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1 Introduction

Let T ⊆ N0. T is a numerical set if it includes 0 and is cofinite, and a numerical
semigroup if it is also closed under addition. In this paper, S will be reserved
for numerical semigroups, and T for numerical sets.
For every T , the set A(T ) = {t ∈ T | t + T ⊆ T} is a numerical semigroup
contained in T ; this is referred to as the associated numerical semigroup. Our
paper concerns P (S) = #{T | A(T ) = S}; in other words, we wish to count the
numerical sets which associate to a given S, which shall henceforth be referred
to as “good” numerical sets. In particular, we wish to classify P−1(n) for n > 1,
with special attention paid to small n.

We introduce the notion of the void which is defined as B(S) = {a|a 6∈
S, F − a 6∈ S} and give it a poset structure in a natural way. This ensures that
if A(T ) = S then T \ S must be an order ideal of the Void poset. We further
introduce to notion of red triangles which are particular triples of the void in
terms of which we give necessary and sufficient conditions for an order ideal to
be a good numerical Set.

We apply this machinery to prove several results relating the pseudofrobe-
nius numbers and type of a semigroup to the good numerical sets it has. We
also give an algorithm for computing P (S) that works significantly faster than
a brute force search specially for semigroups of small type.

In later sections we consider several families of numerical semigroups for
e.g. the staircase family St(m,n) = {m, 2m, . . . ,mn,→} and several others and
obtain polynomial growth of P (S) in each case.

We finally consider the kunz polyhedron that has all numerical semigroups
of a fixed multiplicity and investigate the density of different P values on the
polyhedron. The geometry of the polyhedron seem to play a key role in de-
termining P (S) with certain hyperplanes separating different values of P (S),
the behaviour on the hyperplanes being more complicated. We prove that for
multiplicity 3, P (S) = 2 has density 1; for m = 4, P (S) = 2, 4 have positive
density with the density of 4 ≈ 0.62, density of 2 ≈ 0.38 and for multiplicity 5,
P (S) = 4, 8 are precisely the values of P that have positive densities which are
≈ 0.29, ≈ 0.71 respectively. Finally we make a conjecture for multiplicity m in
general based on collected data.

1.1 Basic Definitions

For every numerical semigroup, there exists a unique minimal set A(S) which
generates S under addition; this set is known as the atoms of S. The minimum
of A(S) is called the multiplicity and is denoted m(S); note that it is also the
minimal nonzero element of S.
For this paper, the minimal elements of S in each residue class modulo m(S)
are of particular note; this set is called the Apery Set Ap(S), and its elements
will be denoted Ai, where ī is the residue class containing it.
It is often useful to endow Ap(S) with the poset structure Ai 4 Aj ⇐⇒
Aj − Ai ∈ S. From this, we derive the Pseudo-Frobenius Numbers PF (S) =
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{A − m | A ∈ Ap(S) maximal} = {P ∈ N0 \ S | P + S ∈ {P} ∪ S}. The
largest Pseudo-Frobenius numbers is called the Frobenius Number F (S) (simply
F when the choice of S is clear); this is equivalent to the standard definition
F (S) = maxN0 \ S. All other Pseudo-Frobenius numbers will be labelled Pi
when the residue class ī modulo m is known. In general, P,Q,R will be reserved
for labelling Pseudo-Frobenius numbers. Finally, the type t(S) = |PF (S)|.

1.2 Prior Results

A semigroup S is symmetric if a ∈ S ⇐⇒ F − a 6∈ S. It is known that S is
symmetric ⇐⇒ t(S) = 1 ⇐⇒ P (S) = 1.
Similarly, a semigroup S is pseudo-symmetric if 2 | F (S) and a 6= F/2 ∈ S ⇐⇒
F − a 6∈ S (note that F/2 ∈ S would violate additive closure). It is also known
that S is pseudo-symmetric ⇒ t(S) = 2, P (S) = 2.

2 The Void

Definition 2.1 (The Void). B, the Void of a Numerical Semigroup is defined
as B := {a|a 6∈ S, F (S) − a 6∈ S}. The elements of B are known as the paired
gaps of S.

Note that the paired gaps are particularly useful elements. For instance,
since a ∈ S implies F − a 6∈ PF (S), PF (S) \ {F (S)} ⊆ B. For the purposes
of this paper, they are relevant because of their connection to good numerical
sets, as shown below:

Theorem 2.2 (TBUS Theorem). For a numerical semigroup S, the set T =
B ∪ S must satisfy A(T ) = S. Furthermore, A(T ) = S implies T ⊆ B ∪ S.

The proof of the TBUS Theorem, as well as several proofs to follow, relies
on the following lemma:

Lemma 2.3. B ⊆ B + S ⊆ B ∪ S

Proof of Lemma 2.3: The left inequality is trivial, as 0 ∈ S. For the sake
of contradiction, suppose there exist b ∈ B, s ∈ S such that b+ s 6∈ B∪S. Then
we must have F − b− s ∈ S, but that implies (F − b− s) + s = F − b ∈ S, which
is impossible. �

Proof of Theorem 2.2: Let T = B ∪ S. Firstly note that F (S) 6∈ T ,
as F (S) 6∈ S, F (S) − F (S) = 0 ∈ S. Now if a ∈ B, then F (S) − a ∈ B so
a 6∈ A(T ); thus A(T ) ⊆ T \ B = S. By Lemma 2.3, B ∪ S ⊆ (B + S) ∪ S =
(B + S) ∪ (S + S) = (B ∪ S) + S, implying S ⊆ A(T ).

Now suppose A(T ) = S. Then firstly F (S) 6∈ T as otherwise F (S) ∈ A(T ).
Next if a ∈ T \ S and a 6∈ B then F − a ∈ S. And F − a ∈ A(T ) implies
F − a + T ⊆ T ; thus F = F − a + a ∈ T , contradiction. Therefore T \ S ⊆ B
and T ⊆ B ∪ S. �
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With this established, we can now offer more concise proofs for the previously
known results on P (S):

Proposition 2.4. The numerical semigroups with P (S) = 1 are precisely the
symmetric semigroups.

Proof: If S is symmetric, then B is empty. Therefore by Theorem 2.2 if
A(T ) = S then T ⊆ B ∪ S = S, i.e. T = S. In the other direction, if S is not
symmetric, then B is non empty and B ∪ S 6= S and hence P (S) ≥ 2 �

Proposition 2.5. Pseudosymmetric semigroups have P (S) = 2.

Proof: For Pseudosymmetric semigroups, B = {F2 }. Since T ⊆ B ∪ S,

either T = S or T = S ∪ {F2 } = B ∪ S. Therefore P (S) = 2. Note that the
converse is not true. �

2.1 Determining Semigroups with a Given Void

With the void established, the natural following step is to determine its pre-
image.

Lemma 2.6. A void with Frobenius number F has an even number of elements
if F is odd, and odd if F is even. If the Frobenius number is even, F

2 is always
in the void.

For finite B ⊆ N, we say B is a self-dual set if there exists N ∈ N such
that b ∈ B ⇐⇒ N − b ∈ B.

Lemma 2.7. Every self-dual set is the void of some numerical semigroup.

Proof: Represent the complement of the void as {a1, a2, . . . an, N−an, . . . , N−
a1}. Let S be {0, N − an, N − an−1, . . . , N − a1, N + 1→}. This is a semigroup
closed under addition whose void is precisely the elements not in {a1, a2, . . . an, N−
an, . . . , N − a1} (note that F (S) = N). �

Definition 2.8. For a self-dual set B, the Diov V (B) is the set of semigroups
which have B as their void; i.e. V (B) = {S | B(S) = B}

The following examples serve to illustrate the properties of V (B) (note
that by Lemma 2.6, 2 - F − |B|):

Example 2.9. If |B| = F − 1, every number less than the Frobenius number is
in the void, so clearly the only possible semigroup is {0, F+1→}, so |V (B)| = 1.

Example 2.10. If |B| = F −3, the complement of the void is simply (a, F −a),
so the only possible semigroup is the one described in lemma 2.7, {0, F − a, F +
1→}, so |V (B)| = 1.

Example 2.11. If |B| = F − 5, |V (B)| = 1 or |V (B)| = 2.
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Proof: By default, the semigroup described in lemma 2.7 has void B.
Denoting the complement of the void as {a, b, F − b, F − a}, there is also an
additional semigroup if some combination of (a, F −b), (b, F −a), and (a, b) is in
S. Note a 6 S, because if a, b ∈ S, then a+b < F so a+b ∈ S which is impossible,
and if a, F − b ∈ S, since a < b, a+ F − b ∈ S which is also a contradiction. So
the only additional possibility is b, F − a ∈ S. Then, 2b = F − a, and in this
case, V (B) = 2.

Example 2.12. If |B| = F − 7, |V (B)| = 1, 2, 3.

Proof: If the complement of the void is {a, b, c, F − c, F − b, F − a}, the
nontrivial semigroups with void B must contain {c, F − b, F − a} or {b, F −
c, F − a}. From the same argument as the previous example, a cannot be in S,
so F−a ∈ S. Then, b and c cannot simultaneously be in S because 2b < 2c < F ,
so these are the only two possibilities.

For {c, F − b, F − a}, 2c = F − a or 2c = F − b. For {b, F − c, F − a},
2b = F − c and 3b = F − a. If both 2c = F − a and 2b = F − c and 3b = F − a,
then 2c = 3b, so if the complement of the void has form {n, 2n, 3n, 4n, 5n, 6n},
it is the void of three different semigroups. Otherwise, it has V (B) = 2 or
V (B) = 1.

Theorem 2.13. For a given F and for each possible length |B| 6= 1, 3 there is
at least one B with N = F, V (B) = 1.

Proof: If F is odd, we must have |B| = 2k, so let B = {1, 2, . . . , k, F −
k, F − k + 1, . . . F − 1}. We claim |V (B)| = 1.

If S is a semigroup with void B, then it cannot contain any elements less
than F/2. Suppose this was not the case; i.e., let m(S) < F/2. Then, F −m
must not be in S. Since F − 1 6∈ S, F −m − 1 also cannot be in S, but since
F −m − 1 6∈ B, m + 1 ∈ S. Continuing this process, we eventually find that
bF2 c ∈ S. But then, 2bF2 c = F −1 ∈ S, which is a contradiction. So |V (B)| = 1.

Similarly, if F is even we must have |B| = 2k + 1 and k > 1, so let
B = {1, 2, . . . , k, F2 , F − k, F − k + 1, . . . F − 1}. We again claim |V (B)| = 1.

Again, suppose m(S) < F
2 . Since F, F − 1 6∈ S, F − m 6∈ S and F −

m − 1 6∈ S, but then m + 1 ∈ S. Continuing, we get F
2 − 1 ∈ S. But then,

2(F2 −1) = F −2 ∈ S, which is a contradiction as F −2 ∈ B. Thus, |V (B)| = 1.
�

2.2 The Void Poset

Definition 2.14 (Void Poset). For a Numerical semigroup S, consider the poset
on B(S) with a, b ∈ B, a 4 b iff b−a ∈ S. This poset shall henceforth be referred
to as the Void Poset.

Example 2.15. The B poset of S = {0, 4, 8, 10→}, B = {2, 3, 6, 7} is

6 7

32
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And the B poset of S = 〈6, 25, 29〉 is

52

23 46

17

The void poset has many useful structural properties, as outlined below:

Recall a poset is self-dual if there exists an isomorphism φ : P → P such
that a 4 b ⇐⇒ φ(b) 4 φ(a)

Proposition 2.16. The B poset is self-dual.

Proof: If a 4 b, then F − b 4 F − a, as b− a = (F − a)− (F − b) �

This transformation will serve several purposes in the future, so we shall
name it:

Definition 2.17 (Conjugation). For a ∈ B, we define a = F (S) − a as the
conjugate of a.

Corollary 2.17.1. P is maximal ⇐⇒ P̄ is minimal

Theorem 2.18. The set of maximal elements of B poset is precisely PF (S) \
{F (S)}

Proof: Let a be a maximal element of B(S). Then, 6 ∃x ∈ B such that for
some s ∈ S, a+ s = x. So ∀s ∈ S, either a+ s ∈ S, or a+ s ∈ Gaps \B. In the
latter case, then F − a− s ∈ S, but then F − a− s+ s = F − a ∈ S which is a
contradiction, so a+ s ∈ S. By definition, then a ∈ PF (S) \ {F (S)}.

In the other direction, since we know PF (S) \ {F (S)} ⊆ B(S), we only
need to show these elements are also maximal. Let a ∈ PF (S) \ {F (S)}. For
the sake of contradiction, assume there exists some x ∈ B such that ∃s ∈ S
with a+ s = x. But a ∈ PF (S) implies a+ s ∈ S, which is a contradiction, so
a must be maximal. �

Proposition 2.19. If y covers x, then y − x ∈ A(S)

Proof: If x, y ∈ B and y − x = s1 + s2 where s1, s2 ∈ S \ {0}, then let
z = x+ s1. z ∈ (B + S) ⊆ (B ∪ S).

If z ∈ S then y = z + s2 ∈ S which is impossible. So z ∈ B, x 4 z 4 y
and z 6= x, z 6= y. Therefore y does not cover x, contradiction.

Corollary 2.19.1. If S has r atoms less than F , then each point of the B-Poset
can have at most r direct edges above it, one for each atom.

Proposition 2.20. If a ∈ A(S), x+ a 6∈ B, and x 4 y, then y + a 6∈ B.
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Proof: We are given x, y ∈ B and x + a, y − x ∈ S. It follows that
y + a = (x+ a) + (y − x) ∈ S.

Corollary 2.20.1. If x, y ∈ B, x 4 y then number of edges directly above y is
at most the number of edges above x

Proposition 2.21. Suppose a 4 x 4 b; then y = a+ b− x ∈ B with a 4 y 4 b

Proof: If y ∈ S then b = y + (x− a) ∈ S which is impossible.
If F − y ∈ S then F − y = F + x− a− b so F − a = (F − y) + (b− x) ∈ S

which is again impossible.
So y ∈ B and b− y = x− a ∈ S, y − a = b− x ∈ S so a 4 y 4 b
As it turns out, the Void Poset can be obtained from the Apery Set by first

constructing the Gap-Poset, which is the set of Gaps with x 4 y iff y − x ∈ S,
and then deleting everything below the Frobenius Number.

3 The Void Poset and Good Numerical Sets

Recall that an Order Ideal of a poset is a subposet I where x ∈ I, x 4 y implies
y ∈ I

Proposition 3.1. Let I ⊆ B, then S ⊆ A(I ∪ S) iff I is an order ideal of the
Void Poset

Proof: First, assuming I is an order ideal, if s ∈ S we want to show
s+ I ⊆ S ∪ I. Pick a ∈ I

• Case 1: if s+ a ∈ S, this works.

• Case 2: if s+ a ∈ Gap \B, F − s− a ∈ S, so F − a = F − s− a+ s ∈ S,
so a 6∈ B, which is a contradiction, so this case is not possible.

• Case 3: if s+ a ∈ B, a 4 s+ a in B, so s+ a ∈ I, so this works.

Thus, S ⊆ A(I ∪ S).
Conversely if S ⊆ A(I ∪ S) then given s ∈ S and a, a + s ∈ B, If a ∈ I

then s+ I ∈ S ∪ I, here s+ a ∈ B so s+ a ∈ I. Thus I is an order ideal. �
With this refinement of Theorem 2.2 in hand, we now have enough theory

in place to tackle the following theorem:

Theorem 3.2. For a semigroup S, t(S) = 2 implies that P (S) = 2.

Lemma 3.3. If P = max(B) and A(T ) = S then P ∈ T implies P̄ ∈ T

Proof: Since P ∈ T \ A(T ), we need x ∈ T such that P + x 6∈ T . Since
P = max(B), P + x 6∈ B, so P + x = F . �

Proof of Theorem 3.2: If t(S) = 2, |PF (S) \ {F (S)}| = 1, and so B has
a unique maximal element. Thus, B must have a unique minimal element by
2.17.1.
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In the B poset, by Proposition 3.1, if an element x is in a numerical set
T , then every element above x in the poset must also be in the numerical set.
Thus if any element of B is in T , we must have P ∈ T ; furthermore, by Lemma
3.3 P̄ ∈ T ; since this the unique minimal element, all of B lies above it and
hence T = B ∪ S. Thus, either T = S, or T = B ∪ S, so P (S) = 2. �

3.1 Self-Dual Order Ideals

We’ve seen the importance of order ideals and the self-duality of the Void Poset
previously; combining these properties yields even more powerful results.
Note: When a self-dual order ideal I is referred to in this paper, it will be
assumed that the isomorphism under which I is self-dual is the same as the
original poset.

Proposition 3.4. If I is a self-dual order ideal of the Void Poset, then A(I ∪
S) = S

Proof: Given a self dual order ideal I, we know by Proposition 3.1 that
S ⊆ A(I ∪ S). Given a ∈ I, by definition F − a ∈ I and a+ F − a 6∈ I ∪ S. So
a+ (I ∪ S) 6⊆ (I ∪ S) and a 6∈ A(I ∪ S). Hence A(I ∪ S) = S.

Proposition 3.5. If I is a self-dual order ideal, then a ∈ I, b 4 a⇒ b ∈ I

Proof: a ∈ I ⇒ ā ∈ I ⇒ b̄ ∈ I ⇒ b ∈ I �

Proposition 3.6. A self dual order ideal is determined by which Pseudo-Frobenius
numbers are contained in it.

Proof: If I1 ∩ PF (S) = I2 ∩ PF (S) then given x ∈ I1 pick a maximal
element above it x 4 a. Now a ∈ I1 ∩ PF (S) so a ∈ I2 and by lemma 3.5
x ∈ I2. So I1 ⊆ I2 and by symmetry I1 = I2 �

Definition 3.7. The Pseudo-Frobenius Graph GPF (S) is the graph with ver-
tices PF (S) \ {F} and edges PQ ⇐⇒ P +Q− F ∈ S (Note that this happens
iff P̄ 4 Q ⇐⇒ Q̄ 4 P )

Theorem 3.8. If I is a self dual order ideal then I ∩ PF (S) forms a union of
connected components of GPF (S)

Conversely if we take a union of connected components of GPF (S) and
then the order ideal generated by the conjugates of the chosen Pseudo-Frobenius
numbers is a self dual order ideal.

Proof: Say the connected components of the graph are C1 tC2 t · · · tCk,
and a subset of {1, . . . , k} as J .

First assuming I is an self dual order ideal. If a ∈ I∩PF (S), and a, b ∈ Ci
for some component of the graph, a ∈ I, and a 4 b, so b ∈ I so Ci ⊆ I ∩PF (S).

Conversely, let I be the order ideal generated by the conjugates of
⋃
i∈J

for some J . If a ∈ I, then ∃b ∈ Ci such that b 4 a, and ∃ maximal c such that
a 4 c. Then b 4 c so b and c are connected. Then, c ∈ Ci so c ∈ I, so since
c 4 a, a ∈ I. Thus, I is self dual.
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Corollary 3.8.1. P (S) ≥ 2κ, where κ is the number of connected components
of GPF (S).

3.2 General Order Ideals

Definition 3.9 (Red Triangles). Unordered triple (a, b, c)r where a, b, c ∈ B is
called a Red triangle if a+ b+ c = F .

Lemma 3.10. (a, b, c)r is a red triangle iff a+ b = c iff b+ c = a iff a+ c = b

Theorem 3.11. Let I ⊆ B, then S = A(I ∪ S) iff

• I is an order ideal of the B poset

• ∀a ∈ I either F − a ∈ I or there is a red triangle (a, b, c)r for which b ∈ I
and F − c 6∈ I

Proof: Let a ∈ I; we need to ensure a 6∈ A(I ∪ S), which happens iff
a+ (I ∪ S) 6⊆ I ∪ S. Because I is an order ideal, a+ S ⊆ I ∪ S, so we need to
ensure a+ I 6⊆ I ∪ S, which happens iff ∃b ∈ I such that a+ b 6∈ I ∪ S

Case 1: a + b ∈ Gap \ B, so F − a − b = s ∈ S i.e. b 4 F − a and hence
F − a ∈ I.

Case 2: a+b ∈ B \I, let c = F −(a+b) ∈ B then (a, b, c)r is a red triangle
and b ∈ I, F − c = a+ b 6∈ I

The converse is trivial. �

Corollary 3.11.1. If |B(S1)| = |B(S2)| and the B Poset of S2 is a refinement
of the B poset of S1 and the set of red triangles of S2 is a subset of red triangles
of S1. Then P (S2) ≤ P (S1)

(Both the properties are checked under a common identification between
the two Posets)

Definition 3.12. We say that a ∈ T satisfies a triangle (a, b, c)r if b ∈ T , c 6∈ T

We can refine the previous theorem in the following manner:

Theorem 3.13. Let I ⊆ B; then S = A(I ∪ S) iff
i) I is an order ideal of the B poset
ii) ∀P ∈ I ∩ PF (S) either F − P ∈ I or there is a red triangle (P, b, c)r

which P satisfies

Proof: Say A(I ∪ S) = T 6= S; then T is a numerical semigroup, with
S ⊂ T . It follows that T \ S is an order ideal of the Void Poset, so it must con-
tain a maximal element P . However, P ∈ I ∩ PF (S) implies either F − P ∈ I,
in which case P + I 6⊆ I, or P satisfies some (P, b, c)r, i.e. P + b = F − c 6∈ I,
so again P + I 6⊆ I. Thus P 6∈ A(I ∪ S) and we have a contradiction. �

This Theorem allows for the current algorithm we use to determine P (S)
(see Appendix A). It also allows us to henceforth ignore red triangles which do
not include Pseudo-Frobenius numbers.
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3.3 Structure among Red Triangles

Proposition 3.14. If Q ∈ PF (S) \ {F} and (Q, a, b)r is a red triangle then
x ≺ a implies x ≺ F − b

Proof: We know that Q + a = F − b. Say x = a − s, s ∈ S \ {0}; then
(F − b)− x = Q+ s ∈ S because Q is a Pseudo-Frobenius number and s 6= 0

Corollary 3.14.1. If P,Q ∈ PF (S) \ {F} and P − Q ∈ B then x ≺ P − Q
implies x 4 P

Proof: (Q,P −Q,F − P ) is a red triangle

Corollary 3.14.2. If Q ∈ PF (S) \ {F} and (Q, a, b)r is a red triangle then
b ≺ x implies a ≺ x

Proof: b ≺ x =⇒ x ≺ b =⇒ x ≺ a =⇒ a ≺ x

If (Q, a, b)r is satisfied then Q, a ∈ T , F − b 6∈ T and so x ≺ a implies x 6∈ T , so
a is a minimal element of T . Furthermore, b ≺ y =⇒ y ∈ T , so b̄ is a maximal
element of B \ T .

