™"

Theorem 5.3. If S; = SU{Q} B-Poset of Sy is obtained from the B-Poset of
S as follows:

Remove Q,F — Q from the Void, for each red triangle (Q,a,b) add new
relation a < FF—b and b F — a.
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Proof: It is clear that B(S1) = B(S)\{Q, F —Q} moreover if z,y € B(S1)
and y — z € S then y — z € S;. New relations arise when z,y € B(S;) and
y—x =@ (as @ is the only element of S; that is not an element of S). Note
that y—z=Qif Q+z+ (F—y)=F

Remark 5.4. This gives a recursive method of computing P(S) for each Nu-
merical semigroup of a fixed Frobenius number. We start with the semigroup
{0, F +1 —}. Semigroups above existing semigroup S are S U {P} for P €
PF(S)\ {F} s.t. 2P € S. The void poset and red triangles of S U {P} are
obtained as stated earlier.

Now we start with symmetric or pseudo-symmetric semigroups at the top,
they have P(S) =1 or2. We then move downwards, for each semigroup S we
calculate the number of order ideals in it’s void poset and and subtract the P(S")
for all S” that contain S (and have the same Frobenius number) to get P(S)

Remark 5.5. We had guessed based on small F that If P(S) = 2, S is not
Pseudo-Symmetric. Then S has a Pseudo-Frobenius number @ for which 2Q) €
S and P(SU{Q}) € {1,2}

It is False: < 4,9,19 > only has Numerical Semigroups with P(S) = 3 directly
above it

< 7,10,18 > only has a Numerical Semigroup with P(S) = 3 directly above it
< 10,11, 18,23 > only has a Numerical Semigroup with P(S) = 6 directly above
it

6 Characterising all Good Numerical Sets when
there is exactly one PF difference

This section was written quite early and checks red triangles for all points not
just pseudofrobenuis numbers

Lemma 6.1. If P,Q € PF(S)\{F}, P-Q € B, F—P x P—-Q and
VR e PF(S)\{Q,F} P—Q % R then

Consider the graph GPF(S) and delete all edges involving Q, the compo-
nent of Q will break into several components

Say the graph now has k + n + 1 components (n > 0)(The point Q is a
new component). Construct a set X by not including Q, not including the new
component of P and randomly choosing whether or not the remaining k+n — 1
components are included.

Let I be the order ideal generated by the conjugates of elements of X.

Let C' be the collection of vertices originally connected to Q

Let By = {z|F — Q < z,x £ P,x £ Q}, Construct I to be an order ideal
of Ba that contains X NC. (I =X NC works).

Let By = {z|r < Q and x £ P} (Note P — Q € By and By is an order
ideal)

Finally let Z be an order ideal of By containing P — Q, for e.g. Z =
{z|P — Q % x}. Say there are s such order ideals (s > 1)
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Finally letting Ty = (I UL, U Z) A(TyUS) = 8 (This gives > 2k+tn~1g
numerical sets, all of which are non self-dual as Q € Ty, F — Q & T1)

Proof: First we need T3 to be an order ideal; this is true because I, I and
Z are order ideals. (Check that I, Z are actually order ideals of B)

Note that P ¢ T

Ifz el thendRe€ X (so R# P,Q)st. F—R<xxz. x €Ty sox &P,
now if x < @ then & € By, we can therefore assume x £ @ (We do the case of
By later). Say « < Ry, Ry # P,Q,F — R < R; implies that R and R; are in the
same new connected component and hence Ry € X and F— Ry x F—xz €1
and hence F' —z € T}

Next if € I then 3R € X N C (R cannot be Q) s.t. F—Q < z < R,
hence F — R F —x €1 and hence FF —x € T}

Lastly, if z € By; (Q, F — P,P—Q) is a red triangle, z € By implies x < @
and z £ P = z £ F — (P — Q) so by lemma 3.15 (z,y, P — Q) is also a red
triangle where y = Q + F — P — x.

Now P — @) € T, this is because P — Q € Z.

Finally we need F —y ¢ T1; F —y = P — @Q + « implies P — (F —y) =
Q—zeSandhence F—y<x P, F—y¢T

Therefore A(T; US) =S

T is not self-dual because P—-Q € Zand P-Q < Q@soQe€T. F—P <
P—-Q<QsoF—Q<Pandhence F—Q¢T,

Corollary 6.1.1. If P — Q = F — P then the number of such T} is 281

Proof: Notice that in this case the connected component of @ in GPF(.S)
is {P,Q}. So there are k — 1 ways of choosing X and hence I; has 2¥~1 choices.
Also By = () and hence I = (). Lastly B is the order ideal generated by P — Q
so Z must be the order ideal generated by P — Q

Lemma 6.2. If P,Q € PF(S)\{F}, P-Q € B, andVR € PF(S)\{Q, F}P—
Q # R then

Consider the graph GPF(S) and delete all edges involving Q, so the com-
ponent of Q will break into several components.

Say the graph now has k+n+ 1 components (n > 0) (Note that the point
Q is a separate component). Construct a set X by not including Q, including
the new component of P and randomly choosing whether or not the remaining
k+n—1 components are included.

Let C be the collection of vertices originally connected to Q)

Let I be the order ideal generated by the conjugates of elements of X.
(Note F — P € I1) (also note F — (P - Q) € I1)

Let By ={F —-Q g z,x A F—(P—-Q),x £ Q}. Construct I to be an
order ideal of By that contains X N C (for e.g. I = X N C works)

Let By = {z|lzr  Q,z £ P,x £ F — (P —Q)}. Construct Z to be an order
ideal of By containing Q. Say there are so such ideals (sq > 1)

Finally letting Ty = (IUL U Z) A(Ty U S) = S (This gives > 2ktn—1s,
numerical sets) (Also note that each Ty is not self dual because Q € Ty, F —Q &
T5)
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Proof: First we observe that T5 is an order ideal because I, I, Z are order
ideals. (Check that I and Z are actually order ideals of B)

Note that F'— (P — Q) ¢ T»; The only minimal element below F — (P — Q)
isF—QsoF—(P—-Q)¢I. Clearly F — (P —-Q) ¢ 1,Z

Ifxel,say Re X (so R#0), F— R < z. Now if z < R; for some
Ry # @ then R, Ry are in the same component of the new graph, FF'— Ry < F—x
so FF—x € I; and hence F' — x € T;. Now assume that @ is the only Pseudo-
Frobenius number above x this would mean that x € B; which is a case we
consider later.

Nextifx € Iso F—Q < z,say ¢ < R (so R # Q). This means that
ReXand F—-R<xF—-xsoF—xel

Now consider an ¢ € By. (Q,P — Q,F — P) is a red triangle, z < @
and ¢ £ F — (F — P). So by lemma 3.15 (z,y, F — P) is a red triangle, where
y=Q+P-Q—-x=P—x. F-(P-Q)—(F-y)=y—P+Q=P—x—P+Q =
Q-—z€SsoF—y<xF—(P—Q)soF—y¢T, and the triangle is satisfied.

This ensures A(To US) =S

Moreover T is not self dual because Q € Z, F —Q < F — (P — Q) so

F-Q¢T

Corollary 6.2.1. If P — Q = F — P then there are exactly 2571 such Ts,
moreover these are the same sets as the ones in corollary 6.1.1

Proof: Notice that in this case the connected component of @ in GPF(S)
is {P,Q}. So there are k — 1 ways of choosing X and hence I; has 2¥~1 choices.
We know that P € X so I contains the order ideal of ' — P = P — Q. Also
By = () and hence I = (). Lastly B is the order ideal generated by P—Q = F'—P
so Z C I;. Thus T = I;, notice that these were the same sets in corollary 6.1.1

Theorem 6.3. Let PF(S) =P, < P < --- < Py < F, If for exactly one
pairi < j P; — P; € B then:

o If Bk # i s.t. Pj — P; < Py, then P(S) > 2¥ and all numerical sets are
given by lemmas 6.1 and 6.2 (and the self dual ones)

Moreover If P; — P, = F — P; then P(S) = 3 x 2871, the numerical sets
from lemmas 6.1 and 6.2 are the same.

And if Pj — P, # F — P; then P(S) > 2% 4+ 28" the numerical sets
obtained from lemmas 6.1 and 6.2 are distinct

o If3k #i s.t. Pj— P; X Py then P(S) =2k

Proof: Rename P; = P, P; = Q. Note that by corollary 3.15.2 Q is the
only Pseudo-Frobenius number that can have a triangle, also F' — P < P — Q,
it is the only minimal element below P — Q.

In the first case Q has the triangle (Q, P — Q, F — P). We show that it
cannot satisfy any other triangle, if (@, a,b) is a triangle then F — P < a,b <
P — @ by corollary 3.15.2. a,b # P — @ so by corollary 3.14.1 a,b  P.
a €T = P €T, since P does not have a triangle F — P € T. (Q,a,b) is a
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red triangle, F' — P < a so by corollary 3.14 F — P < F —bso FF—b & T and
the triangle doesn’t work.

Therefore the only triangle that can work is (Q, P— @, F — P). Remember
that it can work in two ways:

e First way isif P—Q €T and P& T.

In this case define Z = {z|zr € T1,2 < Q} (Notex € Z = z £ P). Z is
an order ideal of B; = {z|z < Q,x # P} and P - Q € Z.

Let I ={z|z € T,F — Q < x,x £ Q}, it is clear that I is an order ideal
of Bo={z|F —Q < z,2 £ P,x £ Q}.

Let X =TN(PF(S)\{Q}). If R € X then R does not have a triangle so
F — R €T, let I; be the order ideal generated by conjugates of elements
of X,s0 I CT.

Now if 2 e T\({ULL UZ) then F — R; < « with Ry € X, R1 # Q
(together meaning Ry ¢ T) and ¢ £ Q,sosay c x R (R# Q). SoRe T,

R does not have a triangleso F — Re€T. F-Ri <R —= F-R<x R
so Ry € T which is a contradiction. Therefore T'= (I U I; U Z)

Next if R € X is connected to Ry # @ in GPF(S) then F — R < R;.
R €T, R does not have a red triangle so ' — R € T and hence R; € T.
This means that if a Pseudo-Frobenius number is in 7" then all Pseudo-
Frobenius numbers connected to it in the new graph are in T. P € T, so
the new component of P cannot be in X.

We conclude that T' is given by lemma 6.1

e Second wayis F—PeTand F—(P—-Q)¢T
Let Z={zlz €T, 2 xQ}. 2€Z = 2 4AF—-(P-Q) = z&P. It
follows that Z is an order ideal of By = {z < Q,z A P,x 4 F— (P—-Q)}.
Let X = ({P}U(TNPF(5)))\{Q}, if R € X{P} then R does not have
a red triangle and hence F' — R € T, we also have F' — P € T.. Let I; be
the order ideal generated by conjugates of elements of X, it follows that
LCT
Let I = {zlx € T,F — Q < z,z £ Q}, it is clearly an order ideal of
By={F-Q<zaAF—(P-Q)z#&Q}
Nowifz € T\(JULLUZ) then F—R; < x with Ry € X, R; # @ (together
meaning Ry ¢ TU{P}) and z £ Q,sosay t < R (R# Q). SOReT, R
does not have a triangleso F— R€T. F— R xR = F— R < R; so
Ry € T which is a contradiction. Therefore T'= (I U U Z)

Next if R € X is connected to Ry # @ in GPF(S) then F — R < R;.
R € T, R does not have a red triangle so F' — R € T and hence Ry € T.
This means that if a Pseudo-Frobenius number is in X then all Pseudo-
Frobenius numbers connected to it in the new graph are in 7. And P € §

Therefore T is given by lemma 6.2
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Now if P — @Q = F — P, then by corollaries 6.1.1 and 6.2.1 we know that
both lemmas give the same numerical 2~ sets. So total number of sets is
2k 4 2k=1 = 3 x 2k—1

And if P — @Q # F — P, then the ones from lemma 6.1 don’t have P in
them, the ones from 6.2 have P (proved next)

(Q,P—Q,F—P)isared triangle F— P <P—-Q (F—-—P#P—-Q)so
by lemma 3.14 F' — P < P and hence P € T

For the second case denote such a P, = R. Wehave F— P<P—-Q <R
and hence F—R< F—(P—Q) < P. If (Q, a,b) is a triangle then a,b < P —Q
by lemma 3.15.2. So if the triangle is satisfied then P — Q € T, so R € T, so
F-ReTsoF—(P—-Q)eTsoF—a,F—0beT. And hence the triangle
cannot be satisfied. Therefore P(S) = 2% O

7 Arf Semigroups

Lemma 7.1. S is an Arf Numerical semigroup of multiplicity m. If x € B\
PF(S) then z+m € B

Proof: © ¢ PF(S)so3ds; € Ss.t. s1 #0x+s1 € S. Nowif z+m € S then
m<sandm < z+msoz+s; =s1+(x+m)—m € S (because S is Arf) which
is a contradiction. Next if F— (z+m) € Sthen F—x = (F—(x+m))+m € S
which contradicts ¢ € B. Therefore x +m € B

Corollary 7.1.1. If S is an Arf numerical semigroup then. The width of the
B-Poset is t — 1, where t is the type of S (t = m — 1 as Arf Semigroups have
max embedding dimension)

Remark 7.2. The St(m,n) families are always Arf

Conjecture 7.3 (April Conjecture). The cover relations of the B posets are
always small generators, within the first % of the set of generators.

Remark 7.4. Approach towards April Conjecture:

Every Arf Numerical semigroup can be obtained via a sequence (and every
semigroup obtained this way is Arf):

So =N, S = (.131+50)U{0}, Sy = ($2+S1)U{0}, e, Sy = (Z‘n-i-
Sp—1) U{0} s.t. x; € S;—1 for each i

Now B(Sy) = B(S1) = -+ = B(Sk—1) s.t. k is the first entry for which
Tk Z 3.

Neat if the denote Brel(S) = {y — z|z,y € B(S),y —x € S} thenr >k
implies Brel(Sy+1) = (z, + Brel(S,)) U {0}

We then need to determine which elements of Brel(S,) cannot be written
as sum of other elements of Brel(S,)

It looks like the cover relations of B(S) are first several consecutive gen-
erators of S. And the ratio of the number of gemerators and the multiplicity
(which is also the embedding dimension) is at most i

xi being at least 3 leads to the April Conjecture
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8 Families of Semigroups

Chris’s Cowardly Conjecture

At approximately 9:15am on June 21, Christopher O’Neill conjectured
that the type of a semigroup S and P(S) were related. Some investigation finds
us many, many semigroups where P(S) = 2, but T'(S) # 2.

Definition 8.1 (Additive Semiclosure). Given a numerical semigroup S, and
a finite set {a;} C N\ S, the additive semiclosure of S with respect to {a;} is
the set S’ constructed by adjoining a;, and then iteratively adding elements in
order to satisfy additive closure.

By applying TBUS and the concept of additive semiclosure to semigroups
with fixed Frobenius numbers, we identified all of the numerical sets that map
to them. In this way, we found some families with P(S) = 2, but T'(S) # 2.

Definition 8.2 (Quasisymmetric Semigroups). A numerical Semigroup for which
the size of the B set is 2 is called a Quasisymmetric semigroup.

Theorem 8.3. Quasisymmetric Semigroups have P(S) = 2 unless B = {a, F —
a} and F = 3a

Proof: If B = {a, F' — a}, we know that A(S) =S5 and A(BUS) =S5...
E.g. For an even number 2n, the semigroup {0,n+1,n+2...2n,2n+1 —}

has P(S) = 2 but T(S) = 3. In particular, PF(S) = {£&£L F(s)}.

Definition 8.4 (YET UNNAMED SEMIGROUPS). The semigroup {0,n,n +
1,...2n—5,2n—2,2n —} has PF(S) = {2n—4,2n—3,2n— 1}, but P(S) = 2.
Proof: This is a semigroup since all nontrivial elements are greater than
. The Pseudo-Frobenius numbers are just the gaps larger than @, ie.
{2n —4,2n —3,2n — 1}.

The only numerical sets corresponding to this semigroup are S and BU S.
B=1{2,32n—4,2n—3}. Ifbe T,bec T. If 2 € T, thus 2n — 3 € T, and since
2n—6€ 5,2n—4 € T so3 €T whichis BUS. If 3T, 2n—4 €T, and since
2n—6€T,2n—3 €T and 2 € T. Again this is BU S, so if any element of B
isin T, T = BUS. This shows P(S) =2. O

£(S)
2

In fact, when P(S) = 2, both |B| and the type of the semigroup can be
unbounded, as evidenced by the following families:

Example 8.5 (3n Semigroups). Forn € N, the family S, = {0, 3,6,...3n —}
has |B| =n and P(S,) = 2.

Proof: Note that every multiple of 3 is contained in every S,,. For b <
F(S),ifb=1 mod 4, then F(S)—b=1 mod 4s0b, F(S)—b¢& S, butif b=2
mod 4, F(S) —b € S. Thus, B is exactly the elements of S that are 1 mod 4,
so |B| = n.

Furthermore, if A(T) = S and T # S, then T = BUS. Since T # S,
b e T\S,sob=3k+1. Then, since b+5 C S, then for 0 <1 e N, 3(k+1)+1 € S,
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so every element of B larger than b is also in T'. Then, since 3n — 2 € T', but
3n—2¢ A(T), 1 € T. After this, every element of B is alsoin T, so T = BUS.

Example 8.6 (2" Semigroups). Forn € N, the family S, = {0,m, m+1,...m+
n,m+n+2,...m+2n,...2m — 2,2m —}, where m = 2" + n — 1 and the
Pseudo-Frobenius numbers are {2m —28¥=1 —k + 1|1 <k <n}. P(S,) =2 and
T(Sn) =n.

Proof: First, each .S, is a semigroup, since every nontrivial element of S,
is larger than % Similarly, each element of PF(S) is larger than %, SO
2m—2"1 —k4+1+SCS.