Corollary 3.14.3. If (a, b, c)r is a red triangle with b 4 c and we pick an
intermediate element b 4 x 4 c, then if y = b + c − x, (a, x, y)r is another red
triangle.

Lemma 3.15. If (a, b, c)r is a red triangle, x 4 a and x 64 c̄, then y = a+b−x ∈
B, b 4 y and (x, y, c)r is another red triangle.

Proof: If y ∈ S, y = a+ b−x = F − c−x = (F −x)− c which contradicts
c 64 F − x

If F − y ∈ S, F − y = F − a − b + x so F − b = (F − y) + (a − x) ∈ S
which is a contradiction.

Therefore y ∈ B, y − b = a− x ∈ S and (x, y, c)r is a red triangle. �

Notice that this theorem does not rely on the order of the triple, and thus is
true for any permutation of (a, b, c)r.

Corollary 3.15.1. If If (P, a, b)r is a red triangle, x 4 a then y = a+b−x ∈ B,
b 4 y and (P, x, y)r is another red triangle.

The next corollary is incredibly powerful, and will motivate the rest of the
section:

Corollary 3.15.2. If P is a Pseudo-Frobenius number, it has a triangle (P, a, b)r.Then
if F−Q 4 b for some Pseudo-Frobenius number Q then Q−P ∈ B and a 4 Q−P

Proof: a+ b− (F −Q) = (F − P )− (F −Q) = Q− P

Definition 3.16. Given a Pseudo-Frobenius number P , Tri(P ) = {a ∈ B|∃b ∈
B s.t (P, a, b)r is a red triangle}
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Lemma 3.17. If P ∈ PF (S) \ {F}. Then Tri(P ) = {a|∃Q ∈ PF (S){F} s.t.
Q− P ∈ B and a 4 Q− P}

Proof: Corollary 3.15.2 tells us Tri(P ) ⊆ {a|∃Q ∈ PF (S){F} s.t. Q−P ∈
B and a 4 Q− P}

If Q − P ∈ B then (P,Q − P, F − Q)r is a red triangle and by corollary
3.15.1 a 4 Q− P =⇒ a ∈ Tri(P )

Definition 3.18. If T is an order ideal of B, define Tri(T ) = {(a, b) ∈ B2 |
∃P ∈ T ∩ PF (S), P satisfies (P, a, b)r}, X1(T ) = {a ∈ B | ∃b ∈ B, (a, b) ∈
Tri(T )}, X2(T ) = {b ∈ B | ∃a ∈ B, (a, b) ∈ Tri(T )}, and Mi(T ) = {P̄ | P ∈
T ∩ PF (S)}

Lemma 3.19. If (P1, a1, b1)r and (P2, a2, b2)r are red triangles, then b2 4 a1
implies a1 = b2 or a2 4 b1

Proof: So a1 − (F − b2) ∈ S, but a1 + b2 − F = (F − P1 − b1) + (F −
Pj − a2)−F = F −P1−P2− b1− a2. Now as P1 and P2 are Pseudo-Frobenius
numbers F −a2−b1 ∈ S (unless F −P1−P2−b1−a2 = 0 i.e. a1−(F −b2) = 0).
Finally F − a2 − b1 ∈ S means a2 4 F − b1
Corollary 3.19.1. X1(T ) ∪X2(T ) ∪Mi(T ) is an anti-chain

Proof: Lemma 3.14 implies that if x, y ∈ X1(T ) then x ‖ y. On the other
hand if x, y ∈ X2(T ). Then say (P, a1, x) and (Q, a2, y) are the corresponding
triangles. Then P + a + 1 = x and Q + a2 = y. If possible assume x 6‖ y and
x 6= y. WLoG say x ≺ y i.e. y − x ∈ S. But y − x = y − P − a1. y − x 6= 0 and
P is a Pseudo-Frobenius number therefore y − a1 = (y − x) + P ∈ S. But this
contradicts corollary ??. Mi(T ) ∪X2(T ) is obviously an anti-chain. If possible
assume Mi(T )∪X1(T ) is not an anti-chain so ∃a ∈ X1(T ), F −P ∈Mi(T ) s.t.
F − P ≺ a. Say (a, b) ∈ Tri(T ) then by above F − P 4 F − b which implies
F − b ∈ T which is a contradiction.

3.4 Normalizations of Order Ideals

Definition 3.20. If I is an order ideal of B, define its Lower Normalization
Nl(I) to be the order ideal of B generated I ∩ PF (S), Mi(I) and X1(I)

Note that Mi(I) = Mi(Nl(I)), I ∩ PF (S) = Nl(I) ∩ PF (S) follow trivially
from the definition.

Lemma 3.21. Given an order ideal I of B, A(I∪S) = S implies A(Nl(I)∪S) =
S.

Moreover, Tri(I) ⊆ Tri(Nl(I)) and X1(Nl(I)) ⊆ (I ∩ PF (S)) ∪Mi(I) ∪
X1(I).

Proof: Firstly, observe that Nl(I) ⊆ I and X1(I) ⊆ Nl(I) imply Tri(I) ⊆
Tri(Nl(I)).

From theorem 3.13 it follows that A(I ∪ S) = S =⇒ A(Nl(I) ∪ S) = S.
Moreover (a, b) ∈ Tri(Nl(I)) implies ∃x ∈ (I ∩ PF (S)) ∪Mi(I) ∪X1(I)

s.t. x 4 a. And hence X1(Nl(I)) ⊆ (I ∩ PF (S)) ∪Mi(I) ∪X1(I). �
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Remark 3.22. We don’t necessarily have Tri(Nl(T )) = Tri(T ), even if we
assume max-embedding dimension

For e.g. S =< 7, 29, 16, 31, 25, 26, 34 >, T = (3, 5, 9, 10, 12, 17, 18, 19, 24),
Nl(T ) = [18, 9, 3, 10, 17, 24, 19], Tri(T ) = [[3, 5]] and Tri(Nl(T )) = [[3, 15], [3, 5]]

Definition 3.23. If T is an order ideal of B we define Nu(T ) = {x|∀y ∈
X2(T )x 64 y and (x 4 P, P ∈ PF (S) =⇒ P ∈ T )}

Lemma 3.24. A(T ∪ S) = S =⇒ A(Nu(T ) ∪ S) = S

Proof: Follows from theorem 3.13

Lemma 3.25. Nl(T ) ⊆ T ⊆ Nu(T )

Lemma 3.26. Nl(Nl(T )) = Nl(T ) and Nu(Nu(T )) = Nu(T )

Proof: It is clear that Nl(Nl(T )) = Nl(T ) because Nl(T ) ∩ PF (S) =
T ∩ PF (S), Mi(Nl(T )) = Nl(T ) and X1(T ) ⊆ X1(Nl(T ))

Similarly Nu(Nu(T )) = Nu(T ) because Nu(T ) ∩ PF (S) = T ∩ PF (S)
and X1(T ) ⊆ X1(Nu(T ))

Definition 3.27. An order ideal T of B is called lower Normalised if Nl(T ) =
T . It is called upper Normalised if Nu(T ) = T .

Theorem 3.28. If A(T1∪S) = S and Nl(T1) ⊆ T ⊆ Nu(T1) then A(T∪S) = S

Proof: We know that Nl(T1) ∩ PF (S) = T ∩ PF (S) = Nu(T1) ∩ PF (S).
Now given P ∈ T ∩ PF (S)

• If P ∈ T1 then P ∈ Nl(T1) and P ∈ T

• If P 6∈ T1 then by theorem 3.13 there is a red triangle (P, a, b) s.t. a ∈ T1
and b 6∈ T1. Now a ∈ Nl(T1) and hence a ∈ T . Also b 6∈ Nu(T1) so b 6∈ T

Corollary 3.28.1. If T, T1 are as in the theorem then T∩PF (S) = T1∩PF (S),
Mi(T1) ⊆Mi(T ) and Tri(T1) ⊆ Tri(T )

3.5 Differences of Pseudo-Frobenius Numbers

Remark 3.29. Our study of Numerical Semigroups of type 3 suggests that
differences of Pseudo-Frobenius numbers play a key role in determining P (S)

Lemma 3.30. If P,Q ∈ PF (S) \ {F}, P − Q ∈ B, moreover ∀R ∈ PF (S) \
{P, F}R − Q 6∈ B and ∃R1 ∈ PF (S) \ {F} s.t. P − Q 4 R1. Moreover if we
assume that every good numerical set that has R1 also has F − R1. Then Q
cannot satisfy a red triangle.

Proof: Say Q satisfies a red triangle (Q, a, b) then by corollary 3.15.2
a, b 4 P − Q. a ∈ T =⇒ P − Q ∈ T =⇒ R1 ∈ T =⇒ F − R1 ∈ T =⇒
F − (P −Q) ∈ T =⇒ F − b ∈ T . So the triangle cannot be satisfied.

Definition 3.31. A numerical semigroup is called P-minimal if P (S) = 2k.
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Lemma 3.32. If P,Q ∈ PF (S) \ {F}, P −Q ∈ B, and ∀R ∈ PF (S) \ {Q,F}
P −Q 64 R then S is not P-minimal

Proof: Q is the only maximal element above P − Q, hence F − Q is the
only minimal element below F − (P − Q). Let Y = {x|x 4 F − (P − Q)},
T ′ = B \ Y . Then T ′ is an order ideal, all Pseudo-Frobenius numbers except
Q have their conjugates in T ′. Moreover (Q,F − P, P − Q) is a red triangle,
F − P ∈ T ′ and P −Q 6∈ T ′, thus the triangle is satisfied and by theorem 3.13
A(T ′ ∪ S) = S

Finally T ′ is not self dual since Q ∈ T ′, F −Q 6∈ T ′ (Q = F − (P −Q) iff
F = P which is impossible)

Theorem 3.33. Let PF (S) = P1 < P2 < · · · < Pt−1 < F , If for exactly one
pair i < j Pj − Pi ∈ B then:

• If 6 ∃k 6= i s.t. Pj − Pi 4 Pk then P (S) > 2k, S then S is not P-minimal

• If ∃k 6= i s.t. Pj − Pi 4 Pk then P (S) = 2k and S is P-minimal

Proof: The first case follows from lemma 3.32
In the second case Pi is the only Pseudo-Frobenius number with a red

triangle by lemma 3.15.2. Moreover Pk does not have a red triangle and hence
by lemma 3.30 Q does not satisfy a red triangle either. Therefore P (S) = 2k

Definition 3.34 (DPF-Poset). DPF -Poset is the poset whose set of vertices
is (PF (S) ∪ {P −Q|P,Q ∈ PF (S), P −Q ∈ B}) \ {F}. The poset structure is
induced from the B-Poset

Definition 3.35. DPF (S) = {P −Q|P,Q ∈ PF (S) \ {F}, P −Q ∈ B}

Lemma 3.36. Say P ∈ PF (S) \ {F}, A ⊆ PF (S) \ {P, F}, A 6= ∅ If Q ∈
A =⇒ P − Q ∈ B and R 6∈ A,Q ∈ A =⇒ P − Q 64 R then S is not
P-minimal.

Proof: Let T = {x|∃Q ∈ A,P −Q 4 x}
If Q ∈ T ∩ PF (S) then ∃Q′ ∈ A s.t. P − Q′ 4 Q. (Q,P − Q,F − P ) is

a red triangle, P − Q ∈ T and P 6∈ T . Hence Q satisfies a red triangle and by
theorem 3.13 A(T ∪ S) = S

We prove that T is not self dual. First notice that P − Q s.t. Q ∈ A
are the minimal elements of T (P − Q1 4 P − Q2 =⇒ Q2 4 Q1), so it
has |A| minimal elements. If it is self dual then it has |A| maximal elements
and hence A ⊆ T . Now let Q be the smallest (according to usual order in Z)
element of A, F − Q ∈ T =⇒ F − Q = P − Q′ for some Q′ ∈ A. Therefore
Q = (F − P ) +Q′ > Q′ which is a contradiction.

Definition 3.37. If Q ∈ PF (S), Q 6= F then GPFQ(S) is the graph obtained
from GPF (S) by deleting all edges involving Q

Lemma 3.38. If P1 + P2 = F +Q, Q 6= F
2 and P1, P2 are in different compo-

nents of GPFQ(S) then S is not P-minimal
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Proof: Let Z be the order ideal generated by the conjugates of Pseudo-
Frobenius numbers in the component of P2 in GPFQ(S). Note P1 6∈ Z. Let
T = Z ∪ {Q}, T is also an order ideal. R ∈ T ∩ PF (S), R 6= Q implies
F −R1 4 R for some R1 in connected component of P2 of GPFQ(S), therefore
R is in the same component and F−R ∈ T . (Q,P1−Q,F−P1) is a red triangle,
P1 − Q = F − P2 ∈ T also P1 6∈ T and hence A(T ∪ S) = S by theorem 3.13.
Moreover T is not self dual because Q ∈ T , F − Q 6∈ Z and F − Q 6= Q. And
hence S is not P-minimal.

Lemma 3.39. Q ∈ PF (S) \ {F}, Let C = {P |P −Q ∈ DPF (S)}. If ∀P ∈ C
F − (P −Q) 6∈ PF (S) and ∀P ∈ C ∃R ∈ PF (S) \ {F} s.t. P −Q 4 R and R
cannot satisfy a triangle. We slso assume that each ∀P ∈ C P cannot satisfy a
triangle. Then Q cannot satisfy a triangle either.

Proof: Say (Q, a, b) is a Red triangle, say F − P1 4 b and F − P2 4 a.
Then by corollary 3.15.2 a 4 P1 − Q and b 4 P2 − Q. Also say P1 − Q 4 R1,
P2 − Q 4 R2 s.t. R1 and R2 cannot satisfy red triangles. Next we know that
F − P2 ≺ P1 −Q (They are not equal) so by lemma 3.15 F − P2 4 P1

Now a ∈ T =⇒ P1 − Q ∈ T =⇒ R1 ∈ T =⇒ F − R1 ∈ T =⇒ P2 ∈
T =⇒ F −P2 ∈ T =⇒ P1 ∈ T =⇒ F −P1 ∈ T =⇒ R2 ∈ T =⇒ F −R2 ∈
T =⇒ F − (P2 −Q) ∈ T =⇒ F − b ∈ T

Lemma 3.40. Q ∈ PF (S) \ {F}, Let C = {P |P −Q ∈ DPF (S)}. If ∀P ∈ C
∃R ∈ PF (S)\{F,Q} s.t. P −Q 4 R And ∀P1, P2 ∈ C (if P1 +P2 = F +Q then
P1, P2 belong to the same component of GPFQ(S)). Moreover if no Pseudo-
Frobenius number other than Q can satisfy a triangle.

Then Q cannot satisfy a triangle.

Proof: Say (Q, a, b) is a Red triangle, say F − P1 4 b and F − P2 4 a.
Then by corollary 3.15.2 a 4 P1 − Q and b 4 P2 − Q. Also say P1 − Q 4 R1,
P2 −Q 4 R2 s.t. R1 6= Q and R2 6= Q so they cannot satisfy red triangles.

First we assume F +Q 6= P1 +P2 so we know that F −P2 ≺ P1−Q (They
are not equal) so by lemma 3.15 F −P2 4 P1. Now a ∈ T =⇒ P1−Q ∈ T =⇒
R1 ∈ T =⇒ F −R1 ∈ T =⇒ P2 ∈ T =⇒ F −P2 ∈ T =⇒ P1 ∈ T =⇒ F −
P1 ∈ T =⇒ R2 ∈ T =⇒ F −R2 ∈ T =⇒ F − (P2 −Q) ∈ T =⇒ F − b ∈ T .
So the triangle cannot work.

Next if F+Q = P1+P2 then a 4 P1−Q = F−P2 so a = P1−Q = F−P2,
similarly b = P2 − Q = F − P1. We know that there is a path in GPFQ(S)
from P2 to P1: P2, Q1, Q2, . . . , Qn, P1. Now a = F − P2 ∈ T =⇒ Q1 ∈ T =⇒
F − Q1 ∈ T =⇒ Q2 ∈ T · · · =⇒ Qn ∈ T =⇒ F − Qn ∈ T =⇒ P1 ∈ T ,
P1 = F − b so the triangle cannot work.

Theorem 3.41. Say S has type 4, PF (S) = R < Q < P < F , GPF (S) has k
connected components. Then S is P-minimal iff all of the following holds:

• not both P −Q,P −R are in B

• If P −Q ∈ B then P −Q 4 R
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• If P −R ∈ B then P −R 4 Q

• If Q−R ∈ B then Q−R 4 P

The only exception being if F − P = Q − R, F 6= 2R in which case S is not
P-minimal

Proof:
Case 0: None of P −Q, P −R, Q−R are in B: Then P (S) = 2k by lemma

??
Case 1: Exactly one of them is in B
This case has been done in Theorem 3.33

Case 2: P −Q and P −R are in B

• P −Q 64 P , P −R 64 P , so A = {Q,R} in lemma 3.36 P (S) > 2k

Case 3: P − Q,Q − R are in B: By lemma 3.15.2 F − P 4 P − Q and
F −Q 4 Q−R

• P −Q 64 R or Q−R 64 P
then by lemma 3.32 P (S) > 2k

• P −Q 4 R and Q−R 4 P
By lemma 3.30 R cannot satisfy a red triangle (as P cannot)

And by a further application of lemma 3.30 Q cannot satisfy a red triangle
either Therefore P (S) = 2k

Case 4: P−R, Q−R are in B: Notice that F−Q 4 P−R iff F−P 4 Q−R.
P −R,Q−R cannot be above F −R by lemma 3.15.2

• Q−R 64 P or P −R 64 Q
Then by Lemma 6.2 P (S) > 2k

• F = 2R

Then R = F − R and every nemerical set is self dual, P (S) = 2k (Note
that F = 2R =⇒ Q − R 64 R =⇒ Q − R 4 P , similarly F = 2R =⇒
P −R 4 Q)

• P −R 4 Q and Q−R 4 P , F 6= 2R

Note that R is the only Pseudo-Frobenius number with a triangle by corol-
lary 3.15.2.

If F +R 6= P +Q then by lemma 3.39 S is P-minimal

If F+R = P+Q then P−(F−Q) = R 6∈ S hence GPFR(S) is completely
disconnected and hence by lemma 3.38 S is not P-minimal (R 6= F

2 )

Case 5: P − Q,P − R,Q − R are all in B Let A = {Q,R}, P − R 64 P
and P −Q 64 P so by lemma 3.36 P (S) > 2k
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Theorem 3.42. If the graph GPF (S) is completely disconnected then S is not
P-minimal iff ∃R1, R2, R3 ∈ PF (S) \ {F} s.t. F +R3 = R1 +R2 with R1 6= R2

R3 6= F
2

Proof: First assuming no such R1, R2, R3 exist. Say the Pseudo-Frobenius
numbers are F > P1 > P2 > · · · > Pn. We proceed by strong induction to show
that no Pi can satisfy a red triangle. The base case is clear, P1 cannot satisfy a
red triangle.

If P1, . . . Pm−1 cannot satisfy a red triangle. If Pm = F
2 then F−Pm = Pm

so it doesn’t need a triangle, so now assume Pm 6= F
2 . Say (Pm, a, b) is a red

triangle. a = F − Pm − b < F − Pm, so F − Pi 4 a =⇒ i ≤ m − 1, similarly
say F − Pj 4 b then j ≤ m − 1. If possible assume i 6= j. Now by corollary
3.15.2 b 4 Pi − Pm and a 4 Pj − Pm. So F − Pi ≺ Pj − Pm (F − Pi 6= Pj − Pm
otherwise F + Pm = Pi + Pj) so by lemma 3.14 F − Pi 4 Pj . Now GPF (S)
being completely disconnected implies i = j, so F − Pi 4 a, b. Also GPF (S)
being completely disconnected implies a, b 4 Pi. Finally a ∈ T =⇒ Pi ∈
T =⇒ F − Pi ∈ T =⇒ F − b ∈ T (here we used F − Pi 4 F − b which is
obtained from conjugation from b 4 Pi). So the triangle cannot work. And by
strong induction S is P-minimal.

Next if F + R3 = R1 + R2 with R1 6= R2 and R3 6= F
2 . Let Z be the

order ideal generated by F − R1 and T = Z ∪ {R3}. GPF (S) is completely
disconnected so x ∈ Z =⇒ x 4 R1 =⇒ F − R1 4 F − x =⇒ F − x ∈ Z.
(R3, F − R1, F − R2) is a red triangle, F − R1 ∈ T , R2 6∈ T (as R2 6= R1 and
R2 = R3 =⇒ F = R1 which is impossible).

Therefore A(T ∪ S) = S, T is not self dual because F − R3 6= R3 =⇒
F −R3 6∈ T but R3 ∈ T . So S is not P-minimal.

Lemma 3.43. If ∃P ∈ PF (S) \ {F}, s.t. ∀P1, P2 ∈ B, (P1 − P2 ∈ B =⇒
P1 = P ) Then S is not P-minimal iff ∃A ⊆ PF (S) \ {F} s.t. A 6= ∅ ∀Q ∈ A
P −Q ∈ B and ∀Q ∈ A P −Q 4 R =⇒ R ∈ A

Proof: If such an A exists then by lemma 3.36 S is not P-minimal.
Conversely if no such A exists, say C = {Q|P−Q ∈ B}. C does not satisfy

the condition of A, so ∃Q1 ∈ C s.t. P − Q1 4 R for some R 6∈ C. It follows
that R does not have a red triangle and hence by lemma 3.30 Q1 cannot satisfy
a red triangle either. Now C1 = C \{Q1} does not satisfy the condition of A, so
∃Q2 ∈ C1, P −Q2 4 R2, R2 6∈ C1 and R2 6∈ C1 implies R2 cannot satisfy a red
triangle, so by lemma 3.30 Q2 does not satisfy a Red triangle. Continuing this
way no Pseudo-Frobenius number satisfies a triangle and hence S is P-minimal.