Now, if A(T) = Sand T # S, then T = BUS. In this case, B is composed
of the Pseudo-Frobenius numbers (except F', where k = 1) and their conjugates.
If T contains some Pseudo-Frobenius number PF), = 2m — 2*~1 — k + 1, it also
contains its conjugate F' — PFy, = 21 4k — 2. Since for higher values of k, the
gaps are 2871 41 apart, for k < n, if PFy, € T, PFy., € T. If PF,, € T, then its
conjugate 2" +n—2 € T. Then, since for n > 2, m < PF, — (2" 1 4+n—2) <
PF,, if PF,, € T, then PFy € T. Thus, if one Pseudo-Frobenius number is
in T, then all of them are, so the only semigroups with A(T) = S are S and
TBUS.

8.1 Noble Semigroups

Definition 8.7. A semigroup is Noble if for all P € PF(S),b € B, we have
that P+be B = b= F — P. Otheruwise, it is Ignoble.

Theorem 8.8. If S is noble, then it is P-Minimal.

Proof: Let T be a numerical set such that A(T) = S; it suffices to show
that T\ S is self-dual, so let P € TN PF(S). There must be ¢ € T'N B such
that P+t ¢ T. If P+t ¢ B, we have from the proof of Theorem 3.11 that
F—PeT. If P+te B, thereis Q € PF(S) such that @ — (P +t¢) € S, and
0Q-P=(Q—-P—-t)+teTNBand P+ (Q — P)=Q € PF(S); we thus
have Q — P=F — P e T. Eitherway PeT — F—-PecT,andso T\ S is
self-dual. [J

8.2 P(S) for Semigroups of Type 3

From the symmetric semigroups, we know that if 7(S) = 1, P(S) = 2. From
Theorem 3.2, we can see that T'(S) = 2 implies P(S) = 2. In the following
section, we will show that T'(S) = 3 implies that P(S) = 2, 3,4, and P(S) can
be arbitrarily large for T'(S) = 4.

Theorem 8.9. Ift = 3 and number of connected components of GPF(S) is 2,
then P(S) =4.

Proof: Let P and @ be the maximal elements of the B Poset (with P <
Q), so their conjugates are the minimal ones. In order to have two connected

25



components in GPF(S) we must have F—P £ Q. So F—P < Pand F-Q < Q.
Now assume we have a red triangle P+ +y = F then FF — P £ z,y. So
F—-—Q < 7,y < Q. It follows that if either of x,y are in T then Q € T and
hence F' — @ € T and conjugates of both x,y are in T so the triangle cannot
work. Hence, P(S) =4. O

Theorem 8.10. Ift =3, PF(S) ={P,Q,F} with P< Q < F,Q— P ¢ B,
then S is noble.

Proof: Follows from corollary 3.15.2

Lemma 8.11. Ift = 3, Q — P € B, and (P,z,y) is a red triangle, then
x < Q— P. (The same applies to y.)

Proof: Follows from corollary 3.15.2

Lemma 8.12. [ft=3,Q—P e B, andx x Q—P andx # Q— P thenx < Q.
Proof: Follows from lemma 3.14

Lemma 8.13. Ift=3,Q—P € B, andb||Q — P thenb < Q

Proof: If possible, assume b £ Q). Then, b < Pie. P—b € S. Also
Q — b & S therefore either Q —b€ Bor Q —b € Gap\ B

If @ —b € B then Q — b cannot be below ), and hence it must be below
Pie. P—@Q+be S which means Q — P < b, which is a contradiction.

Next assume @ — b € Gap \ B, which implies F — Q + b € S, but then
F—(Q—P)=(F—-Q+b)+(P—b) S, which is also a contradiction because
Q—PeB.

We conclude that b < Q. O

Lemma 8.14. Ift =3, Q — P € B, and Q— P < b and Q — P # b then
F-Q<xb

Proof: F—(Q—-P)<xb = b<Q— P andb+# Q — P hence by lemma
812b=<Qie Qb0

Theorem 8.15. Ift =3 then P(S) <4

Proof: The only case remaining is when GPF(S) is connected and Q—P €
S. GPF(S) being connected means FF — Q < P and F — P 5 Q,

Consider T s.t. A(T) = S andlet T/ =T\ S. If 77 # (), then T has at
least one Pseudo-Frobenius number. If it has @, then it has F' — @) and hence
also Pie. T"#0) =— PeT.

Now if F— P € T, then Q € T, which implies F' — Q € T’, which implies
T' = B. Therefore T" # ), B = P €T’ and F — P ¢ T'. Hence P must
satisfy a red triangle and by lemma 8.11 we know Q — P € T”

Let T1 = {z|Q — P < z}, by lemma 8.12 and lemma 8.13 we see that
T#0,BTH = QT = QT SoF-Q=<z = z€T
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Let Ty = {z|F —Q < z}. fz || F—(Q — P) then F —z || @ — P and
hence by Lemma 8.13 FF —z < @, hence F — @Q < = and x € T5. Next if
F-(Q—-P)gz,z# F—(Q—P) thenby Lemma 814 F —Q <z and z € T

Finally if 7" # 0, B, T}, T> then 3z € T st. * < F — (Q — P). Hence
F —(Q — P) eT'. Now if a red triangle (P,y,z) works i.e. ye T/, F —x & T’
then by Lemma 8.12, x < @Q — P and hence F' — (Q — P) < F — z . It follows
that no triangle can work, which is a contradiction.

We have shown that P(S) < 4. O

Lemma 8.16. Ift = 3, the graph GPF(S) is connected and QQ — P € B then
A(ThusS) =S

Proof: Firstly 73 is an order ideal and P is the only Pseudo-Frobenius
numberin T} (Q €Ty — Q—P<xQ = P=Q—(Q—P) e S which is
impossible). Moreover (P,Q — P, F — Q) is a red triangle with Q — P € T} and
Q=F —(F—-Q)¢T;. Hence by theorem 3.13 A(T US) =S

Theorem 8.17. If t=3 then P(S) = 2 iff GPF(S) is connected and Q — P ¢ B

Proof: Firstly if GPF(S) is connected and @ — P ¢ B then by Theorem
8.10, S is noble and hence P(S) = 2.

Conversely assuming P(S) = 2, if GPF(S) is not connected then P(S) =4
so GPF(S) must be connected. And if Q—P € B then by lemma 8.16 A(T}) = S
and P(S) >3

Lemma 8.18. Ift =3, GPF(S) is connected, Q — P € B then A(To,US) =S5

Proof: Let T = {z|F — @ < «}. Note that P € T and () may or may not
be in it.

(P,F—Q,Q—P) is ared triangle, F'— Q € Ty. Moreover (F —(Q — P)) —
(F-Q)=P ¢S and hence Q £ Q — Pi.e. Q— P ¢ Ty. Therefore the triangle
is satisfied.

If Q € T, then we know that Q € Ty.

Therefore by theorem 3.13 A(T, U S) =S

Theorem 8.19. if t=3, GPF(S) is connected and QQ — P € B then:
if F'=2Q — P then P(S) =3, otherwise P(S) =4

Proof: ' =T if Q— P=F —Q
Remark 8.20. Note That T} =13

8.3 Chris’s Courageous Conjecture

Definition 8.21. Given a Numerical Semigroup S and 8 > 2, f s.t. B Af,
f> B(F(S) +2m(S)) define M(S,B, f) =BSU{0,f+1—=}

Conjecture 8.22. If we fir S and B then P(M(S,f, f)) is eventually a quasi-
polynomial is f
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Notation: denote by F' the Frobenius number of .S, by m the multiplicity
of S (as opposed to those of M (S, 8, f))

Remark 8.23. St(m,n) = M(N,m,nm — 1) and
St(l,m,n) = M{0,l =},m,m(l+n) — 1)

Definition 8.24. Given a Numerical Semigroup S and 8 > 2 we define the
BS-Poset to be the Poset whose elements are N\ (8S) andz Ly iff y—x € BS
(Note that it has infinitely many elements)

Definition 8.25. Given a numerical Semigroup S the S-poset is the poset whose
elements are N and x <y iffy —x € S.
The Gap-Poset is the poset whose elements are N\S and z < y iffy—x € S

Remark 8.26. Note that the B-Poset is obtained from the Gap-Poset by delet-
ing everything that is below the Frobenius number in the poset.

Lemma 8.27. The 85-Poset has the following description:

Let C; = {z|z = i(mod B)} if 1 <i< S —1and Cg = {z|z = ft,t € S}.
Note that the sets C; are mutually parallel.

If < B —1, then C; is isomorphic to the S poset, with 18+ ¢ < 28 + ¢
in the 3S-Poset iff g1 < g2 in the S-Poset. In addition, Cg is isomorphic to the
Gap-Poset, Bt < Bty in fS-Poset iff t1 < to in the Gap-Poset.

Corollary 8.27.1. If S = {0,k,—} the 8S-Poset has the following description:

The sets C; are mutually parallel.
Fori<pg—1,z,y € C; then z 5 y iff y — xz > Bk.
Cp is a Chaos Poset of size k — 1.

We describe the structure of C; as a poset (i # ) by arranging them in
towers. The first layer has those elements that are between 1 < x < mpg, the
second layer those between mg < x < 2mf and so on.

Note that we cannot have edges within a layer, this is because if ¢1 3 + ¢
and ¢of + i are in the same layer then g3 — ¢ < m and hence ¢3 — q1 € S.
Let a be the largest atom of S then we can never have a direct edge from the
1" layer to the 15" layer with Iy — Iy > [£] + 1. This is because if such an
edge exists, say between points ¢18 + i and g8 + 4, with (I3 — 1)m < ¢; < mly
and (I3 — 1)m < g < mly. Note that by the lemma 8.27 this is equivalent to
there being a direct edge from ¢; to g2 in the S poset i.e. g2 — g1 is an atom
(generator) of S. But g2 —q1 > m((I2 — 1) = l1) > m([2]) > a (m fa) which
is impossible.

Also note that elements in the [*" layer are obtained by adding (I — 1)m#3
to elements in the 1¢ layer. Note also that x +mf--- < x + (I — 1)mf. Thus,
the edges between the {*"* and [ + 1*" layers are in natural correspondence with
edges between 15t and 2" layer and the edges between [*" and [ + 2" layer are
in natural correspondence with edges between 1%t and 37¢ layers. Continuing
this process, edges between [** and [+ [2] th layer are in natural correspondence
with edges between 1% and [2] + 1" layers.

m
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Lemma 8.28. The B-Poset of M (S, 3, f) (assuming f > BF(S)) has the fol-
lowing description:

It is a sub-Poset of the SS-Poset.

Say f=r(mod ) 1 <r < g,

Then from C; (j # r, j # B) we remove all elements > f Let D; = {z|z €
Cj,z < f}. From C, we remove everything except D, = {f — 89,9 € N\ S}
(f > BF(S)). Note that D, as a Poset is the dual of the Gap-Poset of S. Cs
remains as it is (f > SF(9)).

Corollary 8.28.1. In case of S = {0,k —} the Gap-Poset of {0,k —} is the
chaos poset of k — 1 elements and hence the B-Poset is M({0,k —}, 5, f) (we
assume f > Bk) is the disjoint union of 8 — 1 cut-off S-Posets and two chaos
Posets of size k — 1 each.

Definition 8.29. The S cut off at n Poset is the poset whose elements are
natural numbers less than n with x Xy iffy —x € S

Remark 8.30. In the B-Poset of M(S, 3, f). If f =r(mod B), with 1 <r < 3
Then for j < r then Dj is naturally isomorphic to S cut off at f%} and for

J > r Dj is naturally isomorphic to S cut off at L%j

Lemma 8.31. The mazimal elements of S cut off at n Poset are n — 1 and
n — 1 — x where x is a minimal element of the Gap-Poset of S

Corollary 8.31.1. PF(M(S, 8, f + 8))\ Cs = 8 + (PF(M(S, 8, f)) \ Cs)
And of course PF(M(S, B, f+B8))NCg = PF(M(S,8,f)) NCp

Corollary 8.31.2. Type of M (S, B, f) is t(S)+(8—1)(1+#{minimal elements of Gap Poset}) =
t(S) + (B = 1)m(S)

Lemma 8.32. If P € PF(M(S, 3, f))\({f}UCp) and (P, a,b) is a red triangle
of M(S, B, f) then P+mf > [ and hence a +b < mp and a,b and P =a+b
are in the bottom layer.

Corollary 8.32.1. If f = r(mod ) then D, has no elements in the bottom
layer if f > (F+m)B.
And hence the a,b, P from the lemma cannot be in D,

Lemma 8.33. If P € PF(M(S, 3, /))\({f}UCj) then (P, a,b) is a red triangle
of M(S,B8, f) iff (P+ 8),a,b) is a red triangle of M (S, 5, f + B))

Note that a,b were not in D, of PF(M(S, 3, f)) and hence so a,b are the
B-Poset of M(S, B, f + )

Also note that if at least one of x,y (say x) is a newly added element of
the B-Poset of M(S, 8, f + B) (i.e. it was not in the B-Poset of M(S, 5, f))
then x is in the top layer of the B-poset and hence (P + ,x,y) is not a red
triangle of M (S, 53, f + B).
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Remark 8.34. We fix S and B, move f within a particular equivalence class
mod B (while ensuring f > (F +m)S). For j # 3 We denote the numerically
largest element of D; by P(j,0) (so P(r,0) is the Frobenius number) and we
define P(j,gp) = P(j,0) — gp for gp € N\ S

We also define P(B,p) = Bp for p € PF(S5).

Note that these are all the Pseudo-Frobenius numbers.

Remark 8.35. We divide order ideals of the B-Poset of M(S, [, f) into cate-
gories depending on which elements of the first layer are in the order ideal and
which elements in the first layer have their conjugates in the order ideal, which
elements of Cg are in the order ideal, which elements of D, are in the order
ideal.

Lemma 8.36. For P € T N PF(M(S,3,f))\ ({f} UCpg) note that whether
or not P € T and whether or not P satisfies a triangle is determined by which
category P is in.

Lemma 8.37. For P € Cs N PF(M(S, B, f)) if P has a red triangle (P,a,b)
with a € Cg U D, Then whether or not an order ideal satisfies the red triangle
is determined by the category.

Proof: If a € Cg then f —b= P +a=0(mod §) and f —b € Cg and the
category determines whether or not this order ideal is satisfied.

If a € D, then f —b= P+a = r(mod (). Therefore whether or not a € T
and f —b € T is determined by the category.

Lemma 8.38. Ifi # r, 8 and x € D; then the set {ylx < y,y € D;,z || y} is
the same as the set {x + gpBlgp € N\ S,gpB < f — z} with v < f — FB then
the set {ylr < y,y € D;,x || y} is the same as the set {x + gpB|gp € N\ S} and
as a poset is isomorphic to the Gap-Poset of S

Lemma 8.39. Ifi # r,8 and x € D; then the set {yly < x,y € D,z || y} is
the same as the set {x — gpBlgp € N\ S,gpB < z} with x > Ff then the set
{ylr < y,y € D;,x || y} is the same as the set {x — gpBlgp € N\ S} and as a
poset is isomorphic to the duel of the Gap-Poset of S

Notation: For each pair of disjoint subsets A, B of the set of maximal
elements of Cg let 5,4, be the number of order ideals of Gap poset of S for
which Vp € A either % is in the order ideal or there is a pair of elements of
the poset that differ by %, the smaller element is in the order ideal, the larger

element is not. Moreover Vp’' € B such a pair does not exist and % is not in the
order ideal.

And let vy, 4,5 be the number of order ideals of poset obtained from Gap
poset of S by throwing away everything numerically bigger than n, we only
count order ideals that satisfy: Vp € A either % is in the order ideal or there is
a pair of elements of the poset that differ by %, the smaller element is in the

order ideal, the larger ideal is not. And for Vp' € B such a pair does not exist
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and % is not in the order ideal.

If in a category we had chosen an element but excluded an element above
it then the category has no order ideals and we throw it away.

For the remaining categories we count the number of good numerical sets
in them:

Counting Good Numerical Sets with Towers

Fix a category. Let A be the set of elements of maximal elements of Cjg
that are chosen in the category, while their conjugates are not chosen.

If the category was not thrown out then it has three kinds of towers (D;,
i # r are called towers).

1. At least one element of first layer and all elements whose conjugates are
in first layer are chosen.

2. No element of first layer is chosen and at least one element whose conjugate
is in the first layer is not chosen.

3. No element of the first layer is chosen, all elements whose conjugates are
in the first layer are chosen.

In a tower of the first kind, all but finitely many elements are above the chosen
minimal elements (the set of the remaining ones does not change when we change
f within an equivalence class).

In a tower of the second kind, all but finitely many elements are below one
of the maximal elements that is not chosen (the set of the remaining ones does
not change when we change f within an equivalence class)

We divide the category into sub-categories by randomly choosing which of
the remaining elements of towers of the first and second kind are to be included
in the order ideal.

If while making the subcategory we picked an element but missed some-
thing above it, then the subcategory has no order ideals in it and we throw it
away.

If the subcategory survives then some of the elements of A might satisfy a
triangle within the decided elements (decided elements are those that are chosen
or excluded). We remove those elements from A and create a modified A set.

Now we have a subcategory and a modified A set. We still have towers of
third kind to consider.

Given a tower of the third kind, say D;. If ¢ < r it has [%] elements and

if r < 4 it has Lij elements; in either case, denote the number of elements in
D; by n. The first m of these are in the first layer and have been excluded,
while the last m have their conjugates in the first layer and have been included.
The remaining n — 2m elements have to be decided. Suppose the smallest
(numerically) element among these that is included in the order ideal is x; then
everything above x is included, and everything numerically smaller than x is
thrown away. Note that the set {y|z < y,y € D;,x || y} remains to be decided.
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Suppose we have picked the x in each tower of the third kind. If there are
s1 towers of the third kind with 7 < r and s towers of third kind with i > r,
there are ((%l - Qm)sl([%] — 2m — 1)%2 ways of picking the elements z from
each tower.