Lemma 3.44. If ∃A ⊆ PDF (S) s.t. P − Q ∈ A =⇒ 6 ∃R s.t. R − P ∈ A.
Define C = {Q|∃P, P −Q ∈ A}. If we further have that ∀(P −Q) ∈ A P −Q 4
R =⇒ R ∈ C then S is not P-minimal.

Proof: Let T be the order ideal generated by A, then we know that T ∩
PF (S) ⊆ C so given Q ∈ T ∩PF (S) ∃P s.t. P−Q ∈ A, hence (Q,P−Q,F−P )
is a red triangle, moreover P 6∈ C so P 6∈ T . Hence A(T ∪ S) = S
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Conjecture 3.45. The DPF - Poset determines whether or not S is P-minimal.
Here we assume not just the poset structure, but the knowledge of which elements
are differences of which Pseudo-Frobenius numbers.

Conjecture 3.46. The stronger conjecture is that if we look at the containment
poset of Non-Self-Dual Numerical sets that have the given Numerical Set as
their associated semigroup. Then the minimal Numerical Sets in that poset are
generated by elements of DPF (S)

Remark 3.47. The DPF -Poset cannot determine P (S) in general, this is be-
cause for example in type 4 P (S) can take arbitrary large values, but there are
only finitely many DPF -Posets possible.

Remark 3.48. A common occurrence in Numerical Semigroups is that the
only red triangles involving a Pseudo-Frobenius number that work are of the
form (Q,P −Q,F − P ). However this is not always the case for e.g. consider
S =< 17, 38, 40, 65, 73, 81 >, T = {x|25 4 x}.

Moreover all examples I could find of numerical semigroups in which tri-
angles not of this form are satisfied have P1, P2, P3, P4 ∈ PF (S){F} s.t. P1 −
P2, P3 − P4 ∈ B(S) and P1 − P2 4 P3 − P4 (which is quite rare)

Definition 3.49. If A(T ∪ S) = S then we define DP (T ) = {P − Q|P,Q ∈
PF (S) \ {F}, P −Q ∈ B,Q ∈ T,Q 6∈ T ∃ red triangle (Q, a, b), a 4 P −Q, a ∈
T, b 6∈ T}

Conjecture 3.50. If ∀P1, P2, Q ∈ PF (S)\{F} P1−Q,P2−Q ∈ DPF (S) =⇒
P1 = P2. Then given T s.t. A(T ∪ S) = S Let T ′ be the order ideal generated
by DP (T ) then A(T ′ ∪ S) = S

4 Containment Poset

Definition 4.1. If I ⊆ B, I = {x | x ∈ I}. The adjoint of I is defined as
I∗ = B \ I

Lemma 4.2. If I is an order ideal then I∗ is also an order ideal

Proof: If x 4 y, x ∈ I∗ then x 6∈ I, i.e. x 6∈ I. y 4 x so y 6∈ I i.e. y 6∈ I
i.e. y ∈ I∗

Theorem 4.3. A(I∗ ∪ S) = A(I ∪ S), I1 ⊆ I2 ⇐⇒ I∗2 ⊆ I∗1 and (I∗)∗ = T

Proof: a ∈ A(I∗∪S) iff ∀x ∈ I∗∪S a+x ∈ I∗∪S iff ∀y 6∈ I∪S a+ y 6∈ I∪S
iff ∀y ∈ I∗ ∪ S y + a ∈ I∗ ∪ S

And hence A(I∗ ∪ S) = A(I ∪ S).
I1 ⊆ I2 iff I1 ⊆ I2 iff B \ I2 ⊆ B \ I1 iff I∗2 ⊆ I∗1
Finally a ∈ I iff a ∈ I iff a 6∈ I∗ iff a 6∈ I∗ iff a ∈ (I∗)∗. �

Under the adjoint, by the above theorem, we have that the containment poset of
numerical sets satisfying A(T ∪ S) = S, ordered by inclusion, is self dual under
the adjoint operation.
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Theorem 4.4. If I ∪ S is a Numerical Semigroup then I∗ = I

Proof: F (I ∪ S) = F (I) = F so a ∈ I =⇒ F − a 6∈ I =⇒ a ∈ I∗

Theorem 4.5. If ∀P ∈ PF (S)\{F}, for every triangle (P, a, b)r, a, b are above
conjugates of Pseudo-Frobenius numbers in the connected component of P in
GPF (S), then for any numerical set T satisfying A(T ) = S, A((T ∩I)∪S) = S
for every self-dual order ideal I.

This shows that the containment poset is the product of smaller posets
consisting of good numerical semigroups inside minimal self dual order ideals.

Proof: Follows from Theorem 3.13

Theorem 4.6. If F is even then P (S) is even

Proof: F
2 ∈ T ⇐⇒

F
2 6∈ T

∗ therefore T 6= T ∗

5 P (S) for Numerical Semigroups with fixed Frobe-
nius Number

Theorem 5.1. S0 is a fixed numerical semigroup∑
S0⊆S,F (S)=F (S0)

P (S) = # order ideals of B(S0)

Proof: If T ′ is an order ideal of B(S0) then A(T ′ ∪ S0) is a numerical
semigroup that contains S0 and has the same Frobenius number as S0.

Conversely, if S0 ⊆ S and F (S) = F (S0), A(T ) = S. Then we must have
T ⊆ S0 ∪ B(S0) because otherwise ∃a ∈ T s.t. F − a ∈ S0 now F − a ∈ S0 ⊆
S = A(T ) so (F − a) + T ⊆ T which implies F = (F − a) + a ∈ T which is
impossible.

It follows that Numerical Sets corresponding to Numerical semigroups
containing S0 and having the same Frobenius number as S0 are precisely the
order ideals of B(S0) union with S0 and the result follows.

Theorem 5.2. Given m, F s.t. m 6 |F , say F = mq + r with 1 ≤ r ≤ m − 1∑
m∈S,F (S)=F P (S) = (q + 2)r−1(q + 1)m−r

Proof: Let S0 =< m,F + 1, F + 2, . . . , F +m > (Note F (S0) = F ).
Next if m ∈ S, F (S) = F then S0 ⊆ S. And conversely if S0 ⊆ S and

F (S) = F then m ∈ S
Now the only atom of S0 less than F is m, so the B-poset is very simple, it

is the disjoint union of r−1 chains with q+1 points each and m−r chains with
q points each. And hence the number of order ideals is (q + 2)r−1(q + 1)m−r

Theorem 5.3. If S1 = S ∪ {Q} B-Poset of S1 is obtained from the B-Poset of
S as follows:

Remove Q,F − Q from the Void, for each red triangle (Q, a, b) add new
relation a 4 F − b and b 4 F − a.
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Proof: It is clear that B(S1) = B(S)\{Q,F −Q} moreover if x, y ∈ B(S1)
and y − x ∈ S then y − x ∈ S1. New relations arise when x, y ∈ B(S1) and
y − x = Q (as Q is the only element of S1 that is not an element of S). Note
that y − x = Q iff Q+ x+ (F − y) = F

Remark 5.4. This gives a recursive method of computing P (S) for each Nu-
merical semigroup of a fixed Frobenius number. We start with the semigroup
{0, F + 1 →}. Semigroups above existing semigroup S are S ∪ {P} for P ∈
PF (S) \ {F} s.t. 2P ∈ S. The void poset and red triangles of S ∪ {P} are
obtained as stated earlier.

Now we start with symmetric or pseudo-symmetric semigroups at the top,
they have P (S) = 1 or2. We then move downwards, for each semigroup S we
calculate the number of order ideals in it’s void poset and and subtract the P (S′)
for all S′ that contain S (and have the same Frobenius number) to get P (S)

Remark 5.5. We had guessed based on small F that If P (S) = 2, S is not
Pseudo-Symmetric. Then S has a Pseudo-Frobenius number Q for which 2Q ∈
S and P (S ∪ {Q}) ∈ {1, 2}
It is False: < 4, 9, 19 > only has Numerical Semigroups with P (S) = 3 directly
above it
< 7, 10, 18 > only has a Numerical Semigroup with P (S) = 3 directly above it
< 10, 11, 18, 23 > only has a Numerical Semigroup with P (S) = 6 directly above
it

6 Characterising all Good Numerical Sets when
there is exactly one PF difference

This section was written quite early and checks red triangles for all points not
just pseudofrobenuis numbers

Lemma 6.1. If P,Q ∈ PF (S) \ {F}, P − Q ∈ B, F − P 4 P − Q and
∀R ∈ PF (S) \ {Q,F} P −Q 64 R then

Consider the graph GPF (S) and delete all edges involving Q, the compo-
nent of Q will break into several components

Say the graph now has k + n + 1 components (n ≥ 0)(The point Q is a
new component). Construct a set X by not including Q, not including the new
component of P and randomly choosing whether or not the remaining k+ n− 1
components are included.

Let I1 be the order ideal generated by the conjugates of elements of X.
Let C be the collection of vertices originally connected to Q
Let B2 = {x|F −Q 4 x, x 64 P, x 64 Q}, Construct I to be an order ideal

of B2 that contains X ∩ C. (I = X ∩ C works).
Let B1 = {x|x 4 Q and x 64 P} (Note P − Q ∈ B1 and B1 is an order

ideal)
Finally let Z be an order ideal of B1 containing P − Q, for e.g. Z =

{x|P −Q 4 x}. Say there are s such order ideals (s ≥ 1)
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Finally letting T1 = (I ∪ I1 ∪ Z) A(T1 ∪ S) = S (This gives ≥ 2k+n−1s
numerical sets, all of which are non self-dual as Q ∈ T1, F −Q 6∈ T1)

Proof: First we need T1 to be an order ideal; this is true because I1, I and
Z are order ideals. (Check that I, Z are actually order ideals of B)

Note that P 6∈ T1
If x ∈ I1 then ∃R ∈ X (so R 6= P,Q) s.t. F − R 4 x. x ∈ T1 so x 64 P ,

now if x 4 Q then x ∈ B1, we can therefore assume x 64 Q (We do the case of
B1 later). Say x 4 R1, R1 6= P,Q,F −R 4 R1 implies that R and R1 are in the
same new connected component and hence R1 ∈ X and F − R1 4 F − x ∈ I
and hence F − x ∈ T1

Next if x ∈ I then ∃R ∈ X ∩ C (R cannot be Q) s.t. F − Q 4 x 4 R,
hence F −R 4 F − x ∈ I and hence F − x ∈ T1

Lastly, if x ∈ B1; (Q,F −P, P −Q) is a red triangle, x ∈ B1 implies x 4 Q
and x 64 P =⇒ x 64 F − (P −Q) so by lemma 3.15 (x, y, P −Q) is also a red
triangle where y = Q+ F − P − x.

Now P −Q ∈ T1, this is because P −Q ∈ Z.
Finally we need F − y 6∈ T1; F − y = P − Q + x implies P − (F − y) =

Q− x ∈ S and hence F − y 4 P , F − y 6∈ T1
Therefore A(T1 ∪ S) = S
T1 is not self-dual because P −Q ∈ Z and P −Q 4 Q so Q ∈ T . F −P 4

P −Q 4 Q so F −Q 4 P and hence F −Q 6∈ T1
Corollary 6.1.1. If P −Q = F − P then the number of such T1 is 2k−1

Proof: Notice that in this case the connected component of Q in GPF (S)
is {P,Q}. So there are k− 1 ways of choosing X and hence I1 has 2k−1 choices.
Also B2 = ∅ and hence I = ∅. Lastly B1 is the order ideal generated by P −Q
so Z must be the order ideal generated by P −Q

Lemma 6.2. If P,Q ∈ PF (S)\{F}, P −Q ∈ B, and ∀R ∈ PF (S)\{Q,F}P −
Q 64 R then

Consider the graph GPF (S) and delete all edges involving Q, so the com-
ponent of Q will break into several components.

Say the graph now has k+ n+ 1 components (n ≥ 0) (Note that the point
Q is a separate component). Construct a set X by not including Q, including
the new component of P and randomly choosing whether or not the remaining
k + n− 1 components are included.

Let C be the collection of vertices originally connected to Q
Let I1 be the order ideal generated by the conjugates of elements of X.

(Note F − P ∈ I1) (also note F − (P −Q) 6∈ I1)
Let B2 = {F − Q 4 x, x 64 F − (P − Q), x 64 Q}. Construct I to be an

order ideal of B2 that contains X ∩ C (for e.g. I = X ∩ C works)
Let B1 = {x|x 4 Q, x 64 P, x 64 F − (P −Q)}. Construct Z to be an order

ideal of B1 containing Q. Say there are s2 such ideals (s2 ≥ 1)
Finally letting T2 = (I ∪ I1 ∪ Z) A(T2 ∪ S) = S (This gives ≥ 2k+n−1s2

numerical sets) (Also note that each T2 is not self dual because Q ∈ T2, F −Q 6∈
T2)
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Proof: First we observe that T2 is an order ideal because I, I1, Z are order
ideals. (Check that I and Z are actually order ideals of B)

Note that F − (P −Q) 6∈ T2; The only minimal element below F − (P −Q)
is F −Q so F − (P −Q) 6∈ I1. Clearly F − (P −Q) 6∈ I, Z

If x ∈ I1, say R ∈ X (so R 6= 0), F − R 4 x. Now if x 4 R1 for some
R1 6= Q then R,R1 are in the same component of the new graph, F−R1 4 F−x
so F − x ∈ I1 and hence F − x ∈ T2. Now assume that Q is the only Pseudo-
Frobenius number above x this would mean that x ∈ B1 which is a case we
consider later.

Next if x ∈ I so F − Q 4 x, say x 4 R (so R 6= Q). This means that
R ∈ X and F −R 4 F − x so F − x ∈ I1

Now consider an x ∈ B1. (Q,P − Q,F − P ) is a red triangle, x 4 Q
and x 64 F − (F − P ). So by lemma 3.15 (x, y, F − P ) is a red triangle, where
y = Q+P−Q−x = P−x. F−(P−Q)−(F−y) = y−P+Q = P−x−P+Q =
Q− x ∈ S so F − y 4 F − (P −Q) so F − y 6∈ T2 and the triangle is satisfied.

This ensures A(T2 ∪ S) = S
Moreover T2 is not self dual because Q ∈ Z, F − Q 4 F − (P − Q) so

F −Q 6∈ T2

Corollary 6.2.1. If P − Q = F − P then there are exactly 2k−1 such T2,
moreover these are the same sets as the ones in corollary 6.1.1

Proof: Notice that in this case the connected component of Q in GPF (S)
is {P,Q}. So there are k− 1 ways of choosing X and hence I1 has 2k−1 choices.
We know that P ∈ X so I contains the order ideal of F − P = P − Q. Also
B2 = ∅ and hence I = ∅. Lastly B1 is the order ideal generated by P−Q = F−P
so Z ⊆ I1. Thus T = I1, notice that these were the same sets in corollary 6.1.1

Theorem 6.3. Let PF (S) = P1 < P2 < · · · < Pt−1 < F , If for exactly one
pair i < j Pj − Pi ∈ B then:

• If 6 ∃k 6= i s.t. Pj − Pi 4 Pk then P (S) > 2k and all numerical sets are
given by lemmas 6.1 and 6.2 (and the self dual ones)

Moreover If Pj − Pi = F − Pj then P (S) = 3 × 2k−1, the numerical sets
from lemmas 6.1 and 6.2 are the same.

And if Pj − Pi 6= F − Pj then P (S) ≥ 2k + 2k+n, the numerical sets
obtained from lemmas 6.1 and 6.2 are distinct

• If ∃k 6= i s.t. Pj − Pi 4 Pk then P (S) = 2k

Proof: Rename Pj = P , Pi = Q. Note that by corollary 3.15.2 Q is the
only Pseudo-Frobenius number that can have a triangle, also F − P 4 P −Q,
it is the only minimal element below P −Q.

In the first case Q has the triangle (Q,P − Q,F − P ). We show that it
cannot satisfy any other triangle, if (Q, a, b) is a triangle then F − P ≺ a, b ≺
P − Q by corollary 3.15.2. a, b 6= P − Q so by corollary 3.14.1 a, b 4 P .
a ∈ T =⇒ P ∈ T , since P does not have a triangle F − P ∈ T . (Q, a, b) is a
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red triangle, F − P ≺ a so by corollary 3.14 F − P 4 F − b so F − b ∈ T and
the triangle doesn’t work.

Therefore the only triangle that can work is (Q,P −Q,F −P ). Remember
that it can work in two ways:

• First way is if P −Q ∈ T and P 6∈ T .

In this case define Z = {x|x ∈ T1, x 4 Q} (Note x ∈ Z =⇒ x 64 P ). Z is
an order ideal of B1 = {x|x 4 Q, x 64 P} and P −Q ∈ Z.

Let I = {x|x ∈ T, F − Q 4 x, x 64 Q}, it is clear that I is an order ideal
of B2 = {x|F −Q 4 x, x 64 P, x 64 Q}.
Let X = T ∩ (PF (S) \ {Q}). If R ∈ X then R does not have a triangle so
F − R ∈ T , let I1 be the order ideal generated by conjugates of elements
of X, so I1 ⊆ T .

Now if x ∈ T \ (I ∪ I1 ∪ Z) then F − R1 4 x with R1 6∈ X, R1 6= Q
(together meaning R1 6∈ T ) and x 64 Q, so say x 4 R (R 6= Q). So R ∈ T ,
R does not have a triangle so F −R ∈ T . F −R1 4 R =⇒ F −R 4 R1

so R1 ∈ T which is a contradiction. Therefore T = (I ∪ I1 ∪ Z)

Next if R ∈ X is connected to R1 6= Q in GPF (S) then F − R 4 R1.
R ∈ T , R does not have a red triangle so F − R ∈ T and hence R1 ∈ T .
This means that if a Pseudo-Frobenius number is in T then all Pseudo-
Frobenius numbers connected to it in the new graph are in T . P 6∈ T , so
the new component of P cannot be in X.

We conclude that T is given by lemma 6.1

• Second way is F − P ∈ T and F − (P −Q) 6∈ T
Let Z = {x|x ∈ T, x 4 Q}. x ∈ Z =⇒ x 64 F − (P −Q) =⇒ x 64 P . It
follows that Z is an order ideal of B1 = {x 4 Q, x 64 P, x 64 F − (P −Q)}.
Let X = ({P} ∪ (T ∩ PF (S))) \ {Q}, if R ∈ X{P} then R does not have
a red triangle and hence F − R ∈ T , we also have F − P ∈ T . Let I1 be
the order ideal generated by conjugates of elements of X, it follows that
I1 ⊆ T
Let I = {x|x ∈ T, F − Q 4 x, x 64 Q}, it is clearly an order ideal of
B2 = {F −Q 4 x, x 64 F − (P −Q), x 64 Q}
Now if x ∈ T \(I∪I1∪Z) then F−R1 4 x with R1 6∈ X, R1 6= Q (together
meaning R1 6∈ T ∪ {P}) and x 64 Q, so say x 4 R (R 6= Q). So R ∈ T , R
does not have a triangle so F −R ∈ T . F −R1 4 R =⇒ F −R 4 R1 so
R1 ∈ T which is a contradiction. Therefore T = (I ∪ I1 ∪ Z)

Next if R ∈ X is connected to R1 6= Q in GPF (S) then F − R 4 R1.
R ∈ T , R does not have a red triangle so F − R ∈ T and hence R1 ∈ T .
This means that if a Pseudo-Frobenius number is in X then all Pseudo-
Frobenius numbers connected to it in the new graph are in T . And P ∈ S
Therefore T is given by lemma 6.2
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Now if P − Q = F − P , then by corollaries 6.1.1 and 6.2.1 we know that
both lemmas give the same numerical 2k−1 sets. So total number of sets is
2k + 2k−1 = 3× 2k−1

And if P − Q 6= F − P , then the ones from lemma 6.1 don’t have P in
them, the ones from 6.2 have P (proved next)

(Q,P −Q,F − P ) is a red triangle F − P ≺ P −Q (F − P 6= P −Q) so
by lemma 3.14 F − P 4 P and hence P ∈ T

For the second case denote such a Pk = R. We have F − P 4 P −Q 4 R
and hence F −R 4 F − (P −Q) 4 P . If (Q, a, b) is a triangle then a, b 4 P −Q
by lemma 3.15.2. So if the triangle is satisfied then P − Q ∈ T , so R ∈ T , so
F − R ∈ T so F − (P − Q) ∈ T so F − a, F − b ∈ T . And hence the triangle
cannot be satisfied. Therefore P (S) = 2k �

7 Arf Semigroups

Lemma 7.1. S is an Arf Numerical semigroup of multiplicity m. If x ∈ B \
PF (S) then x+m ∈ B

Proof: x 6∈ PF (S) so ∃s1 ∈ S s.t. s1 6= 0 x+s1 6∈ S. Now if x+m ∈ S then
m ≤ s1 and m ≤ x+m so x+s1 = s1+(x+m)−m ∈ S (because S is Arf) which
is a contradiction. Next if F − (x+m) ∈ S then F −x = (F − (x+m)) +m ∈ S
which contradicts x ∈ B. Therefore x+m ∈ B

Corollary 7.1.1. If S is an Arf numerical semigroup then. The width of the
B-Poset is t − 1, where t is the type of S (t = m − 1 as Arf Semigroups have
max embedding dimension)

Remark 7.2. The St(m,n) families are always Arf

Conjecture 7.3 (April Conjecture). The cover relations of the B posets are
always small generators, within the first 1

3 of the set of generators.