Note that any p € A (the modified A) cannot satisfy a triangle with the
decided elements, because if x 4 p is either undecided, or in the top layer and
hence chosen or not in the B-Poset at all. And if £ < a then a + p is either
chosen or not in the B-Poset at all.

Now we need to decide the remaining elements, so we first split the sub-
category into several divisions. Each division is a tuple D = (ogp1,0gp2,-.,0F,T1,72)
where gpl,gp2,... are the Gaps of S, o, is how many towers (of third kind)
have the poset of undecided elements naturally isomorphic to Gap-Poset of S cut
off at gp. r1 is how many towers D; (of third kind) with ¢ < r have f —z > Fj3
(and hence the poset of undecided elements naturally isomorphic to Gap-Poset
of S) and 7o is how many towers (of third kind) with ¢ > r f —z > F3. Each
division D has a coefficient ap which is the number of ways of partitioning the
towers of the third kind into g + 2 parts s.t. all towers D; in the g + 1*" part
have i < r and all towers D; in the g + 2" part have i > r.

Denote the number of towers of the third kind by d.

Note that ogp1 + ogp2 + -+ 0F + 11 + 12 = d otherwise the division has
ap = 0 and can be ignored.

Lastly we further split each division into several Partitions. Each partition
is a tuple (A1, As,...,Aq) st. A UAU---UA; = A Define B; = A\
A;. We define function g on the components of the tuple, g maps the first
ogp1 components to gpl, then next gy components to gp2, ... further op
components to F' and last r; 4+ ro components to co

The number of good numerical sets in a partition is aq Hle Vo(As),Ai,Bi [%1 -

2m — F)*([4]—2m—1-F)*=. O

Theorem 8.40. If we fir S and 8 then P(M(S,(, f)) is eventually a quasi-
polynomial is f with period 3

Proof: Once we have fixed S, § and which equivalence class mod 8 f is
in, we can determine all the categories, all of their subcategories, all of their
divisions and all of their partitions. Once we do this we have a polynomial in
(%1 as the number of good numerical sets within a partition.

Once we sum these polynomials over all partitions of all divisions of all sub-
categories of all categories we get the polynomial expression of P(M (S, 3, f)),
the polynomial depends on which equivalence class mod 8 f is in.

Corollary 8.40.1. The degree of the polynomial is the largest d among all good
categories (that have a good numerical set). d is the number of towers of the
third kind.

Proof: Once we have such a category we can pick a subcategory and then
take the division (0,0,...,0,s1,s2) and then all of its partitions have polyno-
mials of degree s; + so = d
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8.3.1 Staircase St(m,n) families
Definition 8.41. St(m,n) = {0,m,2m...,nm,—}

Lemma 8.42. The B-Poset of St(m,n) has a simple structure, it is the disjoint
union of m — 2 chains of length n each. The r'" chain (1 < r < m —2) is
r<r+m=gr+2m=<---xr+(n—-1m

Lemma 8.43. If P is a Pseudo-Frobenius number of St(m,n), (P,a,b) is a red
triangle then a,b are minimal elements of the B-Poset

Theorem 8.44. For a fived m there is a polynomial gm(x) s.t. P(St(m,n)) =
gm(n)

Proof: We partition the numerical sets into categories, created as follows:

We partition equivalence classes mod m, 1 < r < m—2 into 3 kinds: those
included completely, those not included at all, those included partially (in a way
that ensures it is an order ideal, i.e. where if an element is included, so are all
the elements above it).

There are finitely many ways of making those selections. Note that these
selections do not depend on the value of n.

Note that if one order ideal in a category has A(T U S) = S, then T
satisfies the condition of theorem 3.13 for each Pseudo-Frobenius number in T'
then all order ideals in that category satisfy the condition of theorem 3.13. This
is because if (P, a,b) is a red triangle, P € PF(S) \ {F}, then a,b are minimal
elements of the B-Poset by lemma 8.43 and hence a € T means the entire
equivalence class of @ is in 7 amd b ¢ T means no element in the equivalence
class of b is in 7. And therefore either all order ideals in the category satisfy a
triangle or none do.

Note that whether or not a selection satisfies the condition of theorem 3.13
does not depend on the value of n

If a category has d equivalence classes in the third kind then it has (n—1)¢
order ideals.

Now if ay, q is the number of categories that satisfy condition of theorem
3.13 and have d equivalence classes in the third kind.

Then P(S) = Y ;50 a@m,a(n — 1)%. (Note that this is a finite sum as
d<m—2)0 -

We next describe a way to compute the polynomials g, (z)

Theorem 8.45. Fizm, consider the numerical sets for which A(TUSt(m,1)) =
St(m, 1).

We create a diagram with them, place a set in the h" row if T has h
elements (h >0). Now if Ty C Ty and Vo € Ty x + Ty € To U St(m, 1) then we
draw an edge from Ty to Ts. Length of the edge is size of To \ T}

If there are by, 4 edges of length d then . g = by.a and gm(x) = > 450 bm,a(x—
1)4
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Proof: Consider a category that satisfies condition of theorem 3.13. Say

the equivalence classes of the first kind are r1,...,7 (1 <r; < m —2). Then
Ty{ry1,7r2...7} is a good numerical set of St(m, 1) as it satisfies the condition
of Theorem 3.13. Next if the equivalence classes of the third kind are sq,...,sq

then To{ry,...,r} U {s1,...s4} is also a good set of St(m,1) as it satisfies the
condition of theorem 3.13

Moreover for each x € T, the class of 2 has Pseudo-Frobenius number
P, =x+m(n—1) € T if it satisfies a triangle (P;,a,b) (so 1 < a,b < m —2)
a € T means the class of a is in the first kind. F —b=mn—-1-b¢ T
means the class of m — b — 1 is of the second kind. Also F = P; + a + b means
mn—1=(x+mn—m)+a+bsox+a=m-—1->b¢ TrUSt(m,1) (as
m—1—b<m—2) and hence z+ T € ToUSt(m,1). Next if it does not satisfy
a triangle then F — P, €e T, F—P=m—-1—-2z (1 <m-1—-2z < m—2),
F— P, €T means m — 1 —x € Ty and hence . + 11 € To U St(m, 1)

And course the size of To \ T3 is the number of equivalence classes in the
category.

Conversely if Ty, Ty are good numerical sets of St(m,n) s.t. T} C Ty and
Ve €Ty o+ Ty € To U St(m,1).

Construct a category by having the classes of 77 in the first kind, classes
of T5 \ T} in third category and the remaining classes in the second category.
We will show that an order ideal in this class satisfies the condition of theorem
3.13. Let T be an order ideal in the category. Say P is a Pseudo-Frobenius
number in 7', it is in the class of z (1 < < m — 2)(P = x + m(n — 1)), the
class of z is in the first or third kind so = € Ts. .+ Ty € To U St(m,1) i.e.
JyeTy st. x+y e ToUSt(m,1) that means x +y < m —1 and x +y & Ts.
y € T1 means the class of y is in the first kind and hence y € T'. First consider
thecaseif t+y=m—-1soP+y=ax+mn—m+y=mn—1=F ie.
y=F — P eT. Next consider thecase t+y#m—1,s0 1 <x+y <m—2,
x4+ y € To means the class of x + y is of the second kind. z = F — P —y =
(mn—1)—(x4+mn—m)—y=m-1—(r+y)sol<z<m-2,(Py,z2)is a
red triangle, y e T, F —z=(mn—1)—(m—1—(x+y)) =mn—m+ (x +y)
which is in the class of x 4+ y which is in the second kind and hence F' — 2z ¢ T
and the condition of theorem 3.13 is satisfied.

Also again the number of classes in the third kind is the size of T5 \ 71 O
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1,2 =4 1_1&3’5 _1:’?“4’5

Example 8.46. P(St(2,n)) =1

P(St(3,n)) =2
P(St(4,n)) =3
P(St(5,n)) =6+2(n—1)=2n+4
P(St(6,n)) =10+8(n—1)=8n+2
P(St(7,n)) =20+ 26(n — 1) + 4(n — 1)? = 4n? + 18n — 2
P(St(8,n)) = 37+ 70(n — 1) + 28(n — 1)?
P(St(9,n)) = 74+ 179(n — 1) + 122(n — 1)2 + 10(n — 1)3
P(St(10,n)) = 140 + 414(n — 1) + 403(n — 1)2 4+ 106(n — 1)3 + 2(n — 1)*
P(St(11,n)) = 280 +969(n — 1) + 1218(n — 1)2 4 546(n — 1) +-40(n — 1)*
P(St(12,n)) = 542 + 2150(n — 1) 4+ 3327(n — 1)% +2206(n — 1)3 + 464(n —
)4+ 12(n —1)°

P(St(13,n)) = 1084+ 4839(n—1)+8816(n—1)*+7710(n — 1)3 +2850(n—
)% +274(n — 1)° + 6(n — 1)8
P(St(14,n)) = 2118 + 10492(n — 1) 4+ 21952(n — 1)* 4+ 23728(n — 1)% +
12699(n — 1)* + 2598(n — 1)° + 106(n — 1)8
P(St(15,n)) = 4236 + 23060(n — 1) + 54306(n — 1)% + 69446(n — 1)% +
48618(n — 1)* + 16206(n — 1)® + 1804(n — 1)¢ + 42(n — 1)7
P(St(16,n)) = 8337 + 49444(n — 1) + 129225(n — 1)2 + 190086(n — 1) +
163972(n — 1)* + 77174(n — 1)® + 16016(n — 1)° + 952(n — 1)7 + 14(n — 1)8
P(St(17,n)) = 16647 +107099(n — 1) + 307386 (n — 1) +509320(n — 1)3 +
518866(n — 1)* + 315277(n — 1)® + 100766(n — 1) 4 12956(n — 1) + 452(n —
1)® +6(n — 1)°
P(St(18,n)) = 32963 +227682(n— 1) +710703(n —1)? +1305834(n — 1)® +
1526512(n — 1)* +1131718(n — 1) +494043(n — 1)® + 107072(n — 1) +8430(n —
1)® +116(n —1)°
P(St(19,n)) = 6592 + 6487946(n — 1) + 1646834(n — 1)? + 3319058(n —
1)3 +4362414(n — 1)* + 3796502(n — 1)® + 2100180(n — 1)® + 662816(n — 1) +
96906(n — 1)® + 4646(n — 1) + 68(n — 1)1°
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P(St(20,n)) = 130787 + 1031600(n — 1) + 3738425(n — 1)% + 8183350(n —
1)3 4 11902732(n — 1)* + 11829600(n — 1)° 4 7884416(n — 1) + 3289314(n —
1)7 4 746888(n — 1)% + 72022(n — 1)° 4 2022(n — 1)1° 4+ 16(n — 1)

P(St(21,n)) = 2615744 2192679(n — 1) + 8497908 (n — 1) 4-20074322(n —
1)3 +31959848(n — 1)* + 35588411(n — 1)° + 27632358(n — 1)% + 14345136(n —
1)744541440(n—1)%4742606(n— 1) +47647(n—1)1°+922(n— 1) +-6(n—1)'2

P(St(22,n)) = 520095 +4613914(n — 1) +19027321(n — 1)% + 48188560 (n —
1)34-83180055(n—1)*4+102214578(n—1)°4+-90121675(n—1)%4+55675764(n—1)7+
22668899 (n—1)%+5424436(n—1)+628142(n—1)'0426024(n—1)"' +348(n—1)"2

Theorem 8.47. The diagrams described in theorem 8.45 have the following
property: the diagram of St(m,1) is contained in St(m + 1,1)

Proof: First we prove that if A(T U St(m,1)) = St(m,1) then A(T U
St(m + 1,1)) = St(m + 1,1). The B-Poset of both is the chaos poset, so
A(T U St(m + 1,1)) C St(m + 1,1). Now, given z € T we know that x ¢
A(TUSt(m, 1)) so Jy € TUSt(m, 1) s.t. z+y € TUSt(m,1). y € St(m,1) =
x4y € St(m,1)U{z} therefore y € T. It follows that  +T € TU St(m+1,1)
ie. x ¢ A(TUSt(m+1,1)) and hence A(T' U St(m +1,1)) = St(m +1,1)

Moreover if there was an edge from T to T» in the m** diagram then
Ty CTyand Ve € To o + Ty € To U St(m, 1) which implies Vo € Ty . + 11 €
T,USt(m+1,1) and hence there is an edge from T to T in the m+ 1" diagram
as well.

Corollary 8.47.1. degree(gm(x)) < degree(gm+1(x))
Corollary 8.47.2. ay.d < Q1.4

Lemma 8.48. Given Ty, Ty s.t. A(TyUSt(m, 1)) = A(ToUSt(m, 1)) = St(m,1)

and there is an edge between Ty and Ty. If |T1| = k—1 then |Tz| < m—2— Lmk’QJ

Proof: Let G = N\ (Tx U St(m, 1)), |G| =g+ 1. Also say m —1 =gk +r,
0<r<k-—1. We know that Ve € T, dy € T} s.t. z+y € G. Given z € G it
can appear as = + y for at most k — 1 z € Ty. Of course the same x could have
multiple z correspond to it, so there could be some double counting. Therefore
|Tz| < (k—1)|G| and |Tz| < (k — 1)|G| — a (for some a > 0). Finally note that
T2+ |Gl =m —1ie k|G| —a=m—1.

Now if r = 0 then |G| > ™t =1+ [222], s0 [Tz =m —1— |G| <
m—2— | m2]

And if 7 > 0 then klr +a so a > k —r and hence k|G| =m —1+a >
m—1+k—r==Fk(g+1) and hence |G| > ¢+ 1. Remember m — 1 = kq+r, so
r>1 = |[2=2] =q. Lastly [T =m—1—|G|<m—-2—qg=m—2— 22|

Lemma 8.49. Given 2 < k < m—1. Let Ty = {y|]l <y < k—1} and
Ty={z]l1 <z <m-2,k fr}.

Then A(Ty U St(m, 1)) = A(To USt(m, 1)) = St(m, 1) and there is an edge
from Ty to Ty of length m — 2 — LmT_QJ
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Proof: Firstly we know that St(m,1) C A(Ty U St(m,1)) and St(m,1) C
A(Ty U St(m, 1)).

Next, given y € Ty we see that k —y € Ty, y+ (k—y) =k & Ty USt(m, 1)
therefore y ¢ A(Ty U St(m, 1)) and A(Ty U St(m,1)) = St(m,1)

Next, given € Tp Case 1: x +k — 1 < m — 1. Now say = y(mod k)
(1<y<k—-1). Weseethat k—yeThandk—yeTh (1<k-y<k-1),
and x + k —y &€ To U St(m, 1) which means = ¢ A(To U St(m, 1)) and x + Ty €
T2 U St(m, 1)

Case2: z+k—1>m—1lie(m—1)—z<k—1so(m—1)—z €T and
(m—1)—zeThandz+ (m—1)—z) =m —1¢ T, U St(m,1) which means
x & A(To U St(m, 1)) and x + Ty € To U St(m, 1).

Combining we see that A(T5 U St(m, 1)) = St(m,1) and that there is an
edge from T3 to Ts.

Theorem 8.50. degree(gnm,(x)) =m —1—[ym—2] — \_(\7;”%22]]

Proof: Given an edge from T to T3 of length d, if |T}| = k — 1 then by

lemma 8.48 |T»| <m —2—[™-2] sod <m—1—k—[™2] and by elementary

calculus we see that d <m — 1 — [v/m — 2] — \_(\/"%]J-

Finally picking £ = [v/m — 2] in lemma 8.49 we find an edge of length

m—1—[vm—2] — LW%TJ' Therefore it is the length of the longest edge

and hence the degree of g,,(x)

Remark 8.51. The sequence deg(gm(x)) can be described combinatorially as
follows: let n = m—1 we draw a lattice spiral of n points (0,0), (0,1),(1,1),(1,0), (0,2),(1,2),(2,2),(2,1), (2,0),
Let the number of lattice squares (of area 1) formed be d,,. Note that each point
leads to a new square except for k? + 1" point (k > 0) and k? + k + 1" point
(k>1). Say (a—1)2<n—-1<a? (Soa=[vn-1])
o Ifn—1%#a® Then #{k*+ 10 <k,k*+1<n}=a.
Nowifn < (a—1)?+(a—1)+1 (i.e. n—1 < (a—1)a) then #{k*+k+1[1
k,k*+k+1 < n} =a—2= 21|, (Notice that a—2 = ‘LQ%“Z‘I < %
2=l <q—1). Henced, =n—a— ||
On the other hand if n > (a —1)> + (a — 1)+ 1 (i.e. n—1> (a— 1)a)
then #{k* +k+ 11 < kk*+k+1<n}=a—-1=|21] (asa—-1<
n=l oo a). Therefore d, =n —a — | 22|

a a a

<
<

o Ifn—1=a? Then #{k* +10<k,k*+1<n}=a+1

Alson > (a— 12+ (a—1)+1 (i,e. n—1 > (a — 1)a) and hence
#{E+k+11<kk+k+1<n}=a—-1=[21] -1 (as ==L =a).
Therefore dy, =n —a — |21 ]
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8.3.2 Transposed Staircase St(l,m,n) Families
Definition 8.52. St(I,m,n) = {0,im,({+ 1)m,...(l +n)m —}.

In general, for constant [ and m, the P values these semigroups follow the
same pattern as the corresponding St(m,n) staircase for n large enough.

Theorem 8.53. When m = 2, P(S) is constant. In particular, with I constant,
as sufficiently large n grows, the size of the void and the structure of the red
triangles stays the same.

Proof: Consider S = 20,21 + 2,...2m —, with F = 2m — 1. Then,
B(S)=1{2,4,...21—2,F — 2] +2,...F —2}. Then, |B(S)| does not depend on
2m. Furthermore, if (a,b,c) € B is a red triangle, then a +b+ ¢ = F. However,
the first half of B is even, and the second half is odd, so without loss of the
generality, let ¢ = F'—2k, a,b even. Then for a different semigroup in the family,
S’ with Frobenius number F”, all red triangles (a,b, F — 2k) of S correspond to
red triangles of S’ (a,b, F' — 2k).

Let T C B have A(TUS) = S. Then, for semigroup S’ with S C 5/,
define T" as T except for a > g, a =a+F —F eT. Then, T" C B’ and
A(T'u S =9".

If se T, thenifs < %', s € T, so it must cancel. If s > %I, s+F—-F'eT,
so either F/ — s € T or there is a triangle with two even elements (which are
the same in T and T” so it cancels.

IfseSCS,s+TTUS. ForteT witht < g, tisevenso s+t e S
Ift > g, it is shifted down along with F’,so s+t CT' U S’.

IfseS\S lett' eT'. Ift/ > L and s’ < F', s’ + ' is even so it is in
S . Ift < %, it is equivalent to t € T. Then, if s+t € T'US’, s+t < F’, but
then s+ F — F' +t' < F, but s + F — F’ € S, which is a contradiction.

Thus, A(T"U S") = 5.

For m = 3, it is also constant. To map one T numerical set to another, if
a € Tis 0 mod 3, keep it the same. If a =1 mod 3, and F —1 € T, delete a if
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a > F’ and leave it otherwise; if F —1 &€ T, replace it witha — F + F’. If a = 2
mod 3, replace with a — F + F'.

We can also look at the P values for transposed staircase semigroups where
the conductor is not necessarily a multiple of m. For example, the 3n staircase
{0,6,9,12,15,17 —}.

Example 8.54. The P wvalues for some of these families:
26/ £ +58 ¢=0,1 mod5
S =1{0,10,15,20,25,...c =}: P(S) =q26[£] +54 c=3 mod5
100 c=2,4 mod5b
532|£] +1096 c¢=0,1 mod 5
S =1{0,15,20,25,30,35...c =}: P(S)={532[£] +998 c¢=3 mod5
2184 c=2,4 mod5
200 ] +115 ¢=0,1 mod 6
100[§] +132 c¢=2 mod 6
S =1{0,12,18,24,30,...c —=}: P(S) = {150[£] 4160 c¢=3 mod 6
100[£] +166 c=4 mod 6
150[§] +326 c=5 mod 6
172[£]% 4 834[£] + 716 ¢=0,1 mod 7
86 £]% 4597 £] + 667 c¢=2 mod7

86[ <%+ 780[ & + 642 =3 mod 7
S =1{0,14,21,28,35,...c —}: P(S) = L7J2+ 7]+ €=9o mo
86[<]° +552[£|+544 c¢=4 mod7
86 £]% 4 736|£] +808 c¢=5 mod 7
86|<)2 +927[£] + 1501 c¢=6 mod 7

9 Max Embedding Dimension

Definition 9.1. Given a Numerical Semigroup S, we define the void-height of
S as following:

Say Apery set of S is (0, P1, Py, ..., Pp_1) s.t. P; =i(mod m).

Then the void-height of S is the smallest element of the set D = {Wh#
j=r(modm)l <i,j,r <m—1}. It is denoted by h(S)

Lemma 9.2. S is of mazimum embedding dimension iff h(S) > 1

Definition 9.3. Given a numerical semigroup S with Apery set (0, Py, Pa, ..., Pyp_1)
s.t. P, =i(mod m). We define E(S,n) to be the numerical semigroup generated
by {m, Py + mn, P, + mn,..., Pp_1 +mn}

Remark 9.4. Note that E(E(S,n1),n2) = E(S,n1 +ng) and E(S,n) C S.
Lemma 9.5. h(E(S,n)) = h(S) +n, F(E(S,n)) = F(S) +nm

Corollary 9.5.1. If n > 1 then E(S,n) has max embedding dimension.
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Lemma 9.6. If x >0 then mn+x € E(S,n) iffz € S
Lemma 9.7. z € E(S,n) iff m|lx orz —mn € S

In the next few lemmas we describe how to obtain the B-Poset of E(S,n)
given the B-Poset of S

Lemma 9.8. If the Apery Poset of S is (0, P, Ps, ..., Pp_1) s.t. P, =i(mod m)
and Py = Max{P;} (i.e. F(S)= P,—m) then B(E(S,n)) = B(S)U{P;+am|0 <
a<n-—1b#1i}

Proof: If x € B(S) then « € S and hence z ¢ E(S,n). If F(E(S,n))—z €
E(S,n) then F(S) +mn —x € E(S,n) and by lemma 9.6 F(S) —x € S which
is a contradiction. Therefore € B(E(S,z)) and B(S) C B(E(S,z)).

If x € Gap(S) \ B(S) then F(S) —z € S and hence F(E(S,n)) —z =
F(S)—x+mn € E(S,n) and x &€ B(E(S,n))

Finally if x € Gap(E(S,n))NS then x = P, +ml for some i, 0 <1 <n—1.
F(E(S,n)) —x=F(S)+mn— (P, +ml)=F(S)—P,+m(n—1)

Case 1: ¢ = b, then F(E(S,n))—x = (P;—m)—P;+m(n—1) = m(n—1-1) €
E(S,n) and = € B(E(S,n))

Case 2: i # b, then m JF(E(S,n))—x therefore by lemma 9.7 F/(E(S,n))—
x € E(S,n) iff F(E(S,n)) —x —mn € S, but F(E(S,n)) —x—mn = F(S) —
P; —ml and if it was in S then F(S) = (F(S) — P, —ml) + (P, +ml) € S which
is impossible. Therefore F(E(S,n)) — x ¢ E(S,n) and hence x € B(E(S,n))
(remember = € Gap(E(S,n))) O

Lemma 9.9. Ifx € B(E(S,n))\B(S), y € B(E(S,n)) thenx <y = mly—x
(< is of B(E(S,n)))

Proof: By lemma 9.8 x € B(E(S,n)) \ B(S) implies x = P; 4+ am with
i#band 0 <a <n-—1 =z =<y means that y —x € E(S,n). By lemma 9.7
either m|ly —x or y —xz —mn € S.

If m fy —x then y —x — mn € S. Note that € S and hence y — mn € S
and hence y € F(S,n) which is a contradiction. [

Lemma 9.10. Ifx € B(S), y € B(E(S,n)) and m fy — x then
x <y in B(E(S,n)) implies y — mn € B(S)

Proof: We know that y — x € E(S,n) and m /Jy — x so by lemma 9.7
y—x—mneS. B(S)+ S € SUB(S) therefore y —mn =2z + (y —x —mn) €
SUB(S). Now if y —mn € S then y € E(S,n) which is a contradiction.
Therefore y — mn € B(S)

Lemma 9.11. If z € B(S) then z +mn € B(E(S,n))

Proof: We know that B(S) +S C SU B(S) so z +mn € S U B(S).
z+mn € B(S) = z+mn € B(E(S,n)), on the other hand if z +mn € S
then z + mn = P; + am for some i, a > 0. So z = P, — (n — a)m, since z € S
we must have n — a > 1. Moreover we have (P, —m) —z=(n—a—1)m e S
so P, —m # F(S) i.e. i # b and hence by lemma 9.8 z + mn € B(E(S,n))
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Lemma 9.12. Ifx € B(S), y € B(E(S,n)) and m fy — x then
x <y in B(E(S,n)) iff t <y—mn in B(S)

Proof: We know that m /ly — x so by lemma 9.7 y — x € E(S,n) iff
y—xr—mnées

Definition 9.13. Say the Apery Set of S is (0, Py, Pa, ..., Py_1) we define L(S)
to be the Numerical Semigroup generated by {m, Py —m,Po—m, ..., Pp_1—m}

Lemma 9.14. L(E(S,1)) =S
Moreover if all P; > 2m and h(S) > 1 then E(L(S),1) =S

Lemma 9.15. If h(S) = h and m > 3 then P, > hm for each

If P # F +m then 31" # 0 s.t. Pyy(modm) = F 4+ m and hence hm <
P+ Py — (F+m) <P, (As Pr < F+m). Moreover if P, = F'+ m then pick
an P, # F' + m (such a exists as m > 2) then km < P, < F +m

Corollary 9.15.1. If h(S) > 2 then E(L(S),1) =S
S

Corollary 9.15.2. Say h(S) = h, S1 = L(S), S2 = L(S1),... Sh—1 = L(Sh_2).
Then E(Shfl,h — 1) =S and h(Shfl) =1

Lemma 9.16. As always let the Apery set of S be (0, Py, Pa, ..., Pyn_1), assume
h(S) > 1, let " = E(S,n). If (P, 4+ (n—1)m,a,b) is a red triangle of E(S,n)
then a,b € B(S)

Proof: If a ¢ B(S) then a € B(E(S,n)) \ {B(S)} and by lemma 9.8
a=Pj+imst. P—m#F(S)and 0<[!<n-—1.

F(E(S,n)) = Pi+(n—1)m+a+b, hence b = F(E(S,n))—P,—(n—1)m—a =
F(S)+mn — P, —mn+m— P; —Ilm = F(S) — P, — P + m — lm. Now
h(S) > 1 means that P, + P; —m € S and hence P; + P; — m +lm € S and
b= F(S)—(P;+Pj—m+Iim) € Gap(S)\B(S) and by lemma 9.8 this contradicts
the fact that b € B(E(S,n))

Lemma 9.17. If h(S) > 1, (0,Py, Pa,...,Pp_1) is the Apery Set of S as
always. Then (P; + (n — 1)m,a,b) is a red triangle of E(S,n) iff (P, —m,a,b)
s a red triangle of S

Proof: Firstly note that if (P; + (n — 1)m,a,b) is a red triangle of E(S,n)
then a,b € B(S). Also of course if (P; — m,a,b) is a red triangle of S then
a,b € B(S). Therefore in both directions we can assume a,b € B(.S)

Now (P; + (n — 1)m,a,b) is a red triangle of E(S,n) iff F(E(S,n)) =
Pi+nm—m+a+biff F(S)=P,—m+a+biff (P, —m,a,b)is a red triangle
of SO

Lemma 9.18. F(E(S,n)) — (P + (n — 1)m) = F(S) — (P, —m) € B(S)

Definition 9.19. Assume h(S) > 1 We define categories among subsets of
B(E(S,n)). If T is an order ideal of B(E(S,n)) the category of T is (T N
B(S){z|x € B(S), F(E(S,n)) —x €T})
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Lemma 9.20. Assume h(S) > 1. If T is an order ideal of B(E(S,n)) and T’
is an order ideal of B(E(S,n')) s.t. T and T' have the same category.
Then A(TU E(S,n)) = E(S,n) iff A(T" U E(S,n")) = E(S,n)

Proof: Assume A(T U E(S,n)) = E(S,n). Now if P, + (n' — 1)m € T,
note that x = F(E(S,n)) — (P, + (n' — 1)m) = F(S) — (P, — m) € B(S).
Now T and T’ have the same category so F(E(S,n)) — z € T. Note that
F(E(S,n) —x=F(ES,n)-FS)+P—m=P+(n—1)m

Now we know from theorem 3.13 that either F(E(S,n))—(P;+(n—1)m) €
T or there is a triangle (P; + (n — 1)m, a,b) of B(E(S,n)) for which a € T and
F(E(S,n)—bgT

Case 1: F(E(S,n)) — (P, 4+ (n — 1)m) € T, then note that F(E(S,n)) —
(P, + (n—1)m) = F(S) — (P, —m) € B(S). Now since T and 7" have the
same category F(S) — (P, —m) € T'. Finally note that F(S) — (P, —m) =
F(E(S,n)) — (P, + (n' — 1)m)

Case 2: (P; 4+ (n — 1)m,a,b) is a triangle of B(E(S,n)) for which a € T
and F(E(S,n)) —b ¢ T. Lemma 9.17 tells us that (P, — m,a,b) is a red
triangle of S, a,b € B(S). A further application of lemma 9.17 tells us that
(P, + (n' —1)m,a,b) is a red triangle of E(S,n’). Moreover a,b € B(S), a € T,
F(E(S,n)) —b ¢ T so T and T’ having the same category implies that a € T”
and F(E(S,n))—bg T’

With theorem 3.13 we conclude that A(T" U E(S,n’)) = E(S,n’)

Lemma 9.21. If T is an order ideal of B(E(S,n)) and T' C B(E(S,n’)) and
T, T' have the same category and x,y € B(E(S,n’)), mly —z, x € T' implies
yeT’

then T is an order ideal of B(E(S,n’))

Proof: Let ¢ € T', < y in B-Poset of E(S,n’). Now if m|y — x then
y € T'. So now assume m [y — x, lemma 9.9 says « € B(S). Next lemma
9.10 says y — mn’ € B(S) and lemma 9.12 says * < y — mn’ in B-Poset of S.
A further application of lemma 9.12 says © < y — mn’ + mn in the B-Poset of
E(S,n).

x € B(S), T and T” have the same categories, hence x € T which implies
y—mn +mneT.

F(E(S,n))—(y—mn'+mn) = F(S)+mn—y+mn'—mn = F(S)—(y—mn’).
We know that y —mn’ € B(S) which means F(S)—(y—mn’), T and T’ have the
same categories, therefore F(E(S,n'))— (F(E(S,n))—(y—mn'+mn)) € T". But
F(E(S, ')~ (F(E(S,n))—(y—mn'+mn)) = P(E(S,n"))—(F(S)—(y—mn')) =
F(S)+mn' — F(S)+y—mn’ =y. Thus y € T" and T" is an order ideal.

Lemma 9.22. The number of good numerical sets of E(S,n) within a fived
category is eventually a polynomial of n.

Moreover its degree is then number of P; s.t. Yy € B(S) y = (F(S) —
(P; — m))(mod m) implies y is in the second component of the category and
Va € B(S) x < P, — m implies x is not in the first component of the category
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Remark 9.23. In most examples it seems that P(E(S,n)) is not just eventually
a polynomial, but a polynomial from the start (h(S) > 1).
However I am not entirely sure if this is true, S =< 14,34, 43,54, 63,72,74,83,92,94,101, 103,121,123 >
might be a counter e.g.
P(E(S,0)) =1214, P(E(S,1)) = 22180, P(E(S,2)) = 136690, P(E(S,3)) =
517844, P(E(S,4)) = 1488694, P(E(S,5)) = 3580084, P(E(S,6)) = 7595690

Remark 9.24. Remember these definitions for the next theorem:

given an order ideal T of B(S), Tri(T) = {(a,b)|a,b € B(S),3P € T N
PF(S),P+a+b=F(S),acT,F(S)-b& T}, X1(T) = {a|3, (a,b) € Tri(T)}
and Xo(T) = {y|3a, (a, F(S) —y) € Tri(T)}

Remark 9.25. We will show that P(E(S,1)) > P(S) if h(S) > 1. In order
to do this we define an injective map from good numerical sets of S to good
numerical sets of E(S,1). GivenT s.t. A(TUS) =S define f1(T) = {z+m|x €
TYU{z|zr € T\Vz € Xo(T),x # z(mod m)}

Lemma 9.26. If h(S) > 1 and T is an order ideal of B(S) then f1(T) is an
order ideal of E(S,1)

Proof: if z € f1(T) and = < y in B(E(S,1))

e ifz—m €T and z = y(mod m) then x —m,y—m € B(S),z—m <y—m
so x—m < y—m in B(S) which implies y —m € T which implies y € f1(T)

o if x € T\Wz € Xo(T),x # z(mod m) and & = y(mod m); then y € T
(x <y). And Vz € Xo(T),y # z(mod m). Therefore y € f1(T)

o if x £ y(mod m) then y —x € E(S,1) = (y—m)—x € S. Now if
x € B(S) then x € T and hence y —m € T and y € f1(T'). On the other
hand if z ¢ B(S) then x —m € PF(S) which implies x € PF(E(S,1))
which implies y = x

It follows that f1(T") is an order ideal of B(FE(S,1)) O

Theorem 9.27. If h(S) > 1 and A(T'US) = S then A(f1(T) U E(S,1)) =
E(S,1)

Proof: If P € f1(T)NPF(E(S,1)) then P—m € T which means P —m €
T N PF(S). Now theorem 3.13 implies that either F(S) — (P —m) € T or
A(a,b) € Tri(T) st. P—m+a+b=F(5)

o if F(S)— (P—m) eT;If 3z € Xo(T) s.t. z=F(S) — (P —m)(mod m)
then F'(S)—(P—m) < z which implies z € T and we have a contradiction.
Therefore Vz € Xo(T) z # F(S) — (P — m)(mod m) and hence F(S) —
(P —m) € f1(T) Finally note that F(S) — (P —m) = F(E(S,1)) — P

o Next if 3(a,b) € Tri(T) st. P—m+a+b = F(S). By corollary 3.19.1
Vz € Xo(T) z # a(mod m) and hence a € f1(T). And F(E(S,1))—b—m =
F(S)—b¢gT, F(F(S,1)) —b—m € X5(T), hence F(E(S,1)) —b & f1(T)
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It follows from theorem 3.13 that A(f1(T)U E(S,1)) = E(S,1) O

Corollary 9.27.1. f1(T) N PF(E(S,1)) = (T n PF(S)) + m), Mi(T) =
Mi(f1(T)) and Tri(T) C Tri(f1(T))

Theorem 9.28. If h(S) > 1 then P(E(S,1)) > P(S)

Proof: We just need to show that the map is injective. Let 737,75 be
good numerical sets of S s.t. fi1(T1) = f1(T2). Then Ty and T» have the same
Pseudo-Frobenius numbers and the conjugates of the same Pseudo-Frobenius
numbers.