Remark 7.4. Approach towards April Conjecture:
Every Arf Numerical semigroup can be obtained via a sequence (and every

semigroup obtained this way is Arf):
S0 = N, S1 = (x1 + S0) ∪ {0}, S2 = (x2 + S1) ∪ {0}, . . . , Sn = (xn +

Sn−1) ∪ {0} s.t. xi ∈ Si−1 for each i
Now B(S0) = B(S1) = · · · = B(Sk−1) s.t. k is the first entry for which

xk ≥ 3.
Next if the denote Brel(S) = {y − x|x, y ∈ B(S), y − x ∈ S} then r ≥ k

implies Brel(Sr+1) = (xr +Brel(Sr)) ∪ {0}
We then need to determine which elements of Brel(Sr) cannot be written

as sum of other elements of Brel(Sr)
It looks like the cover relations of B(S) are first several consecutive gen-

erators of S. And the ratio of the number of generators and the multiplicity
(which is also the embedding dimension) is at most 1

xk

xk being at least 3 leads to the April Conjecture
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8 Families of Semigroups

Chris’s Cowardly Conjecture
At approximately 9:15am on June 21, Christopher O’Neill conjectured

that the type of a semigroup S and P (S) were related. Some investigation finds
us many, many semigroups where P (S) = 2, but T (S) 6= 2.

Definition 8.1 (Additive Semiclosure). Given a numerical semigroup S, and
a finite set {ai} ⊂ N \ S, the additive semiclosure of S with respect to {ai} is
the set S′ constructed by adjoining ai, and then iteratively adding elements in
order to satisfy additive closure.

By applying TBUS and the concept of additive semiclosure to semigroups
with fixed Frobenius numbers, we identified all of the numerical sets that map
to them. In this way, we found some families with P (S) = 2, but T (S) 6= 2.

Definition 8.2 (Quasisymmetric Semigroups). A numerical Semigroup for which
the size of the B set is 2 is called a Quasisymmetric semigroup.

Theorem 8.3. Quasisymmetric Semigroups have P (S) = 2 unless B = {a, F −
a} and F = 3a

Proof: If B = {a, F − a}, we know that A(S) = S and A(B ∪ S) = S...
E.g. For an even number 2n, the semigroup {0, n+1, n+2 . . . 2n, 2n+1→}

has P (S) = 2 but T (S) = 3. In particular, PF (S) = {F (S)±1
2 , F (S)}.

Definition 8.4 (YET UNNAMED SEMIGROUPS). The semigroup {0, n, n+
1, . . . 2n− 5, 2n− 2, 2n→} has PF (S) = {2n− 4, 2n− 3, 2n− 1}, but P (S) = 2.

Proof: This is a semigroup since all nontrivial elements are greater than
F (S)
2 . The Pseudo-Frobenius numbers are just the gaps larger than F (S)

2 , i.e.
{2n− 4, 2n− 3, 2n− 1}.

The only numerical sets corresponding to this semigroup are S and B∪S.
B = {2, 3, 2n− 4, 2n− 3}. If b ∈ T , b ∈ T . If 2 ∈ T , thus 2n− 3 ∈ T , and since
2n− 6 ∈ S, 2n− 4 ∈ T so 3 ∈ T which is B ∪S. If 3 ∈ T , 2n− 4 ∈ T , and since
2n− 6 ∈ T , 2n− 3 ∈ T and 2 ∈ T . Again this is B ∪ S, so if any element of B
is in T , T = B ∪ S. This shows P (S) = 2. �

In fact, when P (S) = 2, both |B| and the type of the semigroup can be
unbounded, as evidenced by the following families:

Example 8.5 (3n Semigroups). For n ∈ N, the family Sn = {0, 3, 6, . . . 3n→}
has |B| = n and P (Sn) = 2.

Proof: Note that every multiple of 3 is contained in every Sn. For b ≤
F (S), if b ≡ 1 mod 4, then F (S)−b ≡ 1 mod 4 so b, F (S)−b 6∈ S, but if b ≡ 2
mod 4, F (S)− b ∈ S. Thus, B is exactly the elements of S that are 1 mod 4,
so |B| = n.

Furthermore, if A(T ) = S and T 6= S, then T = B ∪ S. Since T 6= S,
b ∈ T \S, so b = 3k+1. Then, since b+S ⊆ S, then for 0 ≤ l ∈ N, 3(k+l)+1 ∈ S,
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so every element of B larger than b is also in T . Then, since 3n − 2 ∈ T , but
3n− 2 6∈ A(T ), 1 ∈ T . After this, every element of B is also in T , so T = B ∪S.

Example 8.6 (2n Semigroups). For n ∈ N, the family Sn = {0,m,m+1, . . .m+
n,m + n + 2, . . .m + 2n, . . . 2m − 2, 2m →}, where m = 2n + n − 1 and the
Pseudo-Frobenius numbers are {2m− 2k−1 − k + 1|1 ≤ k ≤ n}. P (Sn) = 2 and
T (Sn) = n.

Proof: First, each Sn is a semigroup, since every nontrivial element of Sn
is larger than F (Sn)

2 . Similarly, each element of PF (S) is larger than F (Sn)
2 , so

2m− 2k−1 − k + 1 + S ⊆ S.
Now, if A(T ) = S and T 6= S, then T = B∪S. In this case, B is composed

of the Pseudo-Frobenius numbers (except F , where k = 1) and their conjugates.
If T contains some Pseudo-Frobenius number PFk = 2m− 2k−1 − k+ 1, it also
contains its conjugate F −PFk = 2k−1 +k− 2. Since for higher values of k, the
gaps are 2k−1+1 apart, for k < n, if PFk ∈ T , PFk+1 ∈ T . If PFn ∈ T , then its
conjugate 2n−1 +n−2 ∈ T . Then, since for n > 2, m ≤ PF2− (2n−1 +n−2) <
PFn, if PFn ∈ T , then PF2 ∈ T . Thus, if one Pseudo-Frobenius number is
in T , then all of them are, so the only semigroups with A(T ) = S are S and
TBUS.

8.1 Noble Semigroups

Definition 8.7. A semigroup is Noble if for all P ∈ PF (S), b ∈ B, we have
that P + b ∈ B =⇒ b = F − P . Otherwise, it is Ignoble.

Theorem 8.8. If S is noble, then it is P-Minimal.

Proof: Let T be a numerical set such that A(T ) = S; it suffices to show
that T \ S is self-dual, so let P ∈ T ∩ PF (S). There must be t ∈ T ∩ B such
that P + t 6∈ T . If P + t 6∈ B, we have from the proof of Theorem 3.11 that
F − P ∈ T . If P + t ∈ B, there is Q ∈ PF (S) such that Q− (P + t) ∈ S, and
so Q− P = (Q− P − t) + t ∈ T ∩ B and P + (Q− P ) = Q ∈ PF (S); we thus
have Q− P = F − P ∈ T . Either way P ∈ T =⇒ F − P ∈ T , and so T \ S is
self-dual. �

8.2 P(S) for Semigroups of Type 3

From the symmetric semigroups, we know that if T (S) = 1, P (S) = 2. From
Theorem 3.2, we can see that T (S) = 2 implies P (S) = 2. In the following
section, we will show that T (S) = 3 implies that P (S) = 2, 3, 4, and P (S) can
be arbitrarily large for T (S) = 4.

Theorem 8.9. If t = 3 and number of connected components of GPF (S) is 2,
then P (S) = 4.

Proof: Let P and Q be the maximal elements of the B Poset (with P <
Q), so their conjugates are the minimal ones. In order to have two connected
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components in GPF (S) we must have F−P 64 Q. So F−P 4 P and F−Q 4 Q.
Now assume we have a red triangle P + x + y = F then F − P 64 x, y. So
F − Q 4 x, y 4 Q. It follows that if either of x, y are in T then Q ∈ T and
hence F − Q ∈ T and conjugates of both x, y are in T so the triangle cannot
work. Hence, P (S) = 4. �

Theorem 8.10. If t = 3, PF (S) = {P,Q, F} with P < Q < F , Q − P 6∈ B,
then S is noble.

Proof: Follows from corollary 3.15.2

Lemma 8.11. If t = 3, Q − P ∈ B, and (P, x, y) is a red triangle, then
x 4 Q− P . (The same applies to y.)

Proof: Follows from corollary 3.15.2

Lemma 8.12. If t = 3, Q−P ∈ B, and x 4 Q−P and x 6= Q−P then x 4 Q.

Proof: Follows from lemma 3.14

Lemma 8.13. If t = 3, Q− P ∈ B, and b ‖ Q− P then b 4 Q

Proof: If possible, assume b 64 Q. Then, b 4 P i.e. P − b ∈ S. Also
Q− b 6∈ S therefore either Q− b ∈ B or Q− b ∈ Gap \B

If Q− b ∈ B then Q− b cannot be below Q, and hence it must be below
P i.e. P −Q+ b ∈ S which means Q− P 4 b, which is a contradiction.

Next assume Q − b ∈ Gap \ B, which implies F − Q + b ∈ S, but then
F − (Q−P ) = (F −Q+ b) + (P − b) ∈ S, which is also a contradiction because
Q− P ∈ B.

We conclude that b 4 Q. �

Lemma 8.14. If t = 3, Q − P ∈ B, and Q− P 4 b and Q− P 6= b then
F −Q 4 b

Proof: F − (Q− P ) 4 b =⇒ b 4 Q− P and b 6= Q− P hence by lemma
8.12 b 4 Q i.e. Q 4 b �

Theorem 8.15. If t = 3 then P (S) ≤ 4

Proof: The only case remaining is when GPF (S) is connected and Q−P ∈
S. GPF (S) being connected means F −Q 4 P and F − P 4 Q,

Consider T s.t. A(T ) = S and let T ′ = T \ S. If T ′ 6= ∅, then T has at
least one Pseudo-Frobenius number. If it has Q, then it has F − Q and hence
also P , i.e. T ′ 6= ∅ =⇒ P ∈ T ′.

Now if F −P ∈ T ′, then Q ∈ T ′, which implies F −Q ∈ T ′, which implies
T ′ = B. Therefore T ′ 6= ∅, B =⇒ P ∈ T ′ and F − P 6∈ T ′. Hence P must
satisfy a red triangle and by lemma 8.11 we know Q− P ∈ T ′

Let T1 = {x|Q − P 4 x}, by lemma 8.12 and lemma 8.13 we see that
T ′ 6= ∅, B, T1 =⇒ Q ∈ T =⇒ Q ∈ T So F −Q 4 x =⇒ x ∈ T
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Let T2 = {x|F − Q 4 x}. If x ‖ F − (Q − P ) then F − x ‖ Q − P and
hence by Lemma 8.13 F − x 4 Q, hence F − Q 4 x and x ∈ T2. Next if
F − (Q−P ) 4 x, x 6= F − (Q−P ) then by Lemma 8.14 F −Q 4 x and x ∈ T2

Finally if T ′ 6= ∅, B, T1, T2 then ∃x ∈ T ′ s.t. x 4 F − (Q − P ). Hence
F − (Q− P ) ∈ T ′. Now if a red triangle (P, y, x) works i.e. y ∈ T ′, F − x 6∈ T ′
then by Lemma 8.12, x 4 Q − P and hence F − (Q − P ) 4 F − x . It follows
that no triangle can work, which is a contradiction.

We have shown that P (S) ≤ 4. �

Lemma 8.16. If t = 3, the graph GPF (S) is connected and Q − P ∈ B then
A(T1 ∪ S) = S

Proof: Firstly T1 is an order ideal and P is the only Pseudo-Frobenius
number in T1 (Q ∈ T1 =⇒ Q − P 4 Q =⇒ P = Q − (Q − P ) ∈ S which is
impossible). Moreover (P,Q− P, F −Q) is a red triangle with Q− P ∈ T1 and
Q = F − (F −Q) 6∈ T1. Hence by theorem 3.13 A(T1 ∪ S) = S

Theorem 8.17. If t=3 then P (S) = 2 iff GPF (S) is connected and Q−P 6∈ B

Proof: Firstly if GPF (S) is connected and Q − P 6∈ B then by Theorem
8.10, S is noble and hence P (S) = 2.

Conversely assuming P (S) = 2, if GPF (S) is not connected then P (S) = 4
soGPF (S) must be connected. And ifQ−P ∈ B then by lemma 8.16 A(T1) = S
and P (S) ≥ 3

Lemma 8.18. If t = 3, GPF (S) is connected, Q− P ∈ B then A(T2 ∪ S) = S

Proof: Let T2 = {x|F −Q 4 x}. Note that P ∈ T2 and Q may or may not
be in it.

(P, F −Q,Q−P ) is a red triangle, F −Q ∈ T2. Moreover (F − (Q−P ))−
(F −Q) = P 6∈ S and hence Q 64 Q− P i.e. Q− P 6∈ T2. Therefore the triangle
is satisfied.

If Q ∈ T2 then we know that Q ∈ T2.
Therefore by theorem 3.13 A(T2 ∪ S) = S

Theorem 8.19. if t=3, GPF(S) is connected and Q− P ∈ B then:
if F = 2Q− P then P (S) = 3, otherwise P (S) = 4

Proof: T1 = T2 iff Q− P = F −Q

Remark 8.20. Note That T ∗1 = T2

8.3 Chris’s Courageous Conjecture

Definition 8.21. Given a Numerical Semigroup S and β ≥ 2, f s.t. β 6 |f ,
f > β(F (S) + 2m(S)) define M(S, β, f) = βS ∪ {0, f + 1→}

Conjecture 8.22. If we fix S and β then P (M(S, β, f)) is eventually a quasi-
polynomial is f
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Notation: denote by F the Frobenius number of S, by m the multiplicity
of S (as opposed to those of M(S, β, f))

Remark 8.23. St(m,n) = M(N,m, nm− 1) and
St(l,m, n) = M({0, l→},m,m(l + n)− 1)

Definition 8.24. Given a Numerical Semigroup S and β ≥ 2 we define the
βS-Poset to be the Poset whose elements are N \ (βS) and x 4 y iff y− x ∈ βS
(Note that it has infinitely many elements)

Definition 8.25. Given a numerical Semigroup S the S-poset is the poset whose
elements are N and x 4 y iff y − x ∈ S.

The Gap-Poset is the poset whose elements are N\S and x 4 y iff y−x ∈ S

Remark 8.26. Note that the B-Poset is obtained from the Gap-Poset by delet-
ing everything that is below the Frobenius number in the poset.

Lemma 8.27. The βS-Poset has the following description:

Let Ci = {x|x ≡ i(mod β)} if 1 ≤ i ≤ β − 1 and Cβ = {x|x = βt, t 6∈ S}.
Note that the sets Ci are mutually parallel.

If i ≤ β − 1, then Ci is isomorphic to the S poset, with q1β + i 4 q2β + i
in the βS-Poset iff q1 4 q2 in the S-Poset. In addition, Cβ is isomorphic to the
Gap-Poset, βt1 4 βt2 in βS-Poset iff t1 4 t2 in the Gap-Poset.

Corollary 8.27.1. If S = {0, k,→} the βS-Poset has the following description:

The sets Ci are mutually parallel.
For i ≤ β − 1, x, y ∈ Ci then x 4 y iff y − x ≥ βk.
Cβ is a Chaos Poset of size k − 1.

We describe the structure of Ci as a poset (i 6= β) by arranging them in
towers. The first layer has those elements that are between 1 ≤ x < mβ, the
second layer those between mβ ≤ x < 2mβ and so on.

Note that we cannot have edges within a layer, this is because if q1β + i
and q2β + i are in the same layer then q2 − q1 < m and hence q2 − q1 6∈ S.
Let a be the largest atom of S then we can never have a direct edge from the
lth layer to the lth2 layer with l2 − l1 ≥ d ame + 1. This is because if such an
edge exists, say between points q1β + i and q2β + i, with (l1 − 1)m ≤ q1 < ml1
and (l2 − 1)m ≤ q2 < ml2. Note that by the lemma 8.27 this is equivalent to
there being a direct edge from q1 to q2 in the S poset i.e. q2 − q1 is an atom
(generator) of S. But q2 − q1 ≥ m((l2 − 1) − l1) ≥ m(d ame) > a (m 6 |a) which
is impossible.

Also note that elements in the lth layer are obtained by adding (l− 1)mβ
to elements in the 1st layer. Note also that x+mβ · · · 4 x+ (l − 1)mβ. Thus,
the edges between the lth and l+ 1th layers are in natural correspondence with
edges between 1st and 2nd layer and the edges between lth and l+ 2th layer are
in natural correspondence with edges between 1st and 3rd layers. Continuing
this process, edges between lth and l+d ame

th layer are in natural correspondence
with edges between 1st and d ame+ 1th layers.
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Lemma 8.28. The B-Poset of M(S, β, f) (assuming f > βF (S)) has the fol-
lowing description:

It is a sub-Poset of the βS-Poset.
Say f ≡ r(mod β) 1 ≤ r < β,
Then from Cj (j 6= r, j 6= β) we remove all elements ≥ f Let Dj = {x|x ∈

Cj , x < f}. From Cr we remove everything except Dr = {f − βg, g ∈ N \ S}
(f > βF (S)). Note that Dr as a Poset is the dual of the Gap-Poset of S. Cβ
remains as it is (f > βF (S)).

Corollary 8.28.1. In case of S = {0, k →} the Gap-Poset of {0, k →} is the
chaos poset of k − 1 elements and hence the B-Poset is M({0, k →}, β, f) (we
assume f > βk) is the disjoint union of β − 1 cut-off S-Posets and two chaos
Posets of size k − 1 each.

Definition 8.29. The S cut off at n Poset is the poset whose elements are
natural numbers less than n with x 4 y iff y − x ∈ S

Remark 8.30. In the B-Poset of M(S, β, f). If f ≡ r(mod β), with 1 ≤ r < β
Then for j < r then Dj is naturally isomorphic to S cut off at d fβ e and for

j > r Dj is naturally isomorphic to S cut off at b fβ c

Lemma 8.31. The maximal elements of S cut off at n Poset are n − 1 and
n− 1− x where x is a minimal element of the Gap-Poset of S

Corollary 8.31.1. PF (M(S, β, f + β)) \ Cβ = β + (PF (M(S, β, f)) \ Cβ)
And of course PF (M(S, β, f + β)) ∩ Cβ = PF (M(S, β, f)) ∩ Cβ

Corollary 8.31.2. Type of M(S, β, f) is t(S)+(β−1)(1+#{minimal elements of Gap Poset}) =
t(S) + (β − 1)m(S)

Lemma 8.32. If P ∈ PF (M(S, β, f))\({f}∪Cβ) and (P, a, b) is a red triangle
of M(S, β, f) then P + mβ ≥ f and hence a + b < mβ and a, b and P = a + b
are in the bottom layer.

Corollary 8.32.1. If f ≡ r(mod β) then Dr has no elements in the bottom
layer if f > (F +m)β.

And hence the a, b, P from the lemma cannot be in Dr

Lemma 8.33. If P ∈ PF (M(S, β, f))\({f}∪Cβ) then (P, a, b) is a red triangle
of M(S, β, f) iff (P + β), a, b) is a red triangle of M(S, β, f + β))

Note that a, b were not in Dr of PF (M(S, β, f)) and hence so a, b are the
B-Poset of M(S, β, f + β)

Also note that if at least one of x, y (say x) is a newly added element of
the B-Poset of M(S, β, f + β) (i.e. it was not in the B-Poset of M(S, β, f))
then x is in the top layer of the B-poset and hence (P + β, x, y) is not a red
triangle of M(S, β, f + β).
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Remark 8.34. We fix S and β, move f within a particular equivalence class
mod β (while ensuring f > (F + m)β). For j 6= β We denote the numerically
largest element of Dj by P (j, 0) (so P (r, 0) is the Frobenius number) and we
define P (j, gp) = P (j, 0)− gp for gp ∈ N \ S

We also define P (β, p) = βp for p ∈ PF (S).
Note that these are all the Pseudo-Frobenius numbers.

Remark 8.35. We divide order ideals of the B-Poset of M(S, β, f) into cate-
gories depending on which elements of the first layer are in the order ideal and
which elements in the first layer have their conjugates in the order ideal, which
elements of Cβ are in the order ideal, which elements of Dr are in the order
ideal.

Lemma 8.36. For P ∈ T ∩ PF (M(S, β, f)) \ ({f} ∪ Cβ) note that whether
or not P ∈ T and whether or not P satisfies a triangle is determined by which
category P is in.

Lemma 8.37. For P ∈ Cβ ∩ PF (M(S, β, f)) if P has a red triangle (P, a, b)
with a ∈ Cβ ∪Dr Then whether or not an order ideal satisfies the red triangle
is determined by the category.

Proof: If a ∈ Cβ then f − b = P + a ≡ 0(mod β) and f − b ∈ Cβ and the
category determines whether or not this order ideal is satisfied.

If a ∈ Dr then f − b = P +a ≡ r(mod β). Therefore whether or not a ∈ T
and f − b ∈ T is determined by the category.

Lemma 8.38. If i 6= r, β and x ∈ Di then the set {y|x < y, y ∈ Di, x ‖ y} is
the same as the set {x + gpβ|gp ∈ N \ S, gpβ < f − x} with x < f − Fβ then
the set {y|x < y, y ∈ Di, x ‖ y} is the same as the set {x+ gpβ|gp ∈ N \ S} and
as a poset is isomorphic to the Gap-Poset of S

Lemma 8.39. If i 6= r, β and x ∈ Di then the set {y|y < x, y ∈ Di, x ‖ y} is
the same as the set {x − gpβ|gp ∈ N \ S, gpβ < x} with x > Fβ then the set
{y|x < y, y ∈ Di, x ‖ y} is the same as the set {x − gpβ|gp ∈ N \ S} and as a
poset is isomorphic to the duel of the Gap-Poset of S

Notation: For each pair of disjoint subsets A,B of the set of maximal
elements of Cβ let γ∞,A,B be the number of order ideals of Gap poset of S for
which ∀p ∈ A either p

β is in the order ideal or there is a pair of elements of

the poset that differ by p
β , the smaller element is in the order ideal, the larger

element is not. Moreover ∀p′ ∈ B such a pair does not exist and p′

β is not in the
order ideal.

And let γn,A,B be the number of order ideals of poset obtained from Gap
poset of S by throwing away everything numerically bigger than n, we only
count order ideals that satisfy: ∀p ∈ A either p

β is in the order ideal or there is

a pair of elements of the poset that differ by p
β , the smaller element is in the

order ideal, the larger ideal is not. And for ∀p′ ∈ B such a pair does not exist
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and p′

β is not in the order ideal.

If in a category we had chosen an element but excluded an element above
it then the category has no order ideals and we throw it away.

For the remaining categories we count the number of good numerical sets
in them:

Counting Good Numerical Sets with Towers
Fix a category. Let A be the set of elements of maximal elements of Cβ

that are chosen in the category, while their conjugates are not chosen.
If the category was not thrown out then it has three kinds of towers (Di,

i 6= r are called towers).

1. At least one element of first layer and all elements whose conjugates are
in first layer are chosen.

2. No element of first layer is chosen and at least one element whose conjugate
is in the first layer is not chosen.

3. No element of the first layer is chosen, all elements whose conjugates are
in the first layer are chosen.

In a tower of the first kind, all but finitely many elements are above the chosen
minimal elements (the set of the remaining ones does not change when we change
f within an equivalence class).

In a tower of the second kind, all but finitely many elements are below one
of the maximal elements that is not chosen (the set of the remaining ones does
not change when we change f within an equivalence class)

We divide the category into sub-categories by randomly choosing which of
the remaining elements of towers of the first and second kind are to be included
in the order ideal.

If while making the subcategory we picked an element but missed some-
thing above it, then the subcategory has no order ideals in it and we throw it
away.

If the subcategory survives then some of the elements of A might satisfy a
triangle within the decided elements (decided elements are those that are chosen
or excluded). We remove those elements from A and create a modified A set.

Now we have a subcategory and a modified A set. We still have towers of
third kind to consider.

Given a tower of the third kind, say Di. If i < r it has d fβ e elements and

if r < i it has b fβ c elements; in either case, denote the number of elements in
Di by n. The first m of these are in the first layer and have been excluded,
while the last m have their conjugates in the first layer and have been included.
The remaining n − 2m elements have to be decided. Suppose the smallest
(numerically) element among these that is included in the order ideal is x; then
everything above x is included, and everything numerically smaller than x is
thrown away. Note that the set {y|x < y, y ∈ Di, x ‖ y} remains to be decided.
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Suppose we have picked the x in each tower of the third kind. If there are
s1 towers of the third kind with i < r and s2 towers of third kind with i > r,
there are (d fβ e − 2m)s1(d fβ e − 2m − 1)s2 ways of picking the elements x from
each tower.

Note that any p ∈ A (the modified A) cannot satisfy a triangle with the
decided elements, because if x + p is either undecided, or in the top layer and
hence chosen or not in the B-Poset at all. And if x 4 a then a + p is either
chosen or not in the B-Poset at all.

Now we need to decide the remaining elements, so we first split the sub-
category into several divisions. Each division is a tupleD = (σgp1, σgp2, . . . , σF , r1, r2)
where gp1, gp2, . . . are the Gaps of S, σgp is how many towers (of third kind)
have the poset of undecided elements naturally isomorphic to Gap-Poset of S cut
off at gp. r1 is how many towers Di (of third kind) with i < r have f − x > Fβ
(and hence the poset of undecided elements naturally isomorphic to Gap-Poset
of S) and r2 is how many towers (of third kind) with i > r f − x > Fβ. Each
division D has a coefficient aD which is the number of ways of partitioning the
towers of the third kind into g + 2 parts s.t. all towers Di in the g + 1th part
have i < r and all towers Di in the g + 2th part have i > r.

Denote the number of towers of the third kind by d.
Note that σgp1 + σgp2 + · · ·+ σF + r1 + r2 = d otherwise the division has

aD = 0 and can be ignored.
Lastly we further split each division into several Partitions. Each partition

is a tuple (A1, A2, . . . , Ad) s.t. A1 ∪ A2 ∪ · · · ∪ Ad = A. Define Bi = A \
Ai. We define function g on the components of the tuple, g maps the first
σgp1 components to gp1, then next σgp2 components to gp2, . . . further σF
components to F and last r1 + r2 components to ∞

The number of good numerical sets in a partition is ad
∏d
i=1 γg(Ai),Ai,Bi

(d fβ e−
2m− F )s1(d fβ e − 2m− 1− F )s2 . �

Theorem 8.40. If we fix S and β then P (M(S, β, f)) is eventually a quasi-
polynomial is f with period β

Proof: Once we have fixed S, β and which equivalence class mod β f is
in, we can determine all the categories, all of their subcategories, all of their
divisions and all of their partitions. Once we do this we have a polynomial in
dFβ e as the number of good numerical sets within a partition.

Once we sum these polynomials over all partitions of all divisions of all sub-
categories of all categories we get the polynomial expression of P (M(S, β, f)),
the polynomial depends on which equivalence class mod β f is in.

Corollary 8.40.1. The degree of the polynomial is the largest d among all good
categories (that have a good numerical set). d is the number of towers of the
third kind.

Proof: Once we have such a category we can pick a subcategory and then
take the division (0, 0, . . . , 0, s1, s2) and then all of its partitions have polyno-
mials of degree s1 + s2 = d
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8.3.1 Staircase St(m,n) families

Definition 8.41. St(m,n) = {0,m, 2m. . . , nm,→}

Lemma 8.42. The B-Poset of St(m,n) has a simple structure, it is the disjoint
union of m − 2 chains of length n each. The rth chain (1 ≤ r ≤ m − 2) is
r 4 r +m 4 r + 2m 4 · · · 4 r + (n− 1)m

Lemma 8.43. If P is a Pseudo-Frobenius number of St(m,n), (P, a, b) is a red
triangle then a, b are minimal elements of the B-Poset

Theorem 8.44. For a fixed m there is a polynomial gm(x) s.t. P (St(m,n)) =
gm(n)

Proof: We partition the numerical sets into categories, created as follows:
We partition equivalence classes mod m, 1 ≤ r ≤ m−2 into 3 kinds: those

included completely, those not included at all, those included partially (in a way
that ensures it is an order ideal, i.e. where if an element is included, so are all
the elements above it).

There are finitely many ways of making those selections. Note that these
selections do not depend on the value of n.

Note that if one order ideal in a category has A(T ∪ S) = S, then T
satisfies the condition of theorem 3.13 for each Pseudo-Frobenius number in T
then all order ideals in that category satisfy the condition of theorem 3.13. This
is because if (P, a, b) is a red triangle, P ∈ PF (S) \ {F}, then a, b are minimal
elements of the B-Poset by lemma 8.43 and hence a ∈ T means the entire
equivalence class of a is in T amd b 6∈ T means no element in the equivalence
class of b is in T . And therefore either all order ideals in the category satisfy a
triangle or none do.

Note that whether or not a selection satisfies the condition of theorem 3.13
does not depend on the value of n

If a category has d equivalence classes in the third kind then it has (n−1)d

order ideals.
Now if am,d is the number of categories that satisfy condition of theorem

3.13 and have d equivalence classes in the third kind.
Then P (S) =

∑
d≥0 am,d(n − 1)d. (Note that this is a finite sum as

d ≤ m− 2)�

We next describe a way to compute the polynomials gm(x)

Theorem 8.45. Fix m, consider the numerical sets for which A(T∪St(m, 1)) =
St(m, 1).

We create a diagram with them, place a set in the hth row if T has h
elements (h ≥ 0). Now if T1 ⊆ T2 and ∀x ∈ T2 x+ T1 6⊆ T2 ∪ St(m, 1) then we
draw an edge from T1 to T2. Length of the edge is size of T2 \ T1

If there are bm,d edges of length d then am,d = bm,d and gm(x) =
∑
d≥0 bm,d(x−

1)d
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Proof: Consider a category that satisfies condition of theorem 3.13. Say
the equivalence classes of the first kind are r1, . . . , rl (1 ≤ ri ≤ m − 2). Then
T1{r1, r2 . . . rl} is a good numerical set of St(m, 1) as it satisfies the condition
of Theorem 3.13. Next if the equivalence classes of the third kind are s1, . . . , sd
then T2{r1, . . . , rl} ∪ {s1, . . . sd} is also a good set of St(m, 1) as it satisfies the
condition of theorem 3.13

Moreover for each x ∈ T2, the class of x has Pseudo-Frobenius number
Pi = x + m(n − 1) ∈ T if it satisfies a triangle (Pi, a, b) (so 1 ≤ a, b ≤ m − 2)
a ∈ T means the class of a is in the first kind. F − b = mn − 1 − b 6∈ T
means the class of m− b− 1 is of the second kind. Also F = Pi + a+ b means
mn − 1 = (x + mn − m) + a + b so x + a = m − 1 − b 6∈ T2 ∪ St(m, 1) (as
m− 1− b ≤ m− 2) and hence x+T1 6⊆ T2 ∪St(m, 1). Next if it does not satisfy
a triangle then F − Pi ∈ T , F − Pi = m − 1 − x (1 ≤ m − 1 − x ≤ m − 2),
F − Pi ∈ T means m− 1− x ∈ T1 and hence x+ T1 6⊆ T2 ∪ St(m, 1)

And course the size of T2 \ T1 is the number of equivalence classes in the
category.

Conversely if T1, T2 are good numerical sets of St(m,n) s.t. T1 ⊆ T2 and
∀x ∈ T2 x+ T1 6⊆ T2 ∪ St(m, 1).

Construct a category by having the classes of T1 in the first kind, classes
of T2 \ T1 in third category and the remaining classes in the second category.
We will show that an order ideal in this class satisfies the condition of theorem
3.13. Let T be an order ideal in the category. Say P is a Pseudo-Frobenius
number in T , it is in the class of x (1 ≤ x ≤ m − 2)(P = x + m(n − 1)), the
class of x is in the first or third kind so x ∈ T2. x + T1 6∈ T2 ∪ St(m, 1) i.e.
∃y ∈ T1 s.t. x + y 6∈ T2 ∪ St(m, 1) that means x + y ≤ m − 1 and x + y 6∈ T2.
y ∈ T1 means the class of y is in the first kind and hence y ∈ T . First consider
the case if x + y = m − 1 so P + y = x + mn − m + y = mn − 1 = F i.e.
y = F − P ∈ T . Next consider the case x + y 6= m − 1, so 1 ≤ x + y ≤ m − 2,
x + y 6∈ T2 means the class of x + y is of the second kind. z = F − P − y =
(mn− 1)− (x+mn−m)− y = m− 1− (x+ y) so 1 ≤ z ≤ m− 2, (P, y, z) is a
red triangle, y ∈ T , F − z = (mn− 1)− (m− 1− (x+ y)) = mn−m+ (x+ y)
which is in the class of x+ y which is in the second kind and hence F − z 6∈ T
and the condition of theorem 3.13 is satisfied.

Also again the number of classes in the third kind is the size of T2 \ T1 �
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Example 8.46. P (St(2, n)) = 1
P (St(3, n)) = 2
P (St(4, n)) = 3
P (St(5, n)) = 6 + 2(n− 1) = 2n+ 4
P (St(6, n)) = 10 + 8(n− 1) = 8n+ 2
P (St(7, n)) = 20 + 26(n− 1) + 4(n− 1)2 = 4n2 + 18n− 2
P (St(8, n)) = 37 + 70(n− 1) + 28(n− 1)2

P (St(9, n)) = 74 + 179(n− 1) + 122(n− 1)2 + 10(n− 1)3

P (St(10, n)) = 140 + 414(n− 1) + 403(n− 1)2 + 106(n− 1)3 + 2(n− 1)4

P (St(11, n)) = 280 + 969(n− 1) + 1218(n− 1)2 + 546(n− 1)3 + 40(n− 1)4

P (St(12, n)) = 542 + 2150(n− 1) + 3327(n− 1)2 + 2206(n− 1)3 + 464(n−
1)4 + 12(n− 1)5

P (St(13, n)) = 1084+4839(n−1)+8816(n−1)2 +7710(n−1)3 +2850(n−
1)4 + 274(n− 1)5 + 6(n− 1)6

P (St(14, n)) = 2118 + 10492(n − 1) + 21952(n − 1)2 + 23728(n − 1)3 +
12699(n− 1)4 + 2598(n− 1)5 + 106(n− 1)6

P (St(15, n)) = 4236 + 23060(n − 1) + 54306(n − 1)2 + 69446(n − 1)3 +
48618(n− 1)4 + 16206(n− 1)5 + 1804(n− 1)6 + 42(n− 1)7

P (St(16, n)) = 8337 + 49444(n− 1) + 129225(n− 1)2 + 190086(n− 1)3 +
163972(n− 1)4 + 77174(n− 1)5 + 16016(n− 1)6 + 952(n− 1)7 + 14(n− 1)8

P (St(17, n)) = 16647 + 107099(n−1) + 307386(n−1)2 + 509320(n−1)3 +
518866(n − 1)4 + 315277(n − 1)5 + 100766(n − 1)6 + 12956(n − 1)7 + 452(n −
1)8 + 6(n− 1)9

P (St(18, n)) = 32963+227682(n−1)+710703(n−1)2+1305834(n−1)3+
1526512(n−1)4 +1131718(n−1)5 +494043(n−1)6 +107072(n−1)7 +8430(n−
1)8 + 116(n− 1)9

P (St(19, n)) = 6592 + 6487946(n − 1) + 1646834(n − 1)2 + 3319058(n −
1)3 + 4362414(n− 1)4 + 3796502(n− 1)5 + 2100180(n− 1)6 + 662816(n− 1)7 +
96906(n− 1)8 + 4646(n− 1)9 + 68(n− 1)10
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P (St(20, n)) = 130787 + 1031600(n− 1) + 3738425(n− 1)2 + 8183350(n−
1)3 + 11902732(n − 1)4 + 11829600(n − 1)5 + 7884416(n − 1)6 + 3289314(n −
1)7 + 746888(n− 1)8 + 72022(n− 1)9 + 2022(n− 1)10 + 16(n− 1)11

P (St(21, n)) = 261574+2192679(n−1)+8497908(n−1)2 +20074322(n−
1)3 + 31959848(n− 1)4 + 35588411(n− 1)5 + 27632358(n− 1)6 + 14345136(n−
1)7+4541440(n−1)8+742606(n−1)9+47647(n−1)10+922(n−1)11+6(n−1)12

P (St(22, n)) = 520095+4613914(n−1)+19027321(n−1)2+48188560(n−
1)3+83180055(n−1)4+102214578(n−1)5+90121675(n−1)6+55675764(n−1)7+
22668899(n−1)8+5424436(n−1)9+628142(n−1)10+26024(n−1)11+348(n−1)12

Theorem 8.47. The diagrams described in theorem 8.45 have the following
property: the diagram of St(m, 1) is contained in St(m+ 1, 1)

Proof: First we prove that if A(T ∪ St(m, 1)) = St(m, 1) then A(T ∪
St(m + 1, 1)) = St(m + 1, 1). The B-Poset of both is the chaos poset, so
A(T ∪ St(m + 1, 1)) ⊆ St(m + 1, 1). Now, given x ∈ T we know that x 6∈
A(T ∪St(m, 1)) so ∃y ∈ T ∪St(m, 1) s.t. x+y 6∈ T ∪St(m, 1). y ∈ St(m, 1) =⇒
x+ y ∈ St(m, 1)∪{x} therefore y ∈ T . It follows that x+T 6⊆ T ∪St(m+ 1, 1)
i.e. x 6∈ A(T ∪ St(m+ 1, 1)) and hence A(T ∪ St(m+ 1, 1)) = St(m+ 1, 1)

Moreover if there was an edge from T1 to T2 in the mth diagram then
T1 ⊆ T2 and ∀x ∈ T2 x + T1 6⊆ T2 ∪ St(m, 1) which implies ∀x ∈ T2 x + T1 6⊆
T2∪St(m+1, 1) and hence there is an edge from T1 to T2 in the m+1th diagram
as well.

Corollary 8.47.1. degree(gm(x)) ≤ degree(gm+1(x))

Corollary 8.47.2. am,d ≤ am+1,d

Lemma 8.48. Given T1, T2 s.t. A(T1∪St(m, 1)) = A(T2∪St(m, 1)) = St(m, 1)
and there is an edge between T1 and T2. If |T1| = k−1 then |T2| ≤ m−2−bm−2k c

Proof: Let G = N \ (T2 ∪ St(m, 1)), |G| = g+ 1. Also say m− 1 = qk+ r,
0 ≤ r ≤ k − 1. We know that ∀x ∈ T2 ∃y ∈ T1 s.t. x + y ∈ G. Given z ∈ G it
can appear as x+ y for at most k − 1 x ∈ T2. Of course the same x could have
multiple z correspond to it, so there could be some double counting. Therefore
|T2| ≤ (k − 1)|G| and |T2| ≤ (k − 1)|G| − a (for some a ≥ 0). Finally note that
|T2|+ |G| = m− 1 i.e. k|G| − a = m− 1.

Now if r = 0 then |G| ≥ m−1
k = 1 + bm−2k c, so |T2| = m − 1 − |G| ≤

m− 2− bm−2k c
And if r > 0 then k|r + a so a ≥ k − r and hence k|G| = m − 1 + a ≥

m− 1 + k − r = k(q + 1) and hence |G| ≥ q + 1. Remember m− 1 = kq + r, so
r ≥ 1 =⇒ bm−2k c = q. Lastly |T2| = m− 1− |G| ≤ m− 2− q = m− 2−bm−2k c

Lemma 8.49. Given 2 ≤ k ≤ m − 1. Let T1 = {y|1 ≤ y ≤ k − 1} and
T2 = {x|1 ≤ x ≤ m− 2, k 6 |x}.

Then A(T1∪St(m, 1)) = A(T2∪St(m, 1)) = St(m, 1) and there is an edge
from T1 to T2 of length m− 2− bm−2k c
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Proof: Firstly we know that St(m, 1) ⊆ A(T1 ∪ St(m, 1)) and St(m, 1) ⊆
A(T2 ∪ St(m, 1)).

Next, given y ∈ T1 we see that k− y ∈ T1, y+ (k− y) = k 6∈ T1 ∪St(m, 1)
therefore y 6∈ A(T1 ∪ St(m, 1)) and A(T1 ∪ St(m, 1)) = St(m, 1)

Next, given x ∈ T2 Case 1: x + k − 1 ≤ m − 1. Now say x ≡ y(mod k)
(1 ≤ y ≤ k − 1). We see that k − y ∈ T2 and k − y ∈ T1 (1 ≤ k − y ≤ k − 1),
and x+ k − y 6∈ T2 ∪ St(m, 1) which means x 6∈ A(T2 ∪ St(m, 1)) and x+ T1 6⊆
T2 ∪ St(m, 1)

Case 2: x+ k− 1 > m− 1 i.e.(m− 1)− x < k− 1 so (m− 1)− x ∈ T1 and
(m− 1)− x ∈ T2 and x+ ((m− 1)− x) = m− 1 6∈ T2 ∪ St(m, 1) which means
x 6∈ A(T2 ∪ St(m, 1)) and x+ T1 6⊆ T2 ∪ St(m, 1).

Combining we see that A(T2 ∪ St(m, 1)) = St(m, 1) and that there is an
edge from T1 to T2.

Theorem 8.50. degree(gm(x)) = m− 1− d
√
m− 2e − b m−2

d
√
m−2ec

Proof: Given an edge from T1 to T2 of length d, if |T1| = k − 1 then by
lemma 8.48 |T2| ≤ m− 2−bm−2k c so d ≤ m− 1− k−bm−2k c and by elementary

calculus we see that d ≤ m− 1− d
√
m− 2e − b m−2

d
√
m−2ec.

Finally picking k = d
√
m− 2e in lemma 8.49 we find an edge of length

m − 1 − d
√
m− 2e − b m−2

d
√
m−2ec. Therefore it is the length of the longest edge

and hence the degree of gm(x)

Remark 8.51. The sequence deg(gm(x)) can be described combinatorially as
follows: let n = m−1 we draw a lattice spiral of n points (0, 0), (0, 1), (1, 1), (1, 0), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (0, 3) . . . .
Let the number of lattice squares (of area 1) formed be dn. Note that each point
leads to a new square except for k2 + 1th point (k ≥ 0) and k2 + k + 1th point
(k ≥ 1). Say (a− 1)2 < n− 1 ≤ a2 (So a = d

√
n− 1e)

• If n− 1 6= a2. Then #{k2 + 1|0 ≤ k, k2 + 1 ≤ n} = a.

Now if n < (a−1)2+(a−1)+1 (i.e. n−1 < (a−1)a) then #{k2+k+1|1 ≤
k, k2+k+1 ≤ n} = a−2 = bn−1a c. (Notice that a−2 = a2−2a

a < a2−2a+1
a ≤

n−1
a < a− 1). Hence dn = n− a− bn−1a c

On the other hand if n ≥ (a − 1)2 + (a − 1) + 1 (i.e. n − 1 ≥ (a − 1)a)
then #{k2 + k + 1|1 ≤ k, k2 + k + 1 ≤ n} = a − 1 = bn−1a c (as a − 1 ≤
n−1
a < a2

a = a). Therefore dn = n− a− bn−1a c

• If n− 1 = a2. Then #{k2 + 1|0 ≤ k, k2 + 1 ≤ n} = a+ 1

Also n > (a − 1)2 + (a − 1) + 1 (i.e. n − 1 ≥ (a − 1)a) and hence
#{k2 + k + 1|1 ≤ k, k2 + k + 1 ≤ n} = a − 1 = bn−1a c − 1 (as n−1

a = a).
Therefore dn = n− a− bn−1a c

37



8.3.2 Transposed Staircase St(l,m, n) Families

Definition 8.52. St(l,m, n) = {0, lm, (l + 1)m, . . . (l + n)m→}.

In general, for constant l and m, the P values these semigroups follow the
same pattern as the corresponding St(m,n) staircase for n large enough.

Theorem 8.53. When m = 2, P (S) is constant. In particular, with l constant,
as sufficiently large n grows, the size of the void and the structure of the red
triangles stays the same.

Proof: Consider S = 2l, 2l + 2, . . . 2m →, with F = 2m − 1. Then,
B(S) = {2, 4, . . . 2l− 2, F − 2l+ 2, . . . F − 2}. Then, |B(S)| does not depend on
2m. Furthermore, if (a, b, c) ∈ B is a red triangle, then a+ b+ c = F . However,
the first half of B is even, and the second half is odd, so without loss of the
generality, let c = F−2k, a, b even. Then for a different semigroup in the family,
S′ with Frobenius number F ′, all red triangles (a, b, F − 2k) of S correspond to
red triangles of S′, (a, b, F ′ − 2k).