Ifx €Ty and x —m € T3 then z € (f1(T1) N B(S)) = (f1(T2) N B(S)) and
hence z € Ty

If x € Ty and Vz € Xo(Th) z # x(mod m) then = € (f1(T1) N B(S)) =
(f1(T2) N B(S)) and hence = € T

If (a,b) € Tri(Ty), say a+b+ P = F(S) for P € Ty N PF(S). Then
a € f1(T1) as seen above and hence a € Ty. Next F(S)—b+m ¢ f1(T1) because
F(S)—b ¢ T, and F(S) —b+m = F(S) — b(mod m) Now if F(S) —b € T,
then F(S) —b+m € fi(Tz) = f1(T1) which is a contradiction. Therefore
Tri(Ty) = Tri(Ts)

Finally if z € T1, x — m ¢ Ty and 3z € X2(T1) z = z(mod m). Then
z+m e fi(Th) = fi(Tz). Now z € Xo(Ty) as Tri(Ty) = Tri(Tz) therefore
x €Ty

We conclude that 77 = T, and the map is injective. [

Definition 9.29. We define a new map fo(T) = {x+m|x € T}U{x|z € T,3a €
X1(T),z = a(mod m)} U Mi(T)

Lemma 9.30. If h(S) > 1 and T is an order ideal of B(S) then f2(T) is an
order ideal of B(E(S,1))

Proof: if ¢ € fo(T) and = < y in B(E(S,1))

e ifzx—m e T and x = y(mod m) then z —m,y—m € B(S),z—m <y—m
so x—m < y—m in B(S) which implies y—m € T which implies y € fo(T)

e if v € T)3a € X1(T),z = a(mod m) and x = y(mod m); then y € T
(z <y). And y = a(mod m). Therefore y € fo(T)

e if v € Mi(T) and = y(mod m); then either £ = y in which case we
are done or x < y —m in B(S) which implies y — m € T which implies
y € fo(T)

e if z £ y(mod m) then y —z € E(S,1) = (y—m)—x € S. Now if
x € B(S) then x € T and hence y —m € T and y € fo(T'). On the other
hand if © ¢ B(S) then x —m € PF(S) which implies © € PF(E(S,1))
which implies y = x

It follows that fo(T") is an order ideal of B(E(S,1)) O
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Theorem 9.31. If h(S) > 1 and A(T U S) = S, then A(f2(T)U E(S,1)) =
E(S,1)

Proof: If P € fo(T)NPF(E(S,1)) then P—m € T which means P —m €
T N PF(S). Now theorem 3.13 implies that either F(S) — (P —m) € T or
A(a,b) € Tri(T) st. P—m+a+b=F(5)

o if F(S)— (P —m) € T; then F(S)— (P —m) € Mi(T) C f2(T) Finally
note that F'(S ) (P—m)=F(E(S,1)—P

~—

e Next if 3(a,b) € Tri(T) s.t. P—m+a+b = F(9).
and hence a € fo(T). F(S)—b ¢ T; F(E(S, ))—b—me B(S) =
F(E(S,1)) — b ¢ Mi(T). Also F(E(S,1)) —b—m = F(S) —b ¢ T,
by corollary 3.19.1 /dd’ € X1(T) o' = F(S) — b(mod m) and hence
F(E(S,1)) ~ b & fo(T).

It follows from theorem 3.13 that A(f2(T)U E(S,1)) = E(S,1) O

Then a € X1 (T
)

Corollary 9.31.1. fo(T) N PF(E(S,1)) = (T N PF(S)) + m), Mi(T) =
Mi(fo(T)), Tri(T) € Tri(f>(T))

Lemma 9.32. If h(S) > 1, then f5 is an injective map.

Proof: If fo(T1) = f2(T3), then T} and T» have the same Pseudo-Frobenius
numbers and Mi(Ty) = Mi(Tz).

Ifz €Ty and x —m € Ty, then « € (fo(Th)NB(S)) = (f2(T2) N B(S)) and
hence x € T5.

Ifx € Ty and Ja € X (T1) with a = 2(mod m), then z € (fo(T1)NB(S)) =
(f2(T2) N B(S)), and hence = € T.

If x € Ty and x € Mi(Ty) then z € Ts.

If (a,b) € Tri(Th), say a+ b+ P = F(S) for P € Ty N PF(S). Then
a € fo(T1) and hence a € Ty. Next F'(S)—b+m & fo(T1) because F(S)—b & T,
F(S)—b+m & Mi(T) and Va' € X1(T1) : F(S) — b £ a'(mod m). Now if
F(S)—be T then F(S)—b+m € fo(Ty) = fo(T1) which is a contradiction.
Therefore Tri(Ty) = Tri(Ts).

Finally if z € Ty, x —m € T, * & Mi(Ty) and Va' € X,(T}) = £
a’(mod m). Then x+m € fo(T1) = fo(To). Now xz+m & Mi(Ty), Va' € X;1(T»)
x+m £ d/(mod m) as Tri(Ty) = Tri(T,) therefore the fact that +m € fo(T3)
implies x € T5.

We conclude that 77 = T3 and the map is injective. [

Lemma 9.33. h(S) > 1, T is an order ideal of B(S) then fo(T) C f1(T)

Theorem 9.34. If h(S) > 1, If 3T s.t. A(TUS) =S and f1(T) # f2(T) then
P(E(S,1)) > P(S)

Proof: If possible assume that P(E(S,1)) = P(S). Then the maps f; and
f2 are both surjective. Now consider the set Z = {T"|f1(T1) =T’ = fo(T), T #
T>}. The assumption implies that f; and fy are not identical functions and hence
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Z is non empty. Now consider a maximal element of Z (under containment),
say it is 7" = f1(T1) = f2(Tz) with Ty # Ty. Now fi(T1) = f2(T2) € f1(12) by
lemma 9.33. Moreover the fact that 77 # T3 and f; being injective imply that
f1(T3) is strictly bigger than T’ (under containment). But the maximality of
T’ implies that f1(T3) = fo(T2) which is a contradiction.

Remark 9.35. The previous theorem tell us that if h(S) > 1 and P(E(S,1)) =
P(S) then for every good numerical set of S f1(T) = f2(T) which means that
{z(mod m)lx € T} \ {y(mod m)ly € Xo(T)} = {a(mod m)la € X;(T)} U
{z(mod m)|z € Mi(T)}

Definition 9.36. If h(S) > 1 and T' is a good numerical set of of E(S,1).
Then define g1 (T") = (T'NB(S))U{z —m|z € T',3z € Xo(T")x = z(mod m)}
(note that g1 (T") is not always an order ideal of B(S), but it is always a subset)

Lemma 9.37. If h(S) > 1 and T is an order ideal of of B(E(S,1)). Then
g1(Nu(T)) is an order ideal of B(S)

Proof: Say x € ¢1(Nu(T)) and = < y in B(S). (Also assume x # y as
otherwise we have nothing to prove)

o Ifz € Nu(T); y—z € S and hence y—z+m € E(S,1) which implies y+m €
Nu(T). If possible assume y ¢ Nu(T) then either 3P € PF(E(S,1))\ T
st. y < Pin B(E(S,1)) or 3z € X5(T) s.t. y < 2.

Note that we also have x # y(mod m) (because x = y(mod m) and = < y
imply y € Nu(T)). Now y+m —z € E(S,1), y —z ¢ E(S,1) imply
y+m—ax € Ap(E(S,1))

- If3P € PF(E(S,1))\T s.t. y < P in B(E(S,1)); then y +m £ P

in B(E(S,1)). Therefore y # P(mod m), P —y € E(S,1) and
P—y—m¢gFE(S1)ie. P—ye Ap(E(S,1))
Finally h(E(S,1)) > 2, s0 P —y,y +m —x € Ap(E(S,1)) imply
(P—y)+(y+m—z)—2me E(S,1). (P—y)+(y+m—2z)—2m =
P — x meaning = < P in B(E(S,1)) and hence P € T which is a
contradiction

— dz € X5(T) s.t. y < z; Replace P with z in the previous argument
and it will work here.
So y € Nu(T) N B(S) and hence y € g1 (Nu(T))
o If v ¢ Nu(T); then z € ¢1(T) implies 3z € Xo(T) = = z(mod m) and
x+m € Nu(T).
Now = +m € Nu(T) implies z < z

If z < @ then by corollary 3.14.2 z € Nu(T') which is a contradiction. And
hence z = x

Note that we also have © # y(mod m) (because x = y(mod m) and = < y
imply y € Nu(T)).
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By corollary 3.14.2 z = z < y + m (in B(E(S,1))) implies y +m € T C
Nu(T)

If possible assume y & ¢1(Nu(T)) then y ¢ Nu(T) and Az € Xo(T)
y+m = 2'(mod m)

Now y & Nu(T) so either 3P € PF(E(S,1))\ T s.t. y < P in B(E(S,1))
or dz; € Xo(T) s.t. y < 21

We combine the two cases, denote either P or z; by «, note that a ¢
Nu(T)

a—y € E(S1)and a— (y+m) &€ E(S,1), so a —y € Ap(E(S,1))

y+m—ax € E(S,1),s0 y+m—x = +Im for some § € Ap(E(S,1)) and
1>0.

Now h(E(S,1)) > 2so (a—y)+B—2m € E(S,1) which implies (o —y) +
(B+lm)—2m € E(S,1). (a—y)+(B+lm)—2m = (a—y)+(y+m—z)—2m =
a—z—mie z+m=< «ain B(E(S,1)) which contradicts oo ¢ Nu(T)

Lemma 9.38. Ifh(S) > 1 and T is an order ideal of of B(E(S,1)). (g1(Nu(T))N
PF(S))+m= Nu(T)NPF(E(S,1)) =TNPF(E(S,1))

Proof: Firstly it is clear that ((g1(Nu(T)) N PF(S)) +m) C Nu(T) N
PF(E(S,1))

Next if P € Nu(T)NPF(E(S,1)) and P—m & g1(Nu(T)) then P —m ¢
Nu(T) and Az € X3(T) s.t. z= P(mod m).

P —m & Nu(T) implies either 3Q € PF(E(S,1))\T s.t. P—m < Q in
B(E(S,1)) or 3z € Xo(T) st. P—m <z

Obviously P —m # Q; z = P —m would imply = = z(mod; m) which is
not the case.

Now we combine the two cases by denoting by « either @) or z. We have
P —m < «in B(E(S,1)) (they are not equal). o € Nu(T) = « # P and
hence P —m # a(mod m). It follows that P — m < a —m in B(S) which is
impossible as P —m € PF(S). O

Theorem 9.39. Ifh(S) > 1 and A(TUE(S,1)) = E(S,1). Then A(g1(Nu(T))U
S)=S8

Proof: Firstly we have shown that g;(Nu(T')) is an order ideal of B(S)

Given P € g1(Nu(T)) N PF(S) we know that P+ m € TN PF(S). And
by theorem 3.13 either F(E(S,1)) — (P 4+ m) € T or there is a red triangle
(P+m,a,b)st. a€T and F(E(S,1))—b¢T.

o If F(E(S,1)) — (P+m) € T; F(E(S,1)) — (P +m) = F(S) — P ¢
Nu(T) N B(S) which implies F(S) — P € g1(Nu(T))

e If there is a red triangle (P + m,a,b) s.t. a« € T and F(E(S,1)) —b & T;
acT = ac NU(T)NB(S) = ac€ gi(Nu(T)).

Also F(E(S,1))—b= F(S)—b+m ¢ NU(T) implies F(S)—b & g1(Nu(T))
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Corollary 9.39.1. Ifh(S) > 1 and A(TUE(S,1)) = E(S,1). Then Mi(Nu(T)) =
Mi(g1(Nu(T))) and Tri(Nu(T)) = Tri(g1(Nu(T)))
(v

Proof: Tt is clear that Mi(Nu(T)) = Mi(¢g1(Nu(T))) and Tri(Nu(T)) C
Tri(gr(Nu(T))). If (a,b) € Tri(gr(Nu(T))) \ Tri(Nu(T)) then either a ¢
Nu(T) or F(E(S,1)) —be Nu(T)
o If a & Nu(T) then a + m € Nu(T) and 3z € Xo(Nu(T)) s.t. =z

a(mod m).

a+meéeNuT) = z<a

If z < a then by corollary 3.14.2 ¢ € Nu(T) which is not the case. There-

fore z =a

But z —m € X2(g1(Nu(T))) and a € X1(g1(Nu(T))) and we get a con-
tradiction to corollary 3.19.1

o If a € Nu(T) then F(E(S,1)) —b € Nu(T) and F(S) —b & g1(Nu(T))
which implies that F(S) — b ¢ Nu(T) and Az € Xo(Nu(T)) s.t. 2
a(mod m)

F(S) —b ¢& Nu(T) implies either 3P € PF(E(S,1))\T s.t. F(S)—b=<x P
or 3z € Xo(Nu(T)) s.t. F(S)—b< 2

In the second case z # F(S) — b; In the first case P # F(S) — b as
F(S)—b+me B(E(S,1))

We combine the two cases by denoting either P or z by a, so F/(S)—b < «
in B(E(S,1)) and a ¢ Nu(T)

a—F(S)+be E(S,1),a—F(S)+b—m¢ E(S,1)ie. a—F(S)+be
Ap(E(S,1))

Say @ was the Pseudo-Frobenius number of S for which @ +a+b = F(S)
so F(S)—b=Q+a. Thusa—F(S)+b=a-Q—-a=a—a+m—(Q+m)
ie.a—a+m=(Q+m)+ (a—F(S)+0b)ie a—a+2m=(Q+2m)+
(o — F(S)+b). And h(E(S,1)) > 2 implies & — a + 2m — 2m € E(S,1)
which implies o € Nu(T') which is a contradiction.

Corollary 9.39.2. Ifh(S) > 1 and A(TUE(S,1)) = E(S,1). Then fi1(g1(Nu(T))) C
Nu(T)

Proof: It follows from the previous corollary and the definitions of g; and

h

Definition 9.40. If h(S) > 1 and T is a good numerical set of of E(S,1).
Then define g2(T") = (T'NB(S))U{x —m|z € T'\ X1 (T), F(S) —x ¢ PF(S)}
(note that g2(T") is not always an order ideal of B(S))

Lemma 9.41. If h(S) > 1 and T is an order ideal of of B(E(S,1)). Then
92(NU(T)) is an order ideal of B(S)

Proof: Say x € go(NI(T)) and = < y in B(S). (Also assume x # y as
otherwise we have nothing to prove)
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If z € NI(T); y—x € S and hence y — z + m € E(S,1) which implies
y+m € NI(T). Nowy € B(S) = F(S)— (y+m) &€ PF(S). By
lemma 3.14 (and the fact that © < y + m in B(E(S,1)) we know that
y+m¢& X1 (NI(T)) and hence y € go(NI(T)).

If y = x(mod m) then y € go(NI(T))

Ify—x € E(S,1) then x+m < y+m in B(E(S,1)) so y+m € NI(T) and
by lemma 3.14 y+m & X1 (NI(T)). Alsoy € B(S) = F(S)—(y+m) &
PF(S) and hence y € g2(NI(T))

Ifx ¢ NI(T) then z+m € NI(T)\X1(NI(T)). Now z+m & X;(NI(T)) =
x+m & X1(T) and ¢ € B(S) = z+m ¢ Mi(T), moreover < y
in B(S) implies z ¢ PF(S) = x+m ¢ PF(E(S,1)). It follows that
Ja € X1 (T)UMi(T) s.t. a <x+m in B(E(S,1)). Now a # z(mod; m)
(otherwise x € NI(T')). Observe that t+m —a € E(S,1),2 —a ¢ E(S,1)
ie. x +m—ae€ Ap(E(S,1)).

We can assume y # x(mod m) and y — x ¢ E(S,1) (otherwise we are
back to a previous case). Alsoy —z € S = y—x+m € E(S,1)
and hence y +m —x € Ap(E(S,1)) (we have already done the case when
y—z € E(S,1))

Next h(E(S,1)) > 2s0 (y+m —z)+ (r +m —a) —2m € E(S,1) ie.
y—a € ES1). ae X\3(T)UMi(T) = a € N(T) = vy €
NUT) = y € g2(NUT))

Lemma 9.42. h(S) > 1. If T is an order ideal of B(E(S,1)) then T N
PF(E(S,1)) = (42(T) 1 PF(S)) + m

Lemma 9.43. If h(S) > 1 and T is a good numerical set of E(S,1). Then
A(g2(NUT)) U S) = S

Proof: Firstly we have shown that g2(NI(T')) is an order ideal of B(S)

Say P € go(NI(T))NPF(S) then P4+m € NI(T)NPF(S) = P+me
T N PF(S). So either F(E(S,1)) — (P 4+ m) € T or there is a a red triangle
(P4+m,a,b)st. aeTor F(E(S,1))—b¢gT

o If F(E(S,1)) — (P +m) € T; Note F(E(S,1)) — (P +m) = F(S)— P e
NI(T)NB(S) = F(S)— P € g2(NI(S))

o If there is a a red triangle (P +m, a,b) s.t. a € T or F(E(S,1)) —b ¢ T.
So P+a+b=F(S),ae NI(T)N B(S) and hence a € g2(NI(T)).

F(S)—b+m=F(E(S,1)—-b¢g NI(T) = F(S)—b¢& g2(NI(T))
So by theorem 3.13 A(g2(NI(T))US) =S

Corollary 9.43.1. Ifh(S) > 1 and A(TUE(S,1)) = E(S,1). Then Mi(NI(T)) =
Mi(ga(NUT))) and Tri(NI(T)) = Tri(gs(NI(T)))
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Proof: Firstly we know (g2(NI(T))NPF(S))+m = NI(T)NPF(E(S,1)) =
TNPF(E(S,1)). And Mi(NI(T)) C Mi(g2(NIU(T))), Tri(NI(T)) C Tri(ge(NUT))).