Let T ⊆ B have A(T ∪ S) = S. Then, for semigroup S′ with S ⊆ S′,
define T ′ as T except for a > F

2 , a′ = a + F ′ − F ∈ T ′. Then, T ′ ⊆ B′ and
A(T ′ ∪ S′) = S′.

If s ∈ T ′, then if s < F ′

2 , s ∈ T , so it must cancel. If s > F ′

2 , s+F−F ′ ∈ T ,
so either F ′ − s ∈ T or there is a triangle with two even elements (which are
the same in T and T ′ so it cancels.

If s ∈ S ⊆ S′, s + TT ∪ S. For t ∈ T with t < F
2 , t is even so s + t ∈ S′.

If t > F
2 , it is shifted down along with F ′, so s+ t′ ⊆ T ′ ∪ S′.

If s ∈ S′ \ S, let t′ ∈ T ′. If t′ > F
2 , and s′ < F ′, s′ + t′ is even so it is in

S. If t′ < F ′

2 , it is equivalent to t ∈ T . Then, if s+ t 6∈ T ′ ∪ S′, s+ t′ < F ′, but
then s+ F − F ′ + t′ < F , but s+ F − F ′ ∈ S, which is a contradiction.

Thus, A(T ′ ∪ S′) = S′.
For m = 3, it is also constant. To map one T numerical set to another, if

a ∈ T is 0 mod 3, keep it the same. If a ≡ 1 mod 3, and F − 1 ∈ T , delete a if
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a > F ′ and leave it otherwise; if F − 1 6∈ T , replace it with a−F +F ′. If a ≡ 2
mod 3, replace with a− F + F ′.

We can also look at the P values for transposed staircase semigroups where
the conductor is not necessarily a multiple of m. For example, the 3n staircase
{0, 6, 9, 12, 15, 17→}.

Example 8.54. The P values for some of these families:

S = {0, 10, 15, 20, 25, . . . c→}: P (S) =


26b c5c+ 58 c ≡ 0, 1 mod 5

26b c5c+ 54 c ≡ 3 mod 5

100 c ≡ 2, 4 mod 5

S = {0, 15, 20, 25, 30, 35 . . . c→}: P (S) =


532b c5c+ 1096 c ≡ 0, 1 mod 5

532b c5c+ 998 c ≡ 3 mod 5

2184 c ≡ 2, 4 mod 5

S = {0, 12, 18, 24, 30, . . . c→}: P (S) =



200b c6c+ 115 c ≡ 0, 1 mod 6

100b c6c+ 132 c ≡ 2 mod 6

150b c6c+ 160 c ≡ 3 mod 6

100b c6c+ 166 c ≡ 4 mod 6

150b c6c+ 326 c ≡ 5 mod 6

S = {0, 14, 21, 28, 35, . . . c→}: P (S) =



172b c7c
2 + 834b c7c+ 716 c ≡ 0, 1 mod 7

86b c7c
2 + 597b c7c+ 667 c ≡ 2 mod 7

86b c7c
2 + 780b c7c+ 642 c ≡ 3 mod 7

86b c7c
2 + 552b c7c+ 544 c ≡ 4 mod 7

86b c7c
2 + 736b c7c+ 808 c ≡ 5 mod 7

86b c7c
2 + 927b c7c+ 1501 c ≡ 6 mod 7

9 Max Embedding Dimension

Definition 9.1. Given a Numerical Semigroup S, we define the void-height of
S as following:

Say Apery set of S is (0, P1, P2, . . . , Pm−1) s.t. Pi ≡ i(mod m).

Then the void-height of S is the smallest element of the set D = {Pi+Pj−Pr

m |i+
j ≡ r(mod m)1 ≤ i, j, r ≤ m− 1}. It is denoted by h(S)

Lemma 9.2. S is of maximum embedding dimension iff h(S) ≥ 1

Definition 9.3. Given a numerical semigroup S with Apery set (0, P1, P2, . . . , Pm−1)
s.t. Pi ≡ i(mod m). We define E(S, n) to be the numerical semigroup generated
by {m,P1 +mn,P2 +mn, . . . , Pm−1 +mn}

Remark 9.4. Note that E(E(S, n1), n2) = E(S, n1 + n2) and E(S, n) ⊆ S.

Lemma 9.5. h(E(S, n)) = h(S) + n, F (E(S, n)) = F (S) + nm

Corollary 9.5.1. If n ≥ 1 then E(S, n) has max embedding dimension.
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Lemma 9.6. If x ≥ 0 then mn+ x ∈ E(S, n) iff x ∈ S

Lemma 9.7. x ∈ E(S, n) iff m|x or x−mn ∈ S

In the next few lemmas we describe how to obtain the B-Poset of E(S, n)
given the B-Poset of S

Lemma 9.8. If the Apery Poset of S is (0, P1, P2, . . . , Pm−1) s.t. Pi ≡ i(mod m)
and Pb = Max{Pi} (i.e. F (S) = Pb−m) then B(E(S, n)) = B(S)∪{Pi+am|0 ≤
a ≤ n− 1, b 6= i}

Proof: If x ∈ B(S) then x 6∈ S and hence x 6∈ E(S, n). If F (E(S, n))−x ∈
E(S, n) then F (S) +mn− x ∈ E(S, n) and by lemma 9.6 F (S)− x ∈ S which
is a contradiction. Therefore x ∈ B(E(S, x)) and B(S) ⊆ B(E(S, x)).

If x ∈ Gap(S) \ B(S) then F (S) − x ∈ S and hence F (E(S, n)) − x =
F (S)− x+mn ∈ E(S, n) and x 6∈ B(E(S, n))

Finally if x ∈ Gap(E(S, n))∩S then x = Pi+ml for some i, 0 ≤ l ≤ n−1.
F (E(S, n))− x = F (S) +mn− (Pi +ml) = F (S)− Pi +m(n− l)

Case 1: i = b, then F (E(S, n))−x = (Pi−m)−Pi+m(n−l) = m(n−1−l) ∈
E(S, n) and x 6∈ B(E(S, n))

Case 2: i 6= b, then m 6 |F (E(S, n))−x therefore by lemma 9.7 F (E(S, n))−
x ∈ E(S, n) iff F (E(S, n)) − x −mn ∈ S, but F (E(S, n)) − x −mn = F (S) −
Pi−ml and if it was in S then F (S) = (F (S)−Pi−ml) + (Pi +ml) ∈ S which
is impossible. Therefore F (E(S, n)) − x 6∈ E(S, n) and hence x ∈ B(E(S, n))
(remember x ∈ Gap(E(S, n))) �

Lemma 9.9. If x ∈ B(E(S, n))\B(S), y ∈ B(E(S, n)) then x 4 y =⇒ m|y−x
(4 is of B(E(S, n)))

Proof: By lemma 9.8 x ∈ B(E(S, n)) \ B(S) implies x = Pi + am with
i 6= b and 0 ≤ a ≤ n − 1. x 4 y means that y − x ∈ E(S, n). By lemma 9.7
either m|y − x or y − x−mn ∈ S.

If m 6 |y− x then y− x−mn ∈ S. Note that x ∈ S and hence y−mn ∈ S
and hence y ∈ E(S, n) which is a contradiction. �

Lemma 9.10. If x ∈ B(S), y ∈ B(E(S, n)) and m 6 |y − x then
x 4 y in B(E(S, n)) implies y −mn ∈ B(S)

Proof: We know that y − x ∈ E(S, n) and m 6 |y − x so by lemma 9.7
y − x−mn ∈ S. B(S) + S ∈ S ∪B(S) therefore y −mn = x+ (y − x−mn) ∈
S ∪ B(S). Now if y − mn ∈ S then y ∈ E(S, n) which is a contradiction.
Therefore y −mn ∈ B(S)

Lemma 9.11. If z ∈ B(S) then z +mn ∈ B(E(S, n))

Proof: We know that B(S) + S ⊆ S ∪ B(S) so z + mn ∈ S ∪ B(S).
z + mn ∈ B(S) =⇒ z + mn ∈ B(E(S, n)), on the other hand if z + mn ∈ S
then z + mn = Pi + am for some i, a ≥ 0. So z = Pi − (n − a)m, since z 6∈ S
we must have n − a ≥ 1. Moreover we have (Pi −m) − z = (n − a − 1)m ∈ S
so Pi −m 6= F (S) i.e. i 6= b and hence by lemma 9.8 z +mn ∈ B(E(S, n))
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Lemma 9.12. If x ∈ B(S), y ∈ B(E(S, n)) and m 6 |y − x then
x 4 y in B(E(S, n)) iff x 4 y −mn in B(S)

Proof: We know that m 6 |y − x so by lemma 9.7 y − x ∈ E(S, n) iff
y − x−mn ∈ S

Definition 9.13. Say the Apery Set of S is (0, P1, P2, . . . , Pm−1) we define L(S)
to be the Numerical Semigroup generated by {m,P1−m,P2−m, . . . , Pm−1−m}

Lemma 9.14. L(E(S, 1)) = S
Moreover if all Pi > 2m and h(S) ≥ 1 then E(L(S), 1) = S

Lemma 9.15. If h(S) = h and m ≥ 3 then Pl > hm for each l

If Pl 6= F + m then ∃l′ 6= 0 s.t. Pl+l′(mod m) = F + m and hence hm ≤
Pl + Pl′ − (F +m) < Pl (As Pl′ < F +m). Moreover if Pl = F +m then pick
an Pa 6= F +m (such a exists as m > 2) then km < Pa < F +m

Corollary 9.15.1. If h(S) ≥ 2 then E(L(S), 1) = S

Corollary 9.15.2. Say h(S) = h, S1 = L(S), S2 = L(S1),. . . Sh−1 = L(Sh−2).
Then E(Sh−1, h− 1) = S and h(Sh−1) = 1

Lemma 9.16. As always let the Apery set of S be (0, P1, P2, . . . , Pm−1), assume
h(S) ≥ 1, let S′ = E(S, n). If (Pi + (n − 1)m, a, b) is a red triangle of E(S, n)
then a, b ∈ B(S)

Proof: If a 6∈ B(S) then a ∈ B(E(S, n)) \ {B(S)} and by lemma 9.8
a = Pj + lm s.t. Pj −m 6= F (S) and 0 ≤ l ≤ n− 1.

F (E(S, n)) = Pi+(n−1)m+a+b, hence b = F (E(S, n))−Pi−(n−1)m−a =
F (S) + mn − Pi − mn + m − Pj − lm = F (S) − Pi − Pj + m − lm. Now
h(S) ≥ 1 means that Pi + Pj −m ∈ S and hence Pi + Pj −m + lm ∈ S and
b = F (S)−(Pi+Pj−m+lm) ∈ Gap(S)\B(S) and by lemma 9.8 this contradicts
the fact that b ∈ B(E(S, n))

Lemma 9.17. If h(S) ≥ 1, (0, P1, P2, . . . , Pm−1) is the Apery Set of S as
always. Then (Pi + (n− 1)m, a, b) is a red triangle of E(S, n) iff (Pi −m, a, b)
is a red triangle of S

Proof: Firstly note that if (Pi + (n− 1)m, a, b) is a red triangle of E(S, n)
then a, b ∈ B(S). Also of course if (Pi − m, a, b) is a red triangle of S then
a, b ∈ B(S). Therefore in both directions we can assume a, b ∈ B(S)

Now (Pi + (n − 1)m, a, b) is a red triangle of E(S, n) iff F (E(S, n)) =
Pi + nm−m+ a+ b iff F (S) = Pi −m+ a+ b iff (Pi −m, a, b) is a red triangle
of S �

Lemma 9.18. F (E(S, n))− (Pi + (n− 1)m) = F (S)− (Pi −m) ∈ B(S)

Definition 9.19. Assume h(S) ≥ 1 We define categories among subsets of
B(E(S, n)). If T is an order ideal of B(E(S, n)) the category of T is (T ∩
B(S), {x|x ∈ B(S), F (E(S, n))− x ∈ T})
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Lemma 9.20. Assume h(S) ≥ 1. If T is an order ideal of B(E(S, n)) and T ′

is an order ideal of B(E(S, n′)) s.t. T and T ′ have the same category.
Then A(T ∪ E(S, n)) = E(S, n) iff A(T ′ ∪ E(S, n′)) = E(S, n′)

Proof: Assume A(T ∪ E(S, n)) = E(S, n). Now if Pi + (n′ − 1)m ∈ T ′,
note that x = F (E(S, n′)) − (Pi + (n′ − 1)m) = F (S) − (Pi − m) ∈ B(S).
Now T and T ′ have the same category so F (E(S, n)) − x ∈ T . Note that
F (E(S, n))− x = F (E(S, n))− F (S) + Pi −m = Pi + (n− 1)m

Now we know from theorem 3.13 that either F (E(S, n))−(Pi+(n−1)m) ∈
T or there is a triangle (Pi + (n− 1)m, a, b) of B(E(S, n)) for which a ∈ T and
F (E(S, n))− b 6∈ T

Case 1: F (E(S, n)) − (Pi + (n − 1)m) ∈ T , then note that F (E(S, n)) −
(Pi + (n − 1)m) = F (S) − (Pi − m) ∈ B(S). Now since T and T ′ have the
same category F (S) − (Pi − m) ∈ T ′. Finally note that F (S) − (Pi − m) =
F (E(S, n′))− (Pi + (n′ − 1)m)

Case 2: (Pi + (n − 1)m, a, b) is a triangle of B(E(S, n)) for which a ∈ T
and F (E(S, n)) − b 6∈ T . Lemma 9.17 tells us that (Pi − m, a, b) is a red
triangle of S, a, b ∈ B(S). A further application of lemma 9.17 tells us that
(Pi + (n′ − 1)m, a, b) is a red triangle of E(S, n′). Moreover a, b ∈ B(S), a ∈ T ,
F (E(S, n)) − b 6∈ T so T and T ′ having the same category implies that a ∈ T ′
and F (E(S, n′))− b 6∈ T ′

With theorem 3.13 we conclude that A(T ′ ∪ E(S, n′)) = E(S, n′)

Lemma 9.21. If T is an order ideal of B(E(S, n)) and T ′ ⊆ B(E(S, n′)) and
T , T ′ have the same category and x, y ∈ B(E(S, n′)), m|y − x, x ∈ T ′ implies
y ∈ T ′

then T ′ is an order ideal of B(E(S, n′))

Proof: Let x ∈ T ′, x 4 y in B-Poset of E(S, n′). Now if m|y − x then
y ∈ T ′. So now assume m 6 |y − x, lemma 9.9 says x ∈ B(S). Next lemma
9.10 says y −mn′ ∈ B(S) and lemma 9.12 says x 4 y −mn′ in B-Poset of S.
A further application of lemma 9.12 says x 4 y −mn′ + mn in the B-Poset of
E(S, n).

x ∈ B(S), T and T ′ have the same categories, hence x ∈ T which implies
y −mn′ +mn ∈ T .

F (E(S, n))−(y−mn′+mn) = F (S)+mn−y+mn′−mn = F (S)−(y−mn′).
We know that y−mn′ ∈ B(S) which means F (S)−(y−mn′), T and T ′ have the
same categories, therefore F (E(S, n′))−(F (E(S, n))−(y−mn′+mn)) ∈ T ′. But
F (E(S, n′))−(F (E(S, n))−(y−mn′+mn)) = F (E(S, n′))−(F (S)−(y−mn′)) =
F (S) +mn′ − F (S) + y −mn′ = y. Thus y ∈ T ′ and T ′ is an order ideal.

Lemma 9.22. The number of good numerical sets of E(S, n) within a fixed
category is eventually a polynomial of n.

Moreover its degree is then number of Pi s.t. ∀y ∈ B(S) y ≡ (F (S) −
(Pi − m))(mod m) implies y is in the second component of the category and
∀x ∈ B(S) x 4 Pi −m implies x is not in the first component of the category
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Remark 9.23. In most examples it seems that P (E(S, n)) is not just eventually
a polynomial, but a polynomial from the start (h(S) ≥ 1).

However I am not entirely sure if this is true, S =< 14, 34, 43, 54, 63, 72, 74, 83, 92, 94, 101, 103, 121, 123 >
might be a counter e.g.

P (E(S, 0)) = 1214, P (E(S, 1)) = 22180, P (E(S, 2)) = 136690, P (E(S, 3)) =
517844, P (E(S, 4)) = 1488694, P (E(S, 5)) = 3580084, P (E(S, 6)) = 7595690

Remark 9.24. Remember these definitions for the next theorem:
given an order ideal T of B(S), Tri(T ) = {(a, b)|a, b ∈ B(S),∃P ∈ T ∩

PF (S), P +a+b = F (S), a ∈ T, F (S)−b 6∈ T}, X1(T ) = {a|∃b, (a, b) ∈ Tri(T )}
and X2(T ) = {y|∃a, (a, F (S)− y) ∈ Tri(T )}

Remark 9.25. We will show that P (E(S, 1)) ≥ P (S) if h(S) ≥ 1. In order
to do this we define an injective map from good numerical sets of S to good
numerical sets of E(S, 1). Given T s.t. A(T ∪S) = S define f1(T ) = {x+m|x ∈
T} ∪ {x|x ∈ T, ∀z ∈ X2(T ), x 6≡ z(mod m)}

Lemma 9.26. If h(S) ≥ 1 and T is an order ideal of B(S) then f1(T ) is an
order ideal of E(S, 1)

Proof: if x ∈ f1(T ) and x 4 y in B(E(S, 1))

• if x−m ∈ T and x ≡ y(mod m) then x−m, y−m ∈ B(S), x−m ≤ y−m
so x−m 4 y−m in B(S) which implies y−m ∈ T which implies y ∈ f1(T )

• if x ∈ T, ∀z ∈ X2(T ), x 6≡ z(mod m) and x ≡ y(mod m); then y ∈ T
(x ≤ y). And ∀z ∈ X2(T ), y 6≡ z(mod m). Therefore y ∈ f1(T )

• if x 6≡ y(mod m) then y − x ∈ E(S, 1) =⇒ (y − m) − x ∈ S. Now if
x ∈ B(S) then x ∈ T and hence y −m ∈ T and y ∈ f1(T ). On the other
hand if x 6∈ B(S) then x − m ∈ PF (S) which implies x ∈ PF (E(S, 1))
which implies y = x

It follows that f1(T ) is an order ideal of B(E(S, 1)) �

Theorem 9.27. If h(S) ≥ 1 and A(T ∪ S) = S then A(f1(T ) ∪ E(S, 1)) =
E(S, 1)

Proof: If P ∈ f1(T )∩PF (E(S, 1)) then P −m ∈ T which means P −m ∈
T ∩ PF (S). Now theorem 3.13 implies that either F (S) − (P − m) ∈ T or
∃(a, b) ∈ Tri(T ) s.t. P −m+ a+ b = F (S)

• if F (S) − (P −m) ∈ T ; If ∃z ∈ X2(T ) s.t. z ≡ F (S) − (P −m)(mod m)
then F (S)−(P−m) 4 z which implies z ∈ T and we have a contradiction.
Therefore ∀z ∈ X2(T ) z 6≡ F (S) − (P −m)(mod m) and hence F (S) −
(P −m) ∈ f1(T ) Finally note that F (S)− (P −m) = F (E(S, 1))− P

• Next if ∃(a, b) ∈ Tri(T ) s.t. P −m + a + b = F (S). By corollary 3.19.1
∀z ∈ X2(T ) z 6≡ a(mod m) and hence a ∈ f1(T ). And F (E(S, 1))−b−m =
F (S)− b 6∈ T , F (E(S, 1))− b−m ∈ X2(T ), hence F (E(S, 1))− b 6∈ f1(T )
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It follows from theorem 3.13 that A(f1(T ) ∪ E(S, 1)) = E(S, 1) �

Corollary 9.27.1. f1(T ) ∩ PF (E(S, 1)) = ((T ∩ PF (S)) + m), Mi(T ) =
Mi(f1(T )) and Tri(T ) ⊆ Tri(f1(T ))

Theorem 9.28. If h(S) ≥ 1 then P (E(S, 1)) ≥ P (S)

Proof: We just need to show that the map is injective. Let T1, T2 be
good numerical sets of S s.t. f1(T1) = f1(T2). Then T1 and T2 have the same
Pseudo-Frobenius numbers and the conjugates of the same Pseudo-Frobenius
numbers.

If x ∈ T1 and x−m ∈ T1 then x ∈ (f1(T1)∩B(S)) = (f1(T2)∩B(S)) and
hence x ∈ T2

If x ∈ T1 and ∀z ∈ X2(T1) z 6≡ x(mod m) then x ∈ (f1(T1) ∩ B(S)) =
(f1(T2) ∩B(S)) and hence x ∈ T2

If (a, b) ∈ Tri(T1), say a + b + P = F (S) for P ∈ T1 ∩ PF (S). Then
a ∈ f1(T1) as seen above and hence a ∈ T2. Next F (S)−b+m 6∈ f1(T1) because
F (S) − b 6∈ T1 and F (S) − b + m ≡ F (S) − b(mod m) Now if F (S) − b ∈ T2
then F (S) − b + m ∈ f1(T2) = f1(T1) which is a contradiction. Therefore
Tri(T1) = Tri(T2)

Finally if x ∈ T1, x − m 6∈ T1 and ∃z ∈ X2(T1) z ≡ x(mod m). Then
x + m ∈ f1(T1) = f1(T2). Now z ∈ X2(T2) as Tri(T1) = Tri(T2) therefore
x ∈ T2

We conclude that T1 = T2 and the map is injective. �

Definition 9.29. We define a new map f2(T ) = {x+m|x ∈ T}∪{x|x ∈ T, ∃a ∈
X1(T ), x ≡ a(mod m)} ∪Mi(T )

Lemma 9.30. If h(S) ≥ 1 and T is an order ideal of B(S) then f2(T ) is an
order ideal of B(E(S, 1))

Proof: if x ∈ f2(T ) and x 4 y in B(E(S, 1))

• if x−m ∈ T and x ≡ y(mod m) then x−m, y−m ∈ B(S), x−m ≤ y−m
so x−m 4 y−m in B(S) which implies y−m ∈ T which implies y ∈ f2(T )

• if x ∈ T, ∃a ∈ X1(T ), x ≡ a(mod m) and x ≡ y(mod m); then y ∈ T
(x ≤ y). And y ≡ a(mod m). Therefore y ∈ f2(T )

• if x ∈ Mi(T ) and x ≡ y(mod m); then either x = y in which case we
are done or x 4 y −m in B(S) which implies y −m ∈ T which implies
y ∈ f2(T )

• if x 6≡ y(mod m) then y − x ∈ E(S, 1) =⇒ (y − m) − x ∈ S. Now if
x ∈ B(S) then x ∈ T and hence y −m ∈ T and y ∈ f2(T ). On the other
hand if x 6∈ B(S) then x − m ∈ PF (S) which implies x ∈ PF (E(S, 1))
which implies y = x

It follows that f2(T ) is an order ideal of B(E(S, 1)) �
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Theorem 9.31. If h(S) ≥ 1 and A(T ∪ S) = S, then A(f2(T ) ∪ E(S, 1)) =
E(S, 1)

Proof: If P ∈ f2(T )∩PF (E(S, 1)) then P −m ∈ T which means P −m ∈
T ∩ PF (S). Now theorem 3.13 implies that either F (S) − (P − m) ∈ T or
∃(a, b) ∈ Tri(T ) s.t. P −m+ a+ b = F (S)

• if F (S) − (P −m) ∈ T ; then F (S) − (P −m) ∈ Mi(T ) ⊆ f2(T ) Finally
note that F (S)− (P −m) = F (E(S, 1))− P

• Next if ∃(a, b) ∈ Tri(T ) s.t. P − m + a + b = F (S). Then a ∈ X1(T )
and hence a ∈ f2(T ). F (S) − b 6∈ T ; F (E(S, 1)) − b − m ∈ B(S) =⇒
F (E(S, 1)) − b 6∈ Mi(T ). Also F (E(S, 1)) − b − m = F (S) − b 6∈ T ,
by corollary 3.19.1 6 ∃a′ ∈ X1(T ) a′ ≡ F (S) − b(mod m) and hence
F (E(S, 1))− b 6∈ f2(T ).

It follows from theorem 3.13 that A(f2(T ) ∪ E(S, 1)) = E(S, 1) �

Corollary 9.31.1. f2(T ) ∩ PF (E(S, 1)) = ((T ∩ PF (S)) + m), Mi(T ) =
Mi(f2(T )), Tri(T ) ⊆ Tri(f2(T ))

Lemma 9.32. If h(S) ≥ 1, then f2 is an injective map.

Proof: If f2(T1) = f2(T2), then T1 and T2 have the same Pseudo-Frobenius
numbers and Mi(T1) = Mi(T2).

If x ∈ T1 and x−m ∈ T1, then x ∈ (f2(T1)∩B(S)) = (f2(T2)∩B(S)) and
hence x ∈ T2.

If x ∈ T1 and ∃a ∈ X1(T1) with a ≡ x(mod m), then x ∈ (f2(T1)∩B(S)) =
(f2(T2) ∩B(S)), and hence x ∈ T2.

If x ∈ T1 and x ∈Mi(T1) then x ∈ T2.
If (a, b) ∈ Tri(T1), say a + b + P = F (S) for P ∈ T1 ∩ PF (S). Then

a ∈ f2(T1) and hence a ∈ T2. Next F (S)−b+m 6∈ f2(T1) because F (S)−b 6∈ T1,
F (S) − b + m 6∈ Mi(T ) and ∀a′ ∈ X1(T1) : F (S) − b 6≡ a′(mod m). Now if
F (S) − b ∈ T2 then F (S) − b + m ∈ f2(T2) = f2(T1) which is a contradiction.
Therefore Tri(T1) = Tri(T2).

Finally if x ∈ T1, x − m 6∈ T1, x 6∈ Mi(T1) and ∀a′ ∈ X1(T1) x 6≡
a′(mod m). Then x+m ∈ f2(T1) = f2(T2). Now x+m 6∈Mi(T2), ∀a′ ∈ X1(T2)
x+m 6≡ a′(mod m) as Tri(T1) = Tri(T2) therefore the fact that x+m ∈ f2(T2)
implies x ∈ T2.

We conclude that T1 = T2 and the map is injective. �

Lemma 9.33. h(S) ≥ 1, T is an order ideal of B(S) then f2(T ) ⊆ f1(T )

Theorem 9.34. If h(S) ≥ 1, If ∃T s.t. A(T ∪ S) = S and f1(T ) 6= f2(T ) then
P (E(S, 1)) > P (S)

Proof: If possible assume that P (E(S, 1)) = P (S). Then the maps f1 and
f2 are both surjective. Now consider the set Z = {T ′|f1(T1) = T ′ = f2(T2), T1 6=
T2}. The assumption implies that f1 and f2 are not identical functions and hence

45



Z is non empty. Now consider a maximal element of Z (under containment),
say it is T ′ = f1(T1) = f2(T2) with T1 6= T2. Now f1(T1) = f2(T2) ⊆ f1(T2) by
lemma 9.33. Moreover the fact that T1 6= T2 and f1 being injective imply that
f1(T2) is strictly bigger than T ′ (under containment). But the maximality of
T ′ implies that f1(T2) = f2(T2) which is a contradiction.

Remark 9.35. The previous theorem tell us that if h(S) ≥ 1 and P (E(S, 1)) =
P (S) then for every good numerical set of S f1(T ) = f2(T ) which means that
{x(mod m)|x ∈ T} \ {y(mod m)|y ∈ X2(T )} = {a(mod m)|a ∈ X1(T )} ∪
{z(mod m)|z ∈Mi(T )}

Definition 9.36. If h(S) ≥ 1 and T ′ is a good numerical set of of E(S, 1).
Then define g1(T ′) = (T ′ ∩B(S)) ∪ {x−m|x ∈ T ′,∃z ∈ X2(T ′)x ≡ z(mod m)}
(note that g1(T ′) is not always an order ideal of B(S), but it is always a subset)

Lemma 9.37. If h(S) ≥ 1 and T is an order ideal of of B(E(S, 1)). Then
g1(Nu(T )) is an order ideal of B(S)

Proof: Say x ∈ g1(Nu(T )) and x 4 y in B(S). (Also assume x 6= y as
otherwise we have nothing to prove)

• If x ∈ Nu(T ); y−x ∈ S and hence y−x+m ∈ E(S, 1) which implies y+m ∈
Nu(T ). If possible assume y 6∈ Nu(T ) then either ∃P ∈ PF (E(S, 1)) \ T
s.t. y 4 P in B(E(S, 1)) or ∃z ∈ X2(T ) s.t. y 4 z.

Note that we also have x 6≡ y(mod m) (because x ≡ y(mod m) and x < y
imply y ∈ Nu(T )). Now y + m − x ∈ E(S, 1), y − x 6∈ E(S, 1) imply
y +m− x ∈ Ap(E(S, 1))

– If ∃P ∈ PF (E(S, 1)) \ T s.t. y 4 P in B(E(S, 1)); then y + m 64 P
in B(E(S, 1)). Therefore y 6≡ P (mod m), P − y ∈ E(S, 1) and
P − y −m 6∈ E(S, 1) i.e. P − y ∈ Ap(E(S, 1))

Finally h(E(S, 1)) ≥ 2, so P − y, y + m − x ∈ Ap(E(S, 1)) imply
(P − y) + (y+m− x)− 2m ∈ E(S, 1). (P − y) + (y+m− x)− 2m =
P − x meaning x 4 P in B(E(S, 1)) and hence P ∈ T which is a
contradiction

– ∃z ∈ X2(T ) s.t. y 4 z; Replace P with z in the previous argument
and it will work here.

So y ∈ Nu(T ) ∩B(S) and hence y ∈ g1(Nu(T ))

• If x 6∈ Nu(T ); then x ∈ g1(T ) implies ∃z ∈ X2(T ) x ≡ z(mod m) and
x+m ∈ Nu(T ).

Now x+m ∈ Nu(T ) implies z ≤ x
If z < x then by corollary 3.14.2 x ∈ Nu(T ) which is a contradiction. And
hence z = x

Note that we also have x 6≡ y(mod m) (because x ≡ y(mod m) and x < y
imply y ∈ Nu(T )).
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By corollary 3.14.2 z = x ≺ y + m (in B(E(S, 1))) implies y + m ∈ T ⊆
Nu(T )

If possible assume y 6∈ g1(Nu(T )) then y 6∈ Nu(T ) and 6 ∃z′ ∈ X2(T )
y +m ≡ z′(mod m)

Now y 6∈ Nu(T ) so either ∃P ∈ PF (E(S, 1)) \ T s.t. y 4 P in B(E(S, 1))
or ∃z1 ∈ X2(T ) s.t. y 4 z1

We combine the two cases, denote either P or z1 by α, note that α 6∈
Nu(T )

α− y ∈ E(S, 1) and α− (y +m) 6∈ E(S, 1), so α− y ∈ Ap(E(S, 1))

y+m−x ∈ E(S, 1), so y+m−x = β+ lm for some β ∈ Ap(E(S, 1)) and
l ≥ 0.

Now h(E(S, 1)) ≥ 2 so (α− y) +β−2m ∈ E(S, 1) which implies (α− y) +
(β+lm)−2m ∈ E(S, 1). (α−y)+(β+lm)−2m = (α−y)+(y+m−x)−2m =
α− x−m i.e. x+m 4 α in B(E(S, 1)) which contradicts α 6∈ Nu(T )

Lemma 9.38. If h(S) ≥ 1 and T is an order ideal of of B(E(S, 1)). (g1(Nu(T ))∩
PF (S)) +m = Nu(T ) ∩ PF (E(S, 1)) = T ∩ PF (E(S, 1))

Proof: Firstly it is clear that ((g1(Nu(T )) ∩ PF (S)) + m) ⊆ Nu(T ) ∩
PF (E(S, 1))

Next if P ∈ Nu(T )∩PF (E(S, 1)) and P −m 6∈ g1(Nu(T )) then P −m 6∈
Nu(T ) and 6 ∃z ∈ X2(T ) s.t. z ≡ P (mod m).

P −m 6∈ Nu(T ) implies either ∃Q ∈ PF (E(S, 1)) \ T s.t. P −m 4 Q in
B(E(S, 1)) or ∃z ∈ X2(T ) s.t. P −m 4 z

Obviously P −m 6= Q; z = P −m would imply x ≡ z(mod;m) which is
not the case.

Now we combine the two cases by denoting by α either Q or z. We have
P −m ≺ α in B(E(S, 1)) (they are not equal). α 6∈ Nu(T ) =⇒ α 6= P and
hence P −m 6≡ α(mod m). It follows that P −m ≺ α −m in B(S) which is
impossible as P −m ∈ PF (S). �

Theorem 9.39. If h(S) ≥ 1 and A(T∪E(S, 1)) = E(S, 1). Then A(g1(Nu(T ))∪
S) = S

Proof: Firstly we have shown that g1(Nu(T )) is an order ideal of B(S)
Given P ∈ g1(Nu(T )) ∩ PF (S) we know that P +m ∈ T ∩ PF (S). And

by theorem 3.13 either F (E(S, 1)) − (P + m) ∈ T or there is a red triangle
(P +m, a, b) s.t. a ∈ T and F (E(S, 1))− b 6∈ T .

• If F (E(S, 1)) − (P + m) ∈ T ; F (E(S, 1)) − (P + m) = F (S) − P ∈
Nu(T ) ∩B(S) which implies F (S)− P ∈ g1(Nu(T ))

• If there is a red triangle (P +m, a, b) s.t. a ∈ T and F (E(S, 1))− b 6∈ T ;
a ∈ T =⇒ a ∈ NU(T ) ∩B(S) =⇒ a ∈ g1(Nu(T )).

Also F (E(S, 1))−b = F (S)−b+m 6∈ NU(T ) implies F (S)−b 6∈ g1(Nu(T ))
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Corollary 9.39.1. If h(S) ≥ 1 and A(T∪E(S, 1)) = E(S, 1). Then Mi(Nu(T )) =
Mi(g1(Nu(T ))) and Tri(Nu(T )) = Tri(g1(Nu(T )))

Proof: It is clear that Mi(Nu(T )) = Mi(g1(Nu(T ))) and Tri(Nu(T )) ⊆
Tri(g1(Nu(T ))). If (a, b) ∈ Tri(g1(Nu(T ))) \ Tri(Nu(T )) then either a 6∈
Nu(T ) or F (E(S, 1))− b ∈ Nu(T )

• If a 6∈ Nu(T ) then a + m ∈ Nu(T ) and ∃z ∈ X2(Nu(T )) s.t. z ≡
a(mod m).

a+m ∈ Nu(T ) =⇒ z ≤ a
If z < a then by corollary 3.14.2 a ∈ Nu(T ) which is not the case. There-
fore z = a

But z −m ∈ X2(g1(Nu(T ))) and a ∈ X1(g1(Nu(T ))) and we get a con-
tradiction to corollary 3.19.1

• If a ∈ Nu(T ) then F (E(S, 1)) − b ∈ Nu(T ) and F (S) − b 6∈ g1(Nu(T ))
which implies that F (S) − b 6∈ Nu(T ) and 6 ∃z ∈ X2(Nu(T )) s.t. z ≡
a(mod m)

F (S)− b 6∈ Nu(T ) implies either ∃P ∈ PF (E(S, 1)) \T s.t. F (S)− b 4 P
or ∃z ∈ X2(Nu(T )) s.t. F (S)− b 4 z
In the second case z 6= F (S) − b; In the first case P 6= F (S) − b as
F (S)− b+m ∈ B(E(S, 1))

We combine the two cases by denoting either P or z by α, so F (S)−b ≺ α
in B(E(S, 1)) and α 6∈ Nu(T )

α − F (S) + b ∈ E(S, 1), α − F (S) + b−m 6∈ E(S, 1) i.e. α − F (S) + b ∈
Ap(E(S, 1))

Say Q was the Pseudo-Frobenius number of S for which Q+a+ b = F (S)
so F (S)−b = Q+a. Thus α−F (S)+b = α−Q−a = α−a+m−(Q+m)
i.e. α− a+m = (Q+m) + (α− F (S) + b) i.e. α− a+ 2m = (Q+ 2m) +
(α − F (S) + b). And h(E(S, 1)) ≥ 2 implies α − a + 2m − 2m ∈ E(S, 1)
which implies α ∈ Nu(T ) which is a contradiction.

Corollary 9.39.2. If h(S) ≥ 1 and A(T∪E(S, 1)) = E(S, 1). Then f1(g1(Nu(T ))) ⊆
Nu(T )

Proof: It follows from the previous corollary and the definitions of g1 and
f1

Definition 9.40. If h(S) ≥ 1 and T ′ is a good numerical set of of E(S, 1).
Then define g2(T ′) = (T ′ ∩B(S))∪ {x−m|x ∈ T ′ \X1(T ), F (S)− x 6∈ PF (S)}
(note that g2(T ′) is not always an order ideal of B(S))

Lemma 9.41. If h(S) ≥ 1 and T is an order ideal of of B(E(S, 1)). Then
g2(Nl(T )) is an order ideal of B(S)

Proof: Say x ∈ g2(Nl(T )) and x 4 y in B(S). (Also assume x 6= y as
otherwise we have nothing to prove)
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• If x ∈ Nl(T ); y − x ∈ S and hence y − x + m ∈ E(S, 1) which implies
y + m ∈ Nl(T ). Now y ∈ B(S) =⇒ F (S) − (y + m) 6∈ PF (S). By
lemma 3.14 (and the fact that x ≺ y + m in B(E(S, 1)) we know that
y +m 6∈ X1(Nl(T )) and hence y ∈ g2(Nl(T )).

• If y ≡ x(mod m) then y ∈ g2(Nl(T ))

• If y−x ∈ E(S, 1) then x+m ≺ y+m in B(E(S, 1)) so y+m ∈ Nl(T ) and
by lemma 3.14 y+m 6∈ X1(Nl(T )). Also y ∈ B(S) =⇒ F (S)−(y+m) 6∈
PF (S) and hence y ∈ g2(Nl(T ))

• If x 6∈ Nl(T ) then x+m ∈ Nl(T )\X1(Nl(T )). Now x+m 6∈ X1(Nl(T )) =⇒
x + m 6∈ X1(T ) and x ∈ B(S) =⇒ x + m 6∈ Mi(T ), moreover x ≺ y
in B(S) implies x 6∈ PF (S) =⇒ x + m 6∈ PF (E(S, 1)). It follows that
∃α ∈ X1(T ) ∪Mi(T ) s.t. α ≺ x+m in B(E(S, 1)). Now α 6≡ x(mod;m)
(otherwise x ∈ Nl(T )). Observe that x+m−α ∈ E(S, 1), x−α 6∈ E(S, 1)
i.e. x+m− α ∈ Ap(E(S, 1)).

We can assume y 6≡ x(mod m) and y − x 6∈ E(S, 1) (otherwise we are
back to a previous case). Also y − x ∈ S =⇒ y − x + m ∈ E(S, 1)
and hence y +m− x ∈ Ap(E(S, 1)) (we have already done the case when
y − x ∈ E(S, 1))

Next h(E(S, 1)) ≥ 2 so (y + m − x) + (x + m − α) − 2m ∈ E(S, 1) i.e.
y − α ∈ E(S, 1). α ∈ X1(T ) ∪ Mi(T ) =⇒ α ∈ Nl(T ) =⇒ y ∈
Nl(T ) =⇒ y ∈ g2(Nl(T ))

Lemma 9.42. h(S) ≥ 1. If T is an order ideal of B(E(S, 1)) then T ∩
PF (E(S, 1)) = (g2(T ) ∩ PF (S)) +m

Lemma 9.43. If h(S) ≥ 1 and T is a good numerical set of E(S, 1). Then
A(g2(Nl(T )) ∪ S) = S

Proof: Firstly we have shown that g2(Nl(T )) is an order ideal of B(S)
Say P ∈ g2(Nl(T ))∩PF (S) then P +m ∈ Nl(T )∩PF (S) =⇒ P +m ∈

T ∩ PF (S). So either F (E(S, 1)) − (P + m) ∈ T or there is a a red triangle
(P +m, a, b) s.t. a ∈ T or F (E(S, 1))− b 6∈ T

• If F (E(S, 1)) − (P + m) ∈ T ; Note F (E(S, 1)) − (P + m) = F (S) − P ∈
Nl(T ) ∩B(S) =⇒ F (S)− P ∈ g2(Nl(S))

• If there is a a red triangle (P +m, a, b) s.t. a ∈ T or F (E(S, 1))− b 6∈ T .
So P + a+ b = F (S), a ∈ Nl(T ) ∩B(S) and hence a ∈ g2(Nl(T )).

F (S)− b+m = F (E(S, 1))− b 6∈ Nl(T ) =⇒ F (S)− b 6∈ g2(Nl(T ))

So by theorem 3.13 A(g2(Nl(T )) ∪ S) = S

Corollary 9.43.1. If h(S) ≥ 1 and A(T∪E(S, 1)) = E(S, 1). Then Mi(Nl(T )) =
Mi(g2(Nl(T ))) and Tri(Nl(T )) = Tri(g2(Nl(T )))
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Proof: Firstly we know (g2(Nl(T ))∩PF (S))+m = Nl(T )∩PF (E(S, 1)) =
T∩PF (E(S, 1)). AndMi(Nl(T )) ⊆Mi(g2(Nl(T ))), Tri(Nl(T )) ⊆ Tri(g2(Nl(T ))).

First we show that Mi(g2(Nl(T ))) = Mi(Nl(T )). If P ∈ (g2(Nl(T )) ∩
PF (S)) s.t. F (S) − P ∈ g2(Nl(T )) but F (S) − P 6∈ Nl(T ). This means that
F (S)− P +m ∈ Nl(T ) and F (S)− P +m ∈ (X1(Nl(T )) ∪Mi(T ))

Obviously F (S)− P +m 6∈Mi(T ) so F (S)− P +m ∈ X1(T )
Now x 4 F (S)−P+m in B(E(S, 1)) and x 6= F (S)−P, F (S)−P+m imply

x 4 F (S)−P in B(S) which is impossible. Therefore F (S)−P+m is a minimal
element of Nl(T ) and hence belongs to X1(T ) ∩Mi(T ) ∩ (T ∩ PF (E(S, 1))).

We know F (S) − P + m 6∈ (X1(T ) ∩ Mi(T )), hence F (S) − P + m ∈
PF (E(S, 1))∩T . Which means that F (S)−P +m 6∈ B(S) but this contradicts
F (S)− P +m ∈ X1(T )

Therefore Mi(g2(Nl(T ))) = Mi(Nl(T )).
Next we show that Tri(Nl(T )) = Tri(g2(Nl(T ))). If possible say (a, b) ∈

Tri(g2(Nl(T ))) \ Tri(Nl(T )). So a ∈ g2(Nl(T )), F (S) − b 6∈ g2(Nl(T )) and
either a 6∈ Nl(T ) or F (S) +m− b ∈ Nl(T )

• If a 6∈ Nl(T ); then a ∈ g2(Nl(T )) implies a + m ∈ Nl(T ) and a + m ∈
X1(Nl(T )) ∪Mi(Nl(T ))

Obviously a+m 6∈Mi(Nl(T )), so a+m ∈ X1(Nl(T )). But X1(Nl(T )) ⊆
X1(g2(Nl(T ))) so both a, a+m ∈ X1(g2(Nl(T ))) which is a contradiction
to corollary 3.19.1.