First we show that Mi(g2(NI(T))) = Mi(NI(T)). If P € (¢g2(NU(T)) N
PF(S)) s.t. F(S)— P € g2(NI(T)) but F(S) — P ¢ NI(T). This means that
F(S)—P+me NI(T) and F(S)— P+m e (X1(NU(T)) UMi(T))

Obviously F(S)— P+ m & Mi(T) so F(S)— P+m € X, (T)

Now z < F(S)—P+min B(E(S,1)) and x # F(S)—P, F(S)—P+m imply
x < F(S)— P in B(S) which is impossible. Therefore F'(S)—P+m is a minimal
element of NI(T) and hence belongs to X1 (T) N Mi(T)N (T N PF(E(S,1))).

We know F(S) — P+ m ¢ (X1(T) N Mi(T)), hence F(S) — P +m €
PF(E(S,1))NT. Which means that F'(S) — P+ m ¢ B(S) but this contradicts
F(S) - P+me Xy(T)

Therefore Mi(g2(NI(T))) = Mi(NU(T)).

Next we show that Tri(NI(T)) = Tri(g2(NI(T))). If possible say (a,b) €
Tri(ge(NIU(T))) \ Tri(NI(T)). So a € go(NUT)), F(S) —b & g2(NI(T)) and
either a € NI(T) or F(S)+m —be NI(T)

o If a & NI(T); then a € go(NI(T)) implies a + m € NI(T) and a + m €
X1(NIU(T)) U Mi(NI(T))
Obviously a+m & Mi(NI(T)), so a+m € X1 (NI(T)). But X;(NI(T)) C
X1(g2(NI(T))) so both a,a+m € X1(g2(NI(T))) which is a contradiction
to corollary 3.19.1.

e Andif a € NI(T) then F(S)+m—b e NI(T). Now F(S)—b ¢ go(NU(T))
implies F'(S) +m —b e X1 (NI(T)) U Mi(NI(T))
Obviously F(S)—b+m & Mi(NI(T)), So F(S)—b+m € X1 (NI(T)) but
then FI(S)—b+m € X1(g2(NU(T))) and F(S)—b € X2(g2(NI(T))) which
contradicts corollary 3.19.1

Therefore Tri(g2(NU(T))) = Tri(NI(T))

Corollary 9.43.2. If h(S) > 1 and A(T U E(S,1)) = E(S,1). Then NI(T) =
fa(g2(NIU(T)))

Proof: Follows from previuos corollary and the definitions of g and fo

Remark 9.44. Summarising several of the previous lemmas and theorems:

If h(S) > 1 and T is a good numerical set of E(S,1) then g2(NI(T)) and
g1(Nu(T)) are good numerical sets of S, fo(g2(NIU(T)) = NU(T) and f1(g1(Nu(T)) =
Nu(T)

Consider the following sets of Numerical Sets:

Z1(T) = {T" C B(S)|A(T'US) = 8, g2(NU(T)) C T’ C gy (Nu(T)), fo(T") C
T}

Z,(T) = {T" C BS)A(T' US) = 8,2(NUT)) C T' C gu(Nu(T)), T C
AT}

We know that g2(NIU(T)) € Zy and go(Nu(T)) € Za, so they are non
empty.
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Remark 9.45. By continuing in this direction by picking a large Ty € Z; and
a small Ty in Zy hope to show Ty = Ty and fo(Ty) CT C f1(T1)

Possible approach: Try to find conditions under which for a given Ty 3T’
s.t. fQ(Tl) = fl(T/)

Conjecture 9.46. For each good numerical set T of E(S,1) there is a good
numerical set Ty of S s.t. fo(T1) CT C f1(Th)

Remark 9.47. Consequences of the conjecture:
o P(S)= P(E(S,1)) iff f1, f2 are identical functions
o P(S)=P(E(S,1)) iff P(E(S,1)) = P(E(S,2))

Another possible consequence might be that P(E(S,n)) is a polynomial
from the start.

Lemma 9.48. If h(S) > 1 and A(T U E(S,1)) = E(S,1) then Mi(NI(T)) U
X1(NUT)) = Mi(T) U X (T)

Proof: We know that Mi(NI(T)) = Mi(T), Tri(T) C Tri(NI(T)).

If (a,b) € Tri(NIU(T))\Tri(T), then using the fact that NI(T') is generated
by Mi(T)UX,(T)U(TNPF(E(S,1))) corollary ?? implies a € Mi(T)UX(T)U
(TN PF(E(S,1))). But a € TN PF(E(S,1)) is impossible as then a ¢ B(S).
Therefore X1 (NI(T)) C X1(T) N Mi(T)

Definition 9.49 (term could be changed later or removed). Call @ max embed-
ding dimension semigroup covered if for each good numerical set of it f1(T) =
fa(T).

Note that this is iff {x(mod m)|lz € T} C {a(mod m)la € X1(T)} U
{z(mod m)|z € Mi(T)} U {y(mod m)|ly € X2(T)}

Remark 9.50. Note that f1, fo are identical iff S is covered

Theorem 9.51. For a fixed multiplicity m, and natural number P if there is
no max embedding dimension, non-bad (bad semigroups are defined in a later
section) semigroup s.t. m(S) =m, P(S)= P, P(E(S,1)) = P(S)

then numerical semigroups with P(S) = P have density 0 (within semi-
groups of multiplicity m)

Proof: under conditions of the theorem #{S|m(S) = m, P(S) = P, Snotbad, F(S) <
F} < #{S|m(S) =m,h(S)=1,F(S) < F} as P(S) = P at most once on each
ray. Finally semigroups with height 1 have density 0

Conjecture 9.52. For each multiplicity the set { P|3S,m(S) =m, P = P(S) =
P(E(S,1)),h(S) > 1,5 is not bad} is finite
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9.1 Semigroups Along a Ray on a face of the Kunz Poly-
hedron

Semigroups whose Kunz tuples all lie on the same face of the Kunz Polyhedron
have the same Apery Poset. Furthermore, we can find the Apery sets for all
semigroups that lie along the same ray on a facet of the Kunz Polyhedron.

Lemma 9.53. If Sy with Apery set {0,a1,az,...,am—1} s the first semigroup
on a ray, semigroups Sy with Apery sets {0, a1 +mkay, as+mkas, ..., mkan_1}
lie on the same ray.

Proof: {0,a1,as,...,anm—1}is the first integer tuple on the ray, and the ray

is then (2 |+, |22 ]+ 2 .  [®==1]4 m=1) To get another integer value, if
the greatest common divisor of the a;s is 1, we must add m times the ray to the

mai+a;—1 mastas—2 mdnz—1+am—1—m+1)

first tuple, which gives a tuple of ( P , p o
corresponding to Apery set {0, a; + mkay,as + mkaa, ..., am—1 + mka,,_1}.

If the greatest common divisor is not 1, the semigroups of this form do
still lie along the ray, but if d = ged, then adding “7 times the ray to the initial
semigroup will also produce integer points.

Y

Lemma 9.54. If the void of Sy is By, then By, the void of Sy is constructed by
By by noting for each b € By, for 0 <1 < mk, b+ mbk +ml € Byg.

Proof: Let af be the largest element of the Apery set, so ay — m = F,
the Frobenius number. Then, the Frobenius number of By, is ay +magk —m =
F+m(F+m)k. Note also that for 4, j < m where i+j = f mod m, all elements
of the void set in the i equivalence class are between a; and F — (a; — m).

The largest element in equivalence class ¢ is a; — m, and the smallest
element is F' — a; + m. Then, the largest element of By in equivalent class
iis a; + mka; — m = (a; — m) + m(a; — m)k + m?k which is satisfied by
letting | = mk, and the smallest element is F' + m(F + m)k — (a; + mka;) =
(F —aj +m)+m(F — aj + m)k which is reached when [ = 0. O

Note that this means the void set grows by m|Bg| as we move along the
line. If the greatest common divisor is not 1, then the void grows by %
between semigroups.

Considering only cases where the greatest common divisor of the elements
of the ray is 1, we see that the structure of the void poset for semigroups further
along the line can be constructed from the first one.

Note that the void elements of By, corresponding to b are unique. If there
is some element of By that corresponds to both b and ¥, b + mbk + ml =
b+ mb'k + ml’, note that b =1V, so b/ = b+ ma, so

b+ ma + m(b+ ma)k +ml’ = b+ mbk + ml

b+ ma + mbk + m2ak + ml’ = b+ mbk + ml
a+mak+1 =1
a(l+mk)=1-1
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But [ and !’ must be within mk, and so a =0, so b =V'.

Thus every element in By corresponds to exactly one element of Bj.
Furthermore, if we denote the generators of Sy as (m,go,...g,) and Sy as
(m, go + mkga,...gn + mkg,), we know from Lemma 2.19 that every cover
relation in the B poset is a generator.

Lemma 9.55. For every element b in By, if its cover relations are some subset
of the generators, then g; is an upper cover of b if and only if the corresponding
generator of Sk, g; +mkg; is an upper cover of the corresponding void element,
b+ mbk + ml.

If g; is an upper cover of b, b+g; = ¢ € By. Then b+mbk+ml+g;+mkg; =
c+ mck +ml for every 0 <[ < mk, so g; + mkg; is an upper cover for elements
of By corresponding to b.

If g; + mkg; is an upper cover for b + mk + ml, then b+ mbk + ml + g; +
mkg; = ¢ +mck + ml’, though [’ is not necessarily equal to [. Then b+ g; = ¢
mod m, so b+ g; + ma = c. Substituting, we get m + mbk + ml + g; + mkg; =
b+ g; + ma+ m(b+ g; + ma)k + ml’. Then, | + kg; = a + g;k + mak + 1, so
I—=U=a(l+mk). If a #0, |l —1'| > mk which is impossible, so a = 0 and
b+ g; = ¢, so g; is an upper cover for b. [

Lemma 9.56. The red triangles of By correspond exactly to the red triangles
Of Bo.

If (P,a,b) form a red triangle in By, P+ a + b = Fy, then ((1 + mk)P +
m?2k, (1 + mk)a, (1 + mk)b) also forms a red triangle. The Frobenius number
Fy, = Fy + (mFy +m?)k because for a; the maximal element of the Apery set
of Sy, F = m(ma;k +a;) —m = (1+mk)Fy +m?2k. Thus, (1+mk)P +m?k+
(1 +mk)a + (1 4+ mk)b= (1 +mk)Fy +m?k = Fy, so this forms a red triangle.
Note that (1 + mk)a and (1 + mk)b are both minimal elements of Bj.

Pseudo-Frobenius numbers of By, are of the form (1+4mk)P+m?2k because
they are the largest elements corresponding to the maximal elements of By.
Thus, if ((1 +mk)P +m?2k, (1 + mk)a + ml, (1 +mk)b+ ml’) is a red triangle
in By, (P,a,b) is a triangle in By.

Note also that if I is an order ideal in By, then the set of all elements in
By, corresponding to the elements of I form an order ideal in Bj.

Theorem 9.57. For semigroups formed in this way, the P value is a polynomial
as we travel along the ray.

Proof: First, we prove that an order ideal of Bj is a numerical set if
and only if every “slice” of its poset is a numerical set in By. The Ith slice
of the By poset is just the By poset, but for every b € By, we change it to
b = b+ mbk + ml.

If there is some slice [ that is not a numerical set, either it is not an
order ideal, in which case By would also not be an order ideal, or the slice
contains a Pseudo-Frobenius number and neither its conjugate nor a red triangle.
If it contains some bad Pseudo-Frobenius number P, in By, then since the
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corresponding Pseudo-Frobenius number of By is above P+mPk+ml, P, € T,
but its conjugate is below the conjugate of Py, so P, & T. Similarly, Py cannot
satisfy any red triangles (Py, ag,bp), but since the red triangles of By and By
correspond exactly, a, < ag+maok +ml and by +mbok +ml < by, so aj cannot
be included, which would mean the original order ideal of By, is not a numerical
set.

In the other direction, if every slice of the order ideal I is a numer-
ical set (and itself an order ideal), then every Pseudo-Frobenius number in
that slice satisfies either its conjugate or some red triangle in By. Assume
for the sake of contradiction that I is not a numerical set. If I, contains a
Pseudo-Frobenius number Py in By, then the top slice contains the correspond-
ing Pseudo-Frobenius number Py where P, = (1 + mk)Py + m2k. Since every
slice is a numerical set, then the top slice must either contain the conjugate Py,

if Consider the slice where [ = 0, and suppose the numerical set contains
a Pseudo-Frobenius number Py. Then, Py(1 4+ mk) € I, and since Py is above
that and Iy is an order ideal, Py € I.

Now, to count the number of good numerical sets, we just need to stack
slices chosen from the good numerical sets of By in such a way that the result
is an order ideal in By.

Remark 9.58. This behavior also appears to apply to semigroups along rays in
a face that do not start from the vertex; the void set grows by the same amount
each time, the void poset maintains the same general structure, and the P values
grow at the same rate.

9.2 Asymptotics for P(S) =2,3

Theorem 9.59. If S is of max embedding dimension and m(S) > 5 then
P(S) > 4.

Proof: Denote m(S) = m. Let the Apery set be (0, Py, Py, ..., Pp_1) s.t.
P; = i(mod m)

Let h(S) = h, say P,4+P; = P,+hm. (Note h > 1 as S has max embedding
dimension)

Note that P, > hm for each | by lemma 9.15 (m > 2)

Now P; > hm so P; < P, and similarly P; < P, and hence P; # F —m
and P; # F —m

By corollary 9.15.2 there is an S’ s.t. E(S',h—1) = S. h(S) =1, 5 is
of max embedding dimension. Apery Set of S” is (0, P, — (h—1)m,..., Pp_1 —
(h—1)m). Hence P, — hm € B(S") C B(S) by lemma 9.8

Next if P, — him < x in the void then 2 — (P; — hm) is a multiple of m by
lemma 9.12 (Remember that P; — hm is a Pseudo-Frobenius number of S”)

Therefore the order ideal generated by P, — hm is T} = {P; — nm|l <
n < h}. Similarly P; — hm € B and the order ideal generated by it is Tb =
{Pj—nm|1 <n < h}. Let T = Ty UT5, it is an order ideal, the Pseudo-Frobenius
numbers in it are P; —m, P; — m.
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Case I: f P.=F+mthen PP,—m=F—(P,—m)=F+m—P, =
(Py+ Pj — hm) — P; = Pj — hm € T and similarly P, —m = P, — hm € T.
Therefore A(T U S) = S, also note that T has at most 2 Pseudo-Frobenius
numbers (maybe just one if ¢ = j) but the void has m —2 > 3 Pseudo-Frobenius
numbers and hence T' # B and P(S) > 3.

In this case T is self dual, T' # (), B means that we have at least 2 connected
components in GPF(S) and hence P(S) > 4

Case 2: If P, # F +m then P, —m € B and (P; — m, P; — hm, P, —m)
is red triangle, P; — hm € T and P, —m ¢ T so P; —m satisfies a red triangle,
similarly P; —m satisfies the red triangle (P; —m, P; — hm, P, — m). Therefore
A(TUS)=5,T+# B,bso P(S) > 3.

If T =T*thena € T < a ¢ T. Since the only Pseudo-Frobenius
numbers in T are P; —m and P; —m the rest of the Pseudo-Frobenius numbers
have their conjugates in 7. But the only possible minimal elements in 7" are
P, —hm and P; — hm. Now if i = j then ¢ —1 < 2 which is impossible as m > 5.
Therefore ¢ # j and t — 1 < 4. Therefore m < 6

If m =5 then PF(S) ={P,—m,P; —m,P, —m,F}. P,—m¢T =
F—-(P.—m)eT = F—(P,—m) € {P,—hm,P; — hm}. WLoG say
F —(P. —m)=P; — hm and P; + P, = (F +m) + hm and hence we are back
to case 1.

If m = 6 then PF(S) = {P,—m, P;—m, P, —m, P,—m, F} and {F — (P, —
m),F — (P, —m)} = {P; — hm, P; — hm}. WLoG say F — (P, —m) = P; —hm
ie. Pj+ P. = (F +m)+ hm and we are back to case 1.

Therefore T # T* and P(S) > 4

Corollary 9.59.1. If m(S) > 5 and S has max embedding dimension and
P(S) =4 then one of the following happens

o GPF(S) has two connected components and all the good numerical sets
are self-dual.

o GPF(S) is connected, there is exactly one (un-ordered)triple (i,7,r) s.t.
P+ P; =P.4+hm, P, —m # F, let T be the order ideal generated by
P, — hm, P; — hm and the only good numerical sets are O, B,T,T*

Remark 9.60. The following result (told to us by Chris) leads to the next
theorem
For a fized multiplicity m

lim #{S|m(S) = m, F(S) < F, S has max embedding dimension}
A, FSTm(S) = m, F(5) < F) -

Theorem 9.61. For fixed multiplicity m > 5
#{SIm(S) =m, F(S) < F, P(S) =1} _

1

AT S m(S) = m, F(S) < F) 0
and
L #LSIm(S) = m, F(S) < F,P(S) =2} _

Fooo #{S|m(S) =m, F(S) < F}
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and
iy FSIM(S) = m, F(S) < F, P(S) =3} _

P SIS = m F(S) < Fy

Remark 9.62. For multiplicity m = 2, all semigroups have P(S) =1
For multiplicity m = 3, all maz E.D. semigroups have P(S) = 2 and hence

#{S|m(S) =3,F(S) < F,P(S) =1} _

AT HSIm(S) =3, F(S) < FY "
L #{SIm(S) =3.F(S) < FP(S) =2)

P #{SIm(S) = 3, F(S) < F}
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Lemma 9.63. If m(S) = 4 and S has max embedding dimension. Say the
Apery set is (0, Py, Py, Ps)

° IfP3+P1>2P2 thenP(S)z?
L] IfP3+P1:2P2 thenP(S):3
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o [f Ps+ P, < 2P, then P(S) =4

Proof:

Case 1: F=P3—4;, PP+ P, > P3+4ie. PP+ P, —P3—4€ S (lt
is divisible by 4). Which means (P, — 4) + (P, —4) — F € S and GPF(S) is
connected. Py — P =3(mod4) = (P, —4)— (P, —4) ¢ B. P, <2P —
P—-P <P = (P274)7(P174)¢S Therefore (P274)7(P1*4)€B
it F—(Po—P) g Sit (Ps—4)—Po+ P < Pyiff Psy+ Py < 2P, +4 iff
Py + P <2P.