• And if a ∈ Nl(T ) then F (S) +m− b ∈ Nl(T ). Now F (S)− b 6∈ g2(Nl(T ))
implies F (S) +m− b ∈ X1(Nl(T )) ∪Mi(Nl(T ))

Obviously F (S)− b+m 6∈Mi(Nl(T )), So F (S)− b+m ∈ X1(Nl(T )) but
then F (S)− b+m ∈ X1(g2(Nl(T ))) and F (S)− b ∈ X2(g2(Nl(T ))) which
contradicts corollary 3.19.1

Therefore Tri(g2(Nl(T ))) = Tri(Nl(T ))

Corollary 9.43.2. If h(S) ≥ 1 and A(T ∪ E(S, 1)) = E(S, 1). Then Nl(T ) =
f2(g2(Nl(T )))

Proof: Follows from previuos corollary and the definitions of g2 and f2

Remark 9.44. Summarising several of the previous lemmas and theorems:
If h(S) ≥ 1 and T is a good numerical set of E(S, 1) then g2(Nl(T )) and

g1(Nu(T )) are good numerical sets of S, f2(g2(Nl(T )) = Nl(T ) and f1(g1(Nu(T )) =
Nu(T )

Consider the following sets of Numerical Sets:
Z1(T ) = {T ′ ⊆ B(S)|A(T ′∪S) = S, g2(Nl(T )) ⊆ T ′ ⊆ g1(Nu(T )), f2(T ′) ⊆

T}
Z2(T ) = {T ′ ⊆ B(S)|A(T ′ ∪ S) = S, g2(Nl(T )) ⊆ T ′ ⊆ g1(Nu(T )), T ⊆

f1(T ′)}
We know that g2(Nl(T )) ∈ Z1 and g2(Nu(T )) ∈ Z2, so they are non

empty.
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Remark 9.45. By continuing in this direction by picking a large T1 ∈ Z1 and
a small T2 in Z2 hope to show T1 = T2 and f2(T1) ⊆ T ⊆ f1(T1)

Possible approach: Try to find conditions under which for a given T1 ∃T ′
s.t. f2(T1) = f1(T ′)

Conjecture 9.46. For each good numerical set T of E(S, 1) there is a good
numerical set T1 of S s.t. f2(T1) ⊆ T ⊆ f1(T1)

Remark 9.47. Consequences of the conjecture:

• P (S) = P (E(S, 1)) iff f1, f2 are identical functions

• P (S) = P (E(S, 1)) iff P (E(S, 1)) = P (E(S, 2))

Another possible consequence might be that P (E(S, n)) is a polynomial
from the start.

Lemma 9.48. If h(S) ≥ 1 and A(T ∪ E(S, 1)) = E(S, 1) then Mi(Nl(T )) ∪
X1(Nl(T )) = Mi(T ) ∪X1(T )

Proof: We know that Mi(Nl(T )) = Mi(T ), Tri(T ) ⊆ Tri(Nl(T )).
If (a, b) ∈ Tri(Nl(T ))\Tri(T ), then using the fact that Nl(T ) is generated

by Mi(T )∪X1(T )∪(T ∩PF (E(S, 1))) corollary ?? implies a ∈Mi(T )∪X1(T )∪
(T ∩ PF (E(S, 1))). But a ∈ T ∩ PF (E(S, 1)) is impossible as then a 6∈ B(S).
Therefore X1(Nl(T )) ⊆ X1(T ) ∩Mi(T )

Definition 9.49 (term could be changed later or removed). Call a max embed-
ding dimension semigroup covered if for each good numerical set of it f1(T ) =
f2(T ).

Note that this is iff {x(mod m)|x ∈ T} ⊆ {a(mod m)|a ∈ X1(T )} ∪
{z(mod m)|z ∈Mi(T )} ∪ {y(mod m)|y ∈ X2(T )}

Remark 9.50. Note that f1, f2 are identical iff S is covered

Theorem 9.51. For a fixed multiplicity m, and natural number P if there is
no max embedding dimension, non-bad (bad semigroups are defined in a later
section) semigroup s.t. m(S) = m, P (S) = P , P (E(S, 1)) = P (S)

then numerical semigroups with P (S) = P have density 0 (within semi-
groups of multiplicity m)

Proof: under conditions of the theorem #{S|m(S) = m,P (S) = P, Snotbad, F (S) ≤
F} ≤ #{S|m(S) = m,h(S) = 1, F (S) ≤ F} as P (S) = P at most once on each
ray. Finally semigroups with height 1 have density 0

Conjecture 9.52. For each multiplicity the set {P |∃S,m(S) = m,P = P (S) =
P (E(S, 1)), h(S) ≥ 1, S is not bad} is finite
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9.1 Semigroups Along a Ray on a face of the Kunz Poly-
hedron

Semigroups whose Kunz tuples all lie on the same face of the Kunz Polyhedron
have the same Apery Poset. Furthermore, we can find the Apery sets for all
semigroups that lie along the same ray on a facet of the Kunz Polyhedron.

Lemma 9.53. If S0 with Apery set {0, a1, a2, . . . , am−1} is the first semigroup
on a ray, semigroups Sk with Apery sets {0, a1+mka1, a2+mka2, . . . ,mkam−1}
lie on the same ray.

Proof: {0, a1, a2, . . . , am−1} is the first integer tuple on the ray, and the ray
is then (ba1m c+

1
m , b

a2
m c+

2
m , . . . , b

am−1

m c+ m−1
m ). To get another integer value, if

the greatest common divisor of the ais is 1, we must add m times the ray to the
first tuple, which gives a tuple of (ma1+a1−1m , ma2+a2−2m . . . mam−1+am−1−m+1

m ),
corresponding to Apery set {0, a1 +mka1, a2 +mka2, . . . , am−1 +mkam−1}.

If the greatest common divisor is not 1, the semigroups of this form do
still lie along the ray, but if d = gcd, then adding m

d times the ray to the initial
semigroup will also produce integer points.

Lemma 9.54. If the void of S0 is B0, then Bk the void of Sk is constructed by
B0 by noting for each b ∈ B0, for 0 ≤ l ≤ mk, b+mbk +ml ∈ Bk.

Proof: Let af be the largest element of the Apery set, so af − m = F ,
the Frobenius number. Then, the Frobenius number of Bk is af +mafk−m =
F+m(F+m)k. Note also that for i, j < m where i+j ≡ f mod m, all elements
of the void set in the i equivalence class are between ai and F − (aj −m).

The largest element in equivalence class i is ai − m, and the smallest
element is F − aj + m. Then, the largest element of Bk in equivalent class
i is ai + mkai − m = (ai − m) + m(ai − m)k + m2k which is satisfied by
letting l = mk, and the smallest element is F + m(F + m)k − (aj + mkaj) =
(F − aj +m) +m(F − aj +m)k which is reached when l = 0. �

Note that this means the void set grows by m|B0| as we move along the

line. If the greatest common divisor is not 1, then the void grows by m|B0|
d

between semigroups.
Considering only cases where the greatest common divisor of the elements

of the ray is 1, we see that the structure of the void poset for semigroups further
along the line can be constructed from the first one.

Note that the void elements of Bk corresponding to b are unique. If there
is some element of Bk that corresponds to both b and b′, b + mbk + ml =
b′ +mb′k +ml′, note that b ≡ b′, so b′ = b+ma, so

b+ma+m(b+ma)k +ml′ = b+mbk +ml

b+ma+mbk +m2ak +ml′ = b+mbk +ml

a+mak + l′ = l

a(1 +mk) = l − l′
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But l and l′ must be within mk, and so a = 0, so b = b′.
Thus every element in Bk corresponds to exactly one element of B0.

Furthermore, if we denote the generators of S0 as 〈m, g2, . . . gn〉 and Sk as
〈m, g2 + mkg2, . . . gn + mkgn〉, we know from Lemma 2.19 that every cover
relation in the B poset is a generator.

Lemma 9.55. For every element b in B0, if its cover relations are some subset
of the generators, then gi is an upper cover of b if and only if the corresponding
generator of Sk, gi +mkgi is an upper cover of the corresponding void element,
b+mbk +ml.

If gi is an upper cover of b, b+gi = c ∈ B0. Then b+mbk+ml+gi+mkgi =
c+mck+ml for every 0 ≤ l ≤ mk, so gi +mkgi is an upper cover for elements
of Bk corresponding to b.

If gi +mkgi is an upper cover for b+mk +ml, then b+mbk +ml+ gi +
mkgi = c+mck +ml′, though l′ is not necessarily equal to l. Then b+ gi ≡ c
mod m, so b+ gi +ma = c. Substituting, we get m+mbk +ml + gi +mkgi =
b + gi + ma + m(b + gi + ma)k + ml′. Then, l + kgi = a + gik + mak + l′, so
l − l′ = a(1 + mk). If a 6= 0, |l − l′| > mk which is impossible, so a = 0 and
b+ gi = c, so gi is an upper cover for b. �

Lemma 9.56. The red triangles of Bk correspond exactly to the red triangles
of B0.

If (P, a, b) form a red triangle in B0, P + a + b = F0, then ((1 + mk)P +
m2k, (1 + mk)a, (1 + mk)b) also forms a red triangle. The Frobenius number
Fk = F0 + (mF0 + m2)k because for ai the maximal element of the Apery set
of S0, Fk = m(maik+ ai)−m = (1 +mk)F0 +m2k. Thus, (1 +mk)P +m2k+
(1 +mk)a+ (1 +mk)b = (1 +mk)F0 +m2k = Fk, so this forms a red triangle.
Note that (1 +mk)a and (1 +mk)b are both minimal elements of Bk.

Pseudo-Frobenius numbers of Bk are of the form (1+mk)P+m2k because
they are the largest elements corresponding to the maximal elements of B0.
Thus, if ((1 +mk)P +m2k, (1 +mk)a+ml, (1 +mk)b+ml′) is a red triangle
in Bk, (P, a, b) is a triangle in B0.

Note also that if I is an order ideal in B0, then the set of all elements in
Bk corresponding to the elements of I form an order ideal in Bk.

Theorem 9.57. For semigroups formed in this way, the P value is a polynomial
as we travel along the ray.

Proof: First, we prove that an order ideal of Bk is a numerical set if
and only if every “slice” of its poset is a numerical set in B0. The lth slice
of the Bk poset is just the B0 poset, but for every b ∈ B0, we change it to
bk = b+mbk +ml.

If there is some slice l that is not a numerical set, either it is not an
order ideal, in which case Bk would also not be an order ideal, or the slice
contains a Pseudo-Frobenius number and neither its conjugate nor a red triangle.
If it contains some bad Pseudo-Frobenius number P0 in B0, then since the
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corresponding Pseudo-Frobenius number of Bk is above P +mPk+ml, Pk ∈ T ,
but its conjugate is below the conjugate of P0, so Pk 6∈ T . Similarly, P0 cannot
satisfy any red triangles (P0, a0, b0), but since the red triangles of B0 and Bk
correspond exactly, ak 4 a0 +ma0k+ml and b0 +mb0k+ml 4 bk, so ak cannot
be included, which would mean the original order ideal of Bk is not a numerical
set.

In the other direction, if every slice of the order ideal Ik is a numer-
ical set (and itself an order ideal), then every Pseudo-Frobenius number in
that slice satisfies either its conjugate or some red triangle in B0. Assume
for the sake of contradiction that Ik is not a numerical set. If Ik contains a
Pseudo-Frobenius number Pk in Bk, then the top slice contains the correspond-
ing Pseudo-Frobenius number P0 where Pk = (1 + mk)P0 + m2k. Since every
slice is a numerical set, then the top slice must either contain the conjugate P 0,

if Consider the slice where l = 0, and suppose the numerical set contains
a Pseudo-Frobenius number P0. Then, P0(1 +mk) ∈ Ik, and since Pk is above
that and Ik is an order ideal, Pk ∈ Ik.

Now, to count the number of good numerical sets, we just need to stack
slices chosen from the good numerical sets of B0 in such a way that the result
is an order ideal in Bk.

Remark 9.58. This behavior also appears to apply to semigroups along rays in
a face that do not start from the vertex; the void set grows by the same amount
each time, the void poset maintains the same general structure, and the P values
grow at the same rate.

9.2 Asymptotics for P (S) = 2, 3

Theorem 9.59. If S is of max embedding dimension and m(S) ≥ 5 then
P (S) ≥ 4.

Proof: Denote m(S) = m. Let the Apery set be (0, P1, P2, . . . , Pm−1) s.t.
Pi ≡ i(mod m)

Let h(S) = h, say Pi+Pj = Pr+hm. (Note h ≥ 1 as S has max embedding
dimension)

Note that Pl > hm for each l by lemma 9.15 (m > 2)
Now Pj > hm so Pi < Pr and similarly Pj < Pr and hence Pi 6= F −m

and Pj 6= F −m
By corollary 9.15.2 there is an S′ s.t. E(S′, h − 1) = S. h(S′) = 1, S′ is

of max embedding dimension. Apery Set of S′ is (0, P1− (h− 1)m, . . . , Pm−1−
(h− 1)m). Hence Pi − hm ∈ B(S′) ⊆ B(S) by lemma 9.8

Next if Pi − hm 4 x in the void then x− (Pi − hm) is a multiple of m by
lemma 9.12 (Remember that Pi − hm is a Pseudo-Frobenius number of S′)

Therefore the order ideal generated by Pi − hm is T1 = {Pi − nm|1 ≤
n ≤ h}. Similarly Pj − hm ∈ B and the order ideal generated by it is T2 =
{Pj−nm|1 ≤ n ≤ h}. Let T = T1∪T2, it is an order ideal, the Pseudo-Frobenius
numbers in it are Pi −m,Pj −m.

54



Case 1: If Pr = F + m then Pi −m = F − (Pi − m) = F + m − Pi =
(Pi + Pj − hm) − Pi = Pj − hm ∈ T and similarly Pj −m = Pi − hm ∈ T .
Therefore A(T ∪ S) = S, also note that T has at most 2 Pseudo-Frobenius
numbers (maybe just one if i = j) but the void has m−2 ≥ 3 Pseudo-Frobenius
numbers and hence T 6= B and P (S) ≥ 3.

In this case T is self dual, T 6= ∅, B means that we have at least 2 connected
components in GPF (S) and hence P (S) ≥ 4

Case 2: If Pr 6= F + m then Pr −m ∈ B and (Pi −m,Pj − hm,Pr −m)
is red triangle, Pj − hm ∈ T and Pr −m 6∈ T so Pi −m satisfies a red triangle,
similarly Pj −m satisfies the red triangle (Pj −m,Pi−hm,Pr −m). Therefore
A(T ∪ S) = S, T 6= B, ∅ so P (S) ≥ 3.

If T = T ∗ then a ∈ T ⇐⇒ a 6∈ T . Since the only Pseudo-Frobenius
numbers in T are Pi−m and Pj −m the rest of the Pseudo-Frobenius numbers
have their conjugates in T . But the only possible minimal elements in T are
Pi−hm and Pj−hm. Now if i = j then t−1 ≤ 2 which is impossible as m ≥ 5.
Therefore i 6= j and t− 1 ≤ 4. Therefore m ≤ 6

If m = 5 then PF (S) = {Pi −m,Pj −m,Pr −m,F}. Pr −m 6∈ T =⇒
F − (Pr − m) ∈ T =⇒ F − (Pr − m) ∈ {Pi − hm,Pj − hm}. WLoG say
F − (Pr −m) = Pj − hm and Pj + Pr = (F +m) + hm and hence we are back
to case 1.

If m = 6 then PF (S) = {Pi−m,Pj−m,Pr−m,Pl−m,F} and {F−(Pr−
m), F − (Pl −m)} = {Pi − hm,Pj − hm}. WLoG say F − (Pr −m) = Pj − hm
i.e. Pj + Pr = (F +m) + hm and we are back to case 1.

Therefore T 6= T ∗ and P (S) ≥ 4

Corollary 9.59.1. If m(S) ≥ 5 and S has max embedding dimension and
P (S) = 4 then one of the following happens

• GPF (S) has two connected components and all the good numerical sets
are self-dual.

• GPF (S) is connected, there is exactly one (un-ordered)triple (i, j, r) s.t.
Pi + Pj = Pr + hm, Pr − m 6= F , let T be the order ideal generated by
Pi − hm,Pj − hm and the only good numerical sets are ∅, B, T, T ∗

Remark 9.60. The following result (told to us by Chris) leads to the next
theorem

For a fixed multiplicity m

lim
F→∞

#{S|m(S) = m,F (S) ≤ F, S has max embedding dimension}
#{S|m(S) = m,F (S) ≤ F}

= 1

Theorem 9.61. For fixed multiplicity m ≥ 5

lim
F→∞

#{S|m(S) = m,F (S) ≤ F, P (S) = 1}
#{S|m(S) = m,F (S) ≤ F}

= 0

and

lim
F→∞

#{S|m(S) = m,F (S) ≤ F, P (S) = 2}
#{S|m(S) = m,F (S) ≤ F}

= 0
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and

lim
F→∞

#{S|m(S) = m,F (S) ≤ F, P (S) = 3}
#{S|m(S) = m,F (S) ≤ F}

= 0

Remark 9.62. For multiplicity m = 2, all semigroups have P (S) = 1
For multiplicity m = 3, all max E.D. semigroups have P (S) = 2 and hence

lim
F→∞

#{S|m(S) = 3, F (S) ≤ F, P (S) = 1}
#{S|m(S) = 3, F (S) ≤ F}

= 0

lim
F→∞

#{S|m(S) = 3, F (S) ≤ F, P (S) = 2}
#{S|m(S) = 3, F (S) ≤ F}

= 1

Lemma 9.63. If m(S) = 4 and S has max embedding dimension. Say the
Apery set is (0, P1, P2, P3)

• If P3 + P1 > 2P2 then P (S) = 2

• If P3 + P1 = 2P2 then P (S) = 3
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• If P3 + P1 < 2P2 then P (S) = 4

Proof:
Case 1: F = P3 − 4; P1 + P2 ≥ P3 + 4 i.e. P1 + P2 − P3 − 4 ∈ S (it

is divisible by 4). Which means (P1 − 4) + (P2 − 4) − F ∈ S and GPF (S) is
connected. P1 − P2 ≡ 3(mod 4) =⇒ (P1 − 4) − (P2 − 4) 6∈ B. P2 < 2P1 =⇒
P2 − P1 < P1 =⇒ (P2 − 4)− (P1 − 4) 6∈ S. Therefore (P2 − 4)− (P1 − 4) ∈ B
iff F − (P2 − P1) 6∈ S iff (P3 − 4) − P2 + P1 < P2 iff P3 + P1 < 2P2 + 4 iff
P3 + P1 ≤ 2P2.

It follows that P1+P3 > 2P2 implies (P1−4)−(P2−4), (P2−4)−(P1−4) 6∈
B and hence P (S) = 2

On the other hand if P1+P3 ≤ 2P2, then (P2−4)−(P1−4) = P2−P1 ∈ B.
Now P (S) = 3 if P2 − P1 = F − (P2 − 4) (i.e. P3 + P1 = 2P2) and P (S) = 4
otherwise.

Case 2: F = P2−4 then P1+1 ≤ P2 and P3+3 ≤ P2 therefore P1+P3+4 ≤
2P2 which implies P1+P3−4 < 2P2 i.e. (P1−4)+(P3−4)−(P2−4) < P2 which
means (P1 − 4) + (P3 − 4)− (P2 − 4) 6∈ S and hence GPF (S) is not connected
and P (S) = 4

Case 3: F = P1 − 4; is similar to Case 1

Corollary 9.63.1. For Numerical semigroups with multiplicity 4 density of
P (S) = 1 and P (S) = 3 is 0. Density of P (S) = 2 is ≈ 0.38 and density of
P (S) = 4 is ≈ 0.62 (exact values can be determined by computing volumes)
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9.3 Rays with P (S) = 4

In this section we show that if E(S, n) = 4 for a particular n then it is true for
all n (assuming S is of max E.D.)

Definition 9.64. Assume h(S) ≥ 1 We define new categories for order ide-
als T of B(E(S, n)), (A1, A2, X) where A1 = {Pi − m|Pi + (n − 1)m ∈ T},
A2 = {F (S) − (Pi − m)|F (S) − (Pi − m) ∈ T}. Let Tri(A1) = {(a, b)|a, b ∈
B(S), F (S)− a− b ∈ A1} X = {(a, b) ∈ Tri(A1)|a ∈ T, F (E(S, n))− b 6∈ T}.

Also note that X contains un-ordered pairs, we denote X1 = {∃b, (a, b) ∈
X}, X2 = {—

¯
∃a, (a, b) ∈ X}

Lemma 9.65. If (Pi−m, a1, b1) and (Pj −m, a2, b2) are red triangles in B(S).
Then F (S)− b2 4 a1 implies a1 = F (S)− b2 or a2 4 F (S)− b1

Proof: For this paragraph denote F (S) by F . So a1 − (F − b2) ∈ S, but
a1 + b2 − F = (F − (Pi − m) − b1) + (F − (Pj − m) − a2) − F = F − (Pi −
m) − (Pj − m) − b1 − a2. Now as Pi − m and Pj − m are Pseudo-Frobenius
numbers F − a2 − b1 ∈ S (unless F − (Pi −m) − (Pj −m) − b1 − a2 = 0 i.e.
a1 − (F − b2) = 0). Now a2 4 F − b1 in B(S)

Lemma 9.66. If h(S) ≥ 1 and T is an order ideal of E(S, n) then ∀n′ there
is an order ideal T ′ of E(S, n′) s.t. A1(T ′) = A1(T ), A2(T ) ⊆ A2(T ′) and
X(T ) ⊆ X(T ′)

Proof: For notation we denote A1 = A1(T ), A2 = A2(T ), X = X(T ),
A′1 = A1(T ′), A′2 = A2(T ′), X ′ = X(T ′)

Let T ′ be the order ideal of E(S, n′) generated by (A1 +mn′) ∪A2 ∪X1.

• Clearly A1 ⊆ A′1. Conversely if Pi−m ∈ A′1 then ∃x ∈ (A1+mn′)∪A2∪X1

s.t. x 4 Pi + (n′ − 1)m in B(E(S, n′))

– If x ∈ (A1 +mn′) then Pi −m ∈ A1

– If x ∈ A2 ∪ X1 then x ∈ B(S) ∩ T . Now x 4 Pi + (n′ − 1)m in
B(E(S, n′)) means that Pi −m− x+ n′m ∈ E(S, n′)

∗ If m 6 |Pi−m−x+n′m then Pi−m−x+n′m ∈ E(S, n′) implies
Pi −m − x ∈ S which implies Pi −m − x + nm ∈ E(S, n) i.e.
x 4 Pi+(n−1)m in B(E(S, n)) which implies Pi+(n−1)m ∈ T
i.e. Pi −m ∈ A1

∗ If m|Pi