It follows that P1 —|—P3 > 2P2 implies (P1—4)—(P2—4), (P2—4)—(P1—4) ¢
B and hence P(S) =2

On the other hand if Py + P53 < 2P, then (Po—4)— (P —4) = P,— P, € B.
NOWP(S) :31fP2—P1 :F—(P2—4) (18 P3+P1 :2P2) andP(S) =4
otherwise.

Case2: F = P,—4then Pi+1 < P, and P3+3 < P, therefore Py +P;+4 <
2P, which implies Py + P;—4 < 2Py i.e. (P1—4)+(P3—4)—(P;—4) < P, which
means (P —4)+ (P3 —4) — (P2 —4) ¢ S and hence GPF(S) is not connected
and P(S) =4

Case 3: F' = P, — 4; is similar to Case 1

Corollary 9.63.1. For Numerical semigroups with multiplicity 4 density of
P(S) =1 and P(S) = 3 is 0. Density of P(S) = 2 is = 0.38 and density of
P(S) =4 is =~ 0.62 (exact values can be determined by computing volumes)
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9.3 Rays with P(5) =4

In this section we show that if F(S,n) =4 for a particular n then it is true for
all n (assuming S is of max E.D.)

Definition 9.64. Assume h(S) > 1 We define new categories for order ide-
als T of B(E(S,n)), (A1, A, X) where Ay = {P; — m|P; + (n — 1)m € T},
Ay = {F(S) — (P, —m)|F(S) — (P, —m) € T}. Let Tri(A1) = {(a,b)|a,b €
B(S),F(S)—a—-be A1} X ={(a,b) € Tri(A1)|la € T,F(E(S,n)) —b& T}.

Also note that X contains un-ordered pairs, we denote X1 = {3b, (a,b) €
X}, Xo={—3a,(a,b) € X}

Lemma 9.65. If (P, —m,a1,b1) and (P; —m, az,b2) are red triangles in B(S).
Then F(S) — ba < a1 implies ay = F(S) — by or as < F(S) — by

Proof: For this paragraph denote F(S) by F. So a; — (F —by) € S, but
a1+b2—F: (Ff(Pifm)fbl)Jr(F—(ijm)fag)—F:Ff(P,;f
m) — (Pj —m) — by —as. Now as P, —m and P; — m are Pseudo-Frobenius
numbers F' —ays — by € S (unless F — (P, —m) — (Pj —m) — b —as = 0 ie.
a; — (F —by) =0). Now ag < F — by in B(S)

Lemma 9.66. If h(S) > 1 and T is an order ideal of E(S,n) then Vn' there
is an order ideal T' of E(S,n’) s.t. A1(T") = A1(T), As(T) C Ao(T') and
X(T) C X(T")

Proof: For notation we denote A; = Ai(T), As = Ax(T), X = X (1),
AL = A (T, Ay = A(T"), X' = X(T7)
Let T' be the order ideal of E(S,n’) generated by (4; + mn’) U A2 U X;.

e Clearly A; C A}. Conversely if P,—m € A} then 3z € (41+mn’)UAUX;
st. g P+ (n' —1)m in B(E(S,n))

— Ifx € (A1 +mn’) then P, —m € Ay
—Ifz e AbUX; thenz € B(S)NT. Now z < P, + (n' — 1)m in
B(E(S,n')) means that P, — m —x +n'm € E(S,n’)
x If m fP,—m —x+n'm then P,—m—x+n'm € E(S,n’) implies
P, —m —x € S which implies P, — m —x + nm € E(S,n) ie.
x < P+ (n—1)min B(E(S,n)) which implies P,+(n—1)m € T
ie. P,—me A
« If m|P; — m — x4+ n'm, then in B(S) either P, — m < z or
r < P; — m according to P, —m < x or ¢ < P, — m. But
P; — m < x is impossible and hence x < P, — m. Therefore
<P+ (n—1)mand z <X P,+ (n— 1)m in B(E(S,n)) which
implies P, + (n—1)m € T ie. P,—m € A

e Clearly A C A

o If (a,b) € X, say P,—m+a+b= F(S) and P, —m € A;. Then
a € X; € T'. If possible assume F(E(S,n’)) —b € T'. Therefore 3z €
(A1 +mn/) U AU Xy st < F(E(S,n')) —bin B(E(S,n’))
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—Ifz e (A1 +mn'), say x = P, + (n — 1)m; then z < F(E(S,n’)) —b
means P+ (n'—1)m = F(E(S,n'))—-b = P,—m=F(S)—b =
P+ (n—1)m = F(E(S,n)) —b. Now P, —m € A; means that
P;+(n—1)m € T which contradicts the fact that F(E(S,n))—b¢& T

—If x € Ay U X; then z € B(S)NT. Nowx\ F(E(S,n')) — b in
B(E(S,n')) means that FI(S) —b—x+n'm e E(S,n’)

« If m [F(S)—b—x —n'm; then F(S)—b—xz+n'm e E(S,n)
implies F(S) —b— z € S which implies F'(S) —b—z +nm €
E(S,n) ie. z < F(E(S,n)) —b in B(E(S,n)). This implies

F(E(S,n)) —b e T which is a contradiction.

x* Hm|F(S)—b—x—n'm
- Ifz < F(S)—0bthen 2 < F(S) —b+nm = F(E(S,n))
b which implies F(E(S,n)) —b —x € E(S,n) ie. =z
F(E(S,n))—bin B(E(S,n)). This implies F(E(S,n))—b €
which is a contradiction.

- If F(S) —b < « then F(S) —b < « in B(S) and hence
r & Ay, z € Xq. Sosay Pj—m € Ay, 2 +y+P;—m = F(9),
x €T and F(E(S,n))—y ¢ T. Now by lemma 9.65 we know
that @ < F(S) —y in B(S) i.e. F(S) —y —a € S which
implies F(E(S,n)) —y —a € E(S,n) i.e. a X F(E(S,n)) —

y in B(E(S,n) and hence F(E(S,n)) —y € T which is a
contradiction.

<
T

It follows that X C X’

Corollary 9.66.1. If P,—m € A,\ As in the above construction then h(S) =1,
n' =0 and IP; —m € Ay s.t. P;+ P; = F(S) +2m

Proof: If F(S) — (P, —m) € T/ then Jz € (A1 + mn/) U A2 U X1 sit. 2 <
F(S) — (P, —m) in B(E(S,n')). Then of course z = F(S) — (P; —m)

o If x € Ao U X, then z € Ay

o Ifx € (Ay+mn’), say F(S)—(P;,—m) = Pj+(n'—1)m, P;—m € A;. This
means (P;+n'm)+(P;+n'm) = F(S)+2m+n'm = (F(E(S,n'))+m)+m
which implies h(E(S,n')) < 1. But h(S) > 1 = h(S) =1,n' =0 and
hence P; + P; = F(S) +2m

Theorem 9.67. If h(S) > 1, m(S) > 5 and P(E(S,n1)) =4 for some ny > 0.
Then P(E(S,n)) =4 for alln >0

Proof: Firstly by theorem 9.59 P(E(S,n)) > 4. Now by corollary 9.59.1

e Case 1: GPF(E(S,n1)) has two connected components and the only good
numerical sets of E(S,ny) are the self-dual ones. Moreover in this case
(Pi+nim)+(Pj+nim) = F(E(S,n1))+m+h(E(S,n1))m = (P;—m)+
(P; —m) = F(S) + (h(S) — 1)m, Let T1 be the order ideal of B(E(S,n1))
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generated by P; — h(S)m, P; — h(S)m. then the good numerical sets of
E(S,ny) are 0, B(E(S,n1)),Th, T} = Tf.

Now if T is a good numerical set of F(S,n). Then consider the corre-
sponding order ideal 7" of E(S,n1) given by lemma 9.66.

If h(S) > 1 or ny > 0 then A, = Ay by corollary 9.66.1 and hence T is
self dual and P(S) = 4. Therefore now assume h(S) =1 and n; =0

-T'=0 = T=90

— T' =T then A; = {P,—m,P;—m}. Ash(S)=1TnNB(S) C{Pp,—
m, P; —m} therefore the only possible red triangle (of B(E(S,n)))
that P; + (n — 1)m can satisfy is (P; + (n — 1)m, P, — m,b) which
means 2P, —2m+b = F(S). We know that i+ j = F(mod m) which
implies ¢ = b(mod m) which implies b = P, — m, F(E(S,n)) —b =
P; + (n — 1)m. Therefore the triangle cannot be satisfied. Similarly
P; + (n — 1)m cannot satisfy a triangle and hence T is self dual.

— T' = B(S) This means X’ = () which implies X = () and hence
T = B(E(S,n))

- T =T =1Tf; So Ay = PF(S) \ {F, P, — m, P; — m}. Conjugates of
Pi+(n—1)m and P;+(n—1)m are not in T'. If possible assume 7" is not
self dual, therefore at least one Pseudo-Frobenius number does not
have its conjugate. It follows that T has P, +(n—1)m, Pj+(n—1)m
and at least one more Pseudo-Frobenius number. Therefore (T*) =
B(S) and as seen earlier T* = B(F(S,n)) which is impossible.

Therefore in Case 1 we see that P(E(S,n)) =4

Case 2: GPF(E(S,n1)) is connected (which means GPF(E(S,ns)) is
connected for each ns), there is exactly one (un-ordered)triple (i, j,7) s.t.
P, + P; = P. + hm (here h = h(S)), P, —m # F, let T1 be the order
ideal of B(E(S,n1)) generated by P; — hm, P; — hm and the only good
numerical sets of E(S,n) are 0, B, Ty, T}

By corollary 9.15.2 there is a S’ s.t. E(S",h(S)—1)= S5, h(S") =1

Let T be a good order ideal of E(S,n), consider the corresponding 7" of
E(S,ny) given by lemma 9.66

— T =0 implies T =0

- T/:Tl; SOA1 :{Pi—m7Pj—m}, A/QZQ) — A2 = 0. {Pz_
hm,P; —hm} C X' C Ty N B(S'") = {P; — hm,P; — hm} hence
X' ={P,—hm,P;—hm}. If 3z € Tst. P,—hm £ z and P;—hm £ z
in B(E(S,n)). We must have = P; or Pj(mod m), Say x = P,—(h+
s)m. Then z € B(S), The order ideal of B(S) generated by =, P;—hm
in B(E(S,n1)) is not a good numerical set so it must have a Pseudo-
Frobenius number other that P; —m, P; —mie. x < P, + (np—1)m
for some u in B(E(S,n1)). Therefore z < P,+(n—1)m in B(E(S,n))
which is a contradiction.
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- T' =Tf; Say i + o = F(mod m) and j + 8 = F(mod m) So A} =
{Ps—m|Ps—m # F} and A, = {F(S)—(Ps—m)|Ps—m # F,s #i,5}.
Therefore by corollary 9.66.1 Ay = A, and hence (T*)’ = T} and by
the previous part 7™ is generated by F; — hm, P; — hm

— T'=B(S). A1 ={P;s—m|P;—m # F(5)}, Ay = {Ps—m|P; —m #
F(S)} and by corollary 9.66.1 {F(S) — (Ps — m)|Ps —m # F,s #
i,j} C As. Therefore (T*)') or Ty. If (T*) = 0 then T* = 0
and T = B(E(S,n)). And if (T*)" = Ty then T™* is generated by
P; — hm, P; — hm which is a contradiction.

9.4 Red Triangles and bad hyperplanes in Max Embed-
ding Dimension

Remark 9.68. From this section on P; will be used to denote Pseudo-Frobenius
numbers and A; used to denote Apery set elements

Remark 9.69. The P wvalues in the polyhedron suggests that certain hyper-
planes divide the polyhedron into regions of distinct P values.

Definition 9.70 (Bad Hyper-planes). Hyper-planes of the form of the form
A+ Aj = Ay + Ay where A;, Aj, Ay, A; are in the apery set (or equivalently in
PF(S)) (and i + j =k + l(mod m)) are called bad hyper-planes.

A Numerical Semigroup is called bad if 3P,Q,R € PF(S) s.t. F+Q =
P + R. Note that all bad semigroups lie on a bad hyper-plane.

Lemma 9.71. S has maz embedding dimension. Say P;,P; € PF(S) and
i—j = k(mod m), k+1= F(mod m) then P, — P; € B(S) iff F— P, < P, — F;

Proof: Firstly P, — P; € B(S) < F — P < P,—P; < P,. But
P; — P; < P, follows from the fact that S has max embedding dimension.

Moreover P;—P; = F— P;(mod m) implies F—P, x P,—P; <= F—-P <
P, - P O

Theorem 9.72. If S is of mazr embedding dimension then S is ignoble iff
3P, Pj,P, € PF(S)\{F} s.t. i—j=F —Il(modm) s.t. F— P, < P, — P;

Proof: Follows from lemma 9.71

Remark 9.73. It follows that noble semigroups of mazx E.D. are geometrically
living in certain smaller polyhedrons of the kunz polyhedron

Moreover they have positive density, which can be calculated by computing
volumes.

Lemma 9.74. S has maz embedding dimension. Suppose P;, P, € PF(S)\{F},
and i +1 % F(mod m), i + 1 # 2F(mod m).
Pick j s.t. i —j=F — l(mod m). Then:

o '— P, > P, — P; implies F — P, # P; i.e. P, and P; are not connected in
GPF(S). In this case P; — P; not in B
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o IfF— P =P, — P then F — P, A P; i.e. P, and P; are not connected in
GPF(S). In this case P; — P} is in B

o If ' — P, < P;—Pj then ' — P, <X P; i.e. P; and P; are not connected in
GPF(S). In this case P; — P; is in B

Proof: The conditions ensure P; € PF(S)\ {F}
P,—(F—-P)=jmodm)so F—P x Pif P,—(F—P)>A;=PFP;+m
lﬁ‘Pif(Ffﬂ)>PJ lﬁ‘P17P]>F*]‘)l

Corollary 9.74.1. If S has maz E.D. and S is not bad then given P;, P, €
PF(S)\{F}, P+ P, # F,2F(mod m). Then j =i+ 1 — F(mod m)
P;, P, are connected in GPF(S) iff P, — P, € Biff b —P; € B

Corollary 9.74.2. We can restate the result as follows: If S has mazx E.D. and
S is not bad then given P;, P; € PF(S)\{F} s.t. i # j, i—j #Z F(mod m) then
l=F — (i — j7)(mod m) implies

P, — P; € B iff P;, P, are connected in GPF(S) iff b, — P; € B

Theorem 9.75. If S is a noble semigroup of max embedding dimension then

e The B poset has the simple structure: x <y iff mly —x and x <y

o Ifm is odd then P(S) =2"7

m—2

o Ifm is even and F is odd then P(S) =2z

m

o Ifm and F are both even then P(S) =22

Proof: If possible assume there are x < y in B-Poset s.t. m fy — x. Say
F — P, = z(mod m) and P; = x(mod m). Then P;, P, are connected in GPF(S)
and P; + P, # F(mod m)

Note that Noble Semigroups are not bad. Next if P, + P, = 2F(mod m)
then P, + P, — F = F(mod m) and P;,P; < F = P, + P; — F < F which
contradicts P; + P; — F € S.

Therefore by previous lemma P; — P; € B and we have a contradiction.

It follows that the only edges on the Pseudo-Frobenius graph are when
P, + P, = F(mod m) (which are indeed edges)

This means that the graph mostly consists of components of size to except
when 2P; = F(mod m) in which case P; is an isolated point.

Now if m is odd then the graph has m — 2 vertices, there is exactly one
i for which 2P; = F(mod m). Hence the number of connected components is
14 m=3

lz\Text if m is even and F is odd then there is no ¢ for which 2P; = F(mod m)
hence there are msz connected components.

Finally if m and F' are both even then there are two ¢ for which 2P, =

F(mod m) hence there are 2 + mT‘l connected components. [
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Remark 9.76. This is not necessarily true in noble semigroups that are not of
mazx embedding dimension. For e.g. if S =<6,7,8,11 > then B(S) ={1,5,9},
1t is noble and 1 < 9

Another e.g. S =< 6,8,11,13,15 > is noble, B(S) = {1,3,5,7,9}, cover
relations are 1 7,1 9,39

Corollary 9.76.1. If we look at numerical semigroups with a fized multiplicity
m on the kunz polyhedron then:

e Ifm is odd then numerical semigroups with P(S) = 2" have a positive
density.

m—2

e Ifm is even then numerical semigroups with P(S) =272 and those with
P(S) = 2% both have positive densities

Conjecture 9.77. If S is of max embedding dimension and not bad then P(S)
15 even

The natural path towards proving this is to prove T # T* for each good
numerical set of S

9.5 Multiplicity 5

Remark 9.78. These are the observations we will prove in this section. We
assume m(S) =5 and S has maz embedding dimension for each

P(S) is even.
P(E(S,1)) = P(S) = P(5) € {4,6,8}
P(E(S,1)) # P(S) = P(E(S,1)) = P(5) +2

e P(S) = 4,8 have positive density, all other values of P have zero density.

Remark 9.79. We have a Numerical Semigroup of max embedding dimension
and multiplicity 5 (this assumption is maintained throughout this section even
if I forget to mention it in some lemma/theorem)

Say F = 2k(mod 5), the Pseudo-Frobenius numbers of S are Py, F, Psy,, Py,
(so the Apery set of S is (P, +5,F + 5, P3, + 5, Py, +5))

In GPF(S) Ps and Py are connected, so the graph has at most 2 con-
nected components.

F — P, = Py(mod 5) therefore F — P, < Py and Py, is connected to itself
in GPF(S)

Also Py, + P, — F = F(mod 5) and Py, + Py — F > F so Py and Ps
cannot be connected.

T, =0, Ty = B(S) are good numerical sets

Theorem 9.80. Let S be a numerical semigroup of maximum embedding di-
mension such that m(S) =5.Then A(TUS) =5 = T # T* and hence P(S)
must be even.
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Proof: Suppose that F' = 2k mod 5, and let Ps be the Psuedo-Frobenius number
such that Ps = k mod 5. Similarly, let Pp = 4k mod 5, Ppr = 3k mod 5.

Now, let T C B such that A(TUS) =S5, T* =T. Then T must include
exactly one and exclude exactly one of each pair {b, F—b} C B. Since Ps—(F —
Ps) =0mod 5, and Ag—(Ap—Ag) = Ps—(F—Ps)+5 >0, Ps—(F—Ps) € S,
and so F' — Pg < Pg, implying Pg € T, F — Pg ¢ T. Thus, there must exist a
red triangle (Pg,a,b), and so either Pp — Pg € B or Ppr — Ps € B. However,
F — Pp/ + Ps =0 mod 5, and so Ppr — Ps ¢ B.

Thus, if (Ps,a,b), then a x Pp — Ps. Note a € T — F —a ¢ T and
similarly FF — b ¢ T — b € T; we must then have Pp — Ps € T, and since
Pp — Ps = Ppr mod 5, Ppr € T, F — Pps ¢ T. By the red antichain condition, if
F—Pp < a,then Pp € T, F—Pp ¢ T As above, this would require Ps—Pp: € B
or Pp—Pp: € B, and Ps—Pp € B or Pp: — Pp € B; however, since Pp—Pg > 0,
we must have Ppr — Pp, P — Pp/ € B to allow for red triangles; however, this
implies Pg — Pp > 0, which is impossible. This, together with the fact that
F — Ps # Pp — Pg, implies F — Pp, < a,b, and this is the unique minimal
element below them; it must be true, then that a = F'— Pp, = Pp mod 5, which
would require Pp € T', but this has already been shown to be impossible.

Lemma 9.81. If m(S) =5, h(S) > 1, A(TUS) =5 and |T N PF(5)| =1,
then T can only be one of the following:

e Ty generated by F — Py, it exists iff GPF(S) has two connected compo-
nents, it is self dual

e T3 generated by Py — Psy, it exists iff P, — Py, € B(S) and Py, + P3, < 2P

e Ty generated by Psp — Py, it exists iff Psp — Py, € B(S) and Py is not
connected to Py, in GPF(S)

Proof:
o P € T;

— If F — P, € T then T must be the order ideal generated by F — P,
denote it by T5. In this case the graph has 2 connected components,
T is one of the self dual order ideals. Ty = B(S) \ T is another.

— If F— P, ¢ T then P, must satisfy a triangle, but Py, — Py, Z k(mod 5)
and Py, — P # k(mod 5) so no such T is possible.

e P € T; So P3, must satisfy a triangle. Py, — Psp #Z 3k(mod 5), but
P, — P, = 3k(mod 5). So if (Psk,a,b) is satisfied then a < Py — Psp.
If a < Py — Psy, then by corollary 3.14.1 a < P, which is impossible (in
Case 1). So a = P, — P3;, and T is the order ideal generated by Py — Ps.
Denote this order ideal by T3, note that in this case P, — Psi € B(S)

AISO Pk — P3]€ 7{ P4k 1ff P4k — (Pk — ng) S Pk
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e Py € T, it is similar to case when P3; € T, T  must be the order ideal

generated by Psj, — Py, we denote it by Ty, in this case P, — Py, € B(S)

Pyo — Pap £ Py iff Py — (Pos — Py) < F iff Py + Pap — F < Py iff
Po+ Py, —F &S

We are done. [

Lemma 9.82. If m(S) =5, h(S) > 1, A(TUS) =S and |T N PF(S)| = 2,
then T can only be one of the following:

o T generated by Py, — P3 and Py, — Py

If Py, — P3p, = F — Py then there is a family of good numerical sets, the
number of sets in the family increases by 1 when we go from S to E(S,1)

T, generated by F — Py, Py, — Py,
T3, it exists iff GPF(S) has two connected components, it is self dual
The adjoin of one of the order ideal described above.

Proof:

e Py, P3;, € T; P, must satisfy a red triangle, say it satisfies (Psy, a,b)

— If a = 3k(mod m) then P, — P3;, € B(S) and a < Py — Ps. And

F—-b=PFPyp+a=kimodm) F-b¢gT — F-PF, ¢&T.
Therefore Py, satisfies a triangle. P — Pr < 0 so its not in B(S),
so Py, — Py, € B(S). Say (Py,a1,b1) is satisfied then a; = 3(mod 5)
and a; < Py, — P;. Now if a; # Py, — P, then by corollary 3.14.1
a1 < Py, which is a contradiction. Therefore a; = Py, — Py

Also by corollary 3.19.1 a; = a,s0 F—b = P3p+a = Py + Py, — Py, =
Asp+ Ay, — A, —m. Max embedding dimension implies F'—b+m € S,
F—b¢ Sshows F—b= P, €T and we have a contradiction.

If a = k(mod m) then Py, — Ps, € B(S) and a < Pyx — Psg. Now if
a # Py — Psj, then by corollary 3.14.1 a < Py which is a contradic-
tion. Therefore a = Py, — Psp

Now if Py — P3y, # F'— Py, then by corollary 7?7 F— P, ¢ T and hence
P, satisfies a triangle. Ps, — P, = F(mod 5) so Ps, — P, & B(S).
Therefore Py, — P, € B(S) and a; < Py — Py. (here (Py,aq,b1) is
the triangle that is satisfied). Next if a; # Py — Py then a; < Py
which is impossible. So a; = Py, — Pi. It follows that T is generated
by P — Psr and Py, — Pr. We denote this order ideal as T

On the other hand if P4k —ng = F—Pk then P4k — (F—Pk) = P3k g
S, in this case all order ideals not containing Py, and containing
F — Py, P3;, work. Note that the number of such order ideals increases
by one from S to E(S,1)
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o P, Py € T; then Py does not have its conjugate in 7', and hence must
satisfy a red triangle (Pyg,a,b). Py — Py, = F(mod 5) so we must have
P — Py, € B(S), a < P3i, — Py. If a # Ps — Py, then by corollary
3.14.1 a < P3;, which is a contradiction. Therefore a = P, — Py
P3, — Py = F(mod 5) and Py, — Py, = Pai(mod 5) so neither can be in
T and hence Py cannot satisfy a red triangle. So F' — P, € T and T is
generated by F — Py, Psj, — Py. Denote this order ideal by Ty

o Py, Py, €T,

— If both F' — Psi, FF — Py are in T then T is self dual and GPF(S)
has two connected components.

— If only F — Ps; is in T then T* N PF(S) = { Py, Py} and hence
T=T;

— Ifonly F— Py, is in T then T*NPF(S) = { Py, P3} so either T = T
or T is the adjoin of a good numerical set of the family described in
that case.

— If neither of F' — Ps, F' — Py, is in T then they both must satisfy
a triangle. P, — Py, = F(mod 5) and P, — Py, = 4k(mod 5), so
P — Py € B(S) Also P,— P53, = 3k(m0d 5), Py — P, = k(mod 5),
so P, — P3, € B(S). Say the triangles being satisfied are (Psg, a1,b1)
and (Pyg,a2,b2). a1 < Py — Psg, in fact a; = Py — Psi (because
Py gT) F—Psp a0 P3sj, — Py, F—by = Py +ag = 3k(m0d 5)
which contradicts corollary 3.19.1

We are done [

Lemma 9.83. If m(S) =5, h(S) > 1, A(TUS) =S and |T N PF(S)| = 3,
then T can only be one of the following:

o 77 = DB(S5)
o T¥
o Ty

Proof: If T has at least one minimal element then 7 has < 2 Pseudo-
Frobenius numbers and is covered by previous lemmas.

Otherwise Py, Ps, Py, must all satisfy red triangles. But the largest one
among them cannot, so no such T exists. [

Theorem 9.84. If m(S) = 5, h(S) > 1 then either P(E(S,1)) = P(S) or
P(E(S,1)) =P(S)+2

Proof: Follows from last three lemmas.

Theorem 9.85. If m(S) = 5, h(S) > 1 then P(E(S,1)) = P(S) implies
P(S) <8
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Corollary 9.85.1. P > 10 implies #{S|m(S) = 5, P(S) = P,F(S) < F} =
#{S|n(S) = 5, P(S) = P+2, F(S) < F +5}

Lemma 9.86. If m(S) =5, h(S) > 1 and S is not bad then
o Py, — P, ¢B
e« P,— Py, &B
e P is connected to Py, in GPF(S) iff Py — Psi € B iff Py, — P3;, € B
e Psy is connected to itself iff Py, — Py, € B
e Py is connected to itself in B(S) iff Py, — P, € B

Corollary 9.86.1. Under the assumptions of the lemma an edge from Py to
Py and a loop on Psj, cannot simultaneously exist

Corollary 9.86.2. Under assumptions of the lemma
o T1,TY exist
o Ty, Ty exist iff Py is not connected to Py, in GPF(S)
o T3, T exist iff Py, is connected to Py, in GPF(S) and Py, + P3p, < 2P
o Ty, Ty exist iff Psy is connected to itself in GPF(S)

o T3, 1% ewist iff Py is connected to Py and there is a loop around Pyx in
GPF(S)

o T4, T exist iff there is a loop around Psy, in GPF(S)

Theorem 9.87. If m(S) =5, h(S) > 1 and F+ P # Q + R for VP,Q,R €
PF(S)\ {F}. Then:

Note the trivial edges of GPF(S) are the edge between Psy, Py, and loop
on P

o If GPF(S) only has the trivial edges then P(S) =4
o If the only non trivial edge on GPF(S) is a loop on Psy, then P(S) =38
o If the only non trivial edge on GPF(S) is a loop on Py then P(S) =4

e If the only non trivial edges on GPF(S) are loops on Psi, and Py then
P(S)=38

e [f the only non trivial edge is Py connected to Py then P(S) =4

e If the only non trivial edges are the edge between Py, Py, and a loop around
Py then P(S) =4 or 6 according to Py, + Psg > 2Py, or Py, + Ps, < 2P
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Proof:

Claiml: If Py is connected to Py but there is no loop around Py then
Py, + Pap < 2P,

This is because Pj connected to Py, means P, — Py, — F € S which is
iff P, + Py, — F > P53 And there is no loop around Py so 2Py, — F & S i.e.
2Py, — F < P,. Adding the two (Pk + Py — F) + Py > P3 + (2P4k — F) i.e.
2P, > P3p + Py

Lemma 9.88. Py + P > 2Py, (it follows in some manner from kunz inequal-
ities)

Corollary 9.88.1. S is of max ED, m(S) =5, S is not bad, P(S) = 6 imply
Py, + Pap = 2P
In particular they lie on a hyperplane and have density 0

Theorem 9.89. For multiplicity 5, P(S) = 4,8 have positive densities, all
other values of P combined have density 0.

Moreover density of P(S) = 4 is approzimately 0.29:

And density of P(S) = 8 is approximately 0.71 : (exact values can calcu-
lated by computing volumes)

Remark 9.90. We observe that finitely many hyperplanes divide the polyhedron
into a number of regions, in each region the semigroups have the same GPF(S)
and it determines P(S)
Here is the distribution of various values of P for semigroups with F < 133
m=5,F<=133, density of P

07

06

45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55

The following graphs show the density different values of P plotted against
Frobenius number.
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m=5, density of P(S)=10
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If we restrict ourselves to numerical semigroups that are of max embed-
ding, not on bad hyperplanes and not on the hyperplane Py + P3x = 2P, (we
know that such semigroups have density 1). Then we get the following graphs
(remember that P(S) can only be 4 or 8) which show the density of P(S) =4
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converging to around 71% and of P(S) = 8 to around 29%
m=5, P(S)=4, Max ED, not on singular hyperplanes
1.2
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0
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m=5, P(S)=8, Max ED, not on singular hyperplanes

131517192123 2527293133353739414345474951535557596163656769717375777981838587

9.6 Multiplicity 6

Conjecture 9.91. If m(S) = 6 (and no further restrictions) then P(S) can
take all values other than 5

Conjecture 9.92. Say S is of Multiplicity 6 and of max E.D. and not bad. Say
the generators of S are (6,a1,az2,as,a4, F) s.t. a1 < az < az < ay then:

e P(S) is even as conjectured earlier

o If P(E(E(S,1))) = P(S) then P(S) is one of 4,6,8,12,16

o If P(S) = 2(mod 4) and P(S) # 6 then P(E(S,1)) = P(S) + 2
o If P(E(S,1)) # P(S) then ay + aq = ag + as

o ay + ay # as + as implies P(S) = 4,6,8,12, 16
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o If whenever {i1,i2} # {j1,j2} tmplies A;, + As, # Aj, + Aj, then P(S) =
4,8,16 and thus these are the only values that can have positive density

e P(S)=4,8,16 are the only ones that have positive density

Definition 9.93 (Singular Hyperplanes). A hyperplane of the form A;, + A;, =
Aj + Ay, {in,io} # {1, J2} is called a singular hyperplane.

The following graph plots densities of of P for semigroups of F < 79 with
max embedding dimension, not lying on a singular hyper plane (we know that
singular hyperplanes behave differently and have density 0). The graph shows
the only P values are 4,8, 16 and 4 appears around 80% times.

m=6, F<=79, Max ED, not on Singular Hyperplanes
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The next graphs show how densities of different values of P evolve with the
frobenius number. We again restrict to semigroups of max embedding dimension
not lying on singular planes. It appears that all 3 will converge to positive values.

m=6, P(S)=4, max ED, not on singular Hyperplanes
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9.7

m=6, P(5)=8, max ED, not on singular Hyperplanes
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Frobenius Number
m=6, P(S)=16, max ED, not on singular Hyperplanes
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Conjectures Regarding densities of P(S5) in kunz Poly-
hedron of fixed multiplicity

Conjecture 9.94. S is of max embedding dimension

If S is not bad then P(S) is even

If S is not bad and whenever iy,1i2, j1,jo are patrwise distinct A;, + A;, #
A + A, then P(S) = P(E(S,1))

If whenever {i1,i2} # {j1,j2} implies A;, + Ai, # Aj, + A;, then P(S)
takes the values (and only these values): 22,23, ...2m=2 and thus these
are the only values that can have positive density

22,23 ...2™72 qll have positive densities
density of 21171 is the largest among them (probably > 0.5)

density of 2121 is the second highest
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Conjecture 9.95. The hyperplanes A;, + A;, = Aj, + Aj, divide the kunz
polyhedron into a mumber of regions. All points in the same region take the
same value of P(S)

Remark 9.96. Things to investigate further:

Can the degree of the polynomial of P(E(S,n)) be bounded in terms of the
number of hyperplanes that S is on.

For k < m — 2 if 2% JP(S) can we say which hyperplanes S must be on
depending on k

Remark 9.97. Possible approach:

Prove that If S is of mazx embedding dimension and not on any of the
hyperplanes described above then the only red triangles that can be satisfied are
of the form (Q,P — Q,F — P).

If this is true then all good numerical sets are gemerated by subsets of
DPF(S) and the DPF-Poset determines which subsets of DPF(S) generate
good numerical sets.

Numerical semigroups in the same region determined by those hyperplanes
have the same DPF-Posets

Some kind of combinatorial argument to show that P(S) must be a power
of 2

This graph shows the density of values of P for m = 7 when restricted to
semigroups of max embedding dimension that are not on a singular hyperplane

m=7, F<=73, Max ED, not on Singular Hyperplanes
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The next 4 graphs show that the densities of P(S) = 4, 8,16, 32 actually
seem to converge to positive values.
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m=7, P(S)=4, Max ED, not on Singular Hyperplanes
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m=7, P(S)=16, Max ED, not on Singular Hyperplanes
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m=7, P(S)=32, Max ED, not on Singular Hyperplanes
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For higher multiplicities generating this data is a bit harder as even though
semigroups outside of non-singular hyperplanes have density 1, they are quite
sparse for smaller frobenius numbers

We therefore plot the densities of P values among Max ED, non bad
semigroups, we see clear spikes at certain powers of 2

m=8, F<=61, Max ED, not bad
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m=8, F<=51, Max ED, not Bad

a3

ot

Note that for m = 10, 11 the total number of semigroups being considered
is 171 and 176 respectively which is much smaller than previuos once. Nonethe-
less we still see spikes at certain powers of 2

m=10, F<=44, Max ED, not Bad
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m=11, F<=45, Max ED, Not Bad
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10 Algorithmically Determining P(S)

We consider empty voids, noble semigroups, and ignoble semigroups separately.
if empty void then
P(S)=1
end if
if noble semigroup then
check Pseudo-Frobenius Graph for P(S)
end if
for all subsets of maximal void elements do
put complement into ”bad set”, put subset into ”good set”
for all elts of subset do
construct list of inclusion conditions
end for
construct all combinations of conditions
for all combinations constructed do
add described numbers to ”good set”, "bad set”
take order ideal of ”"bad set”, order filter of ”good set”
check that ”good set” and ”bad set” do not overlap
for all antichains of remaining elts of void do
add one to P(S)
end for
end for
end for
return P(S)
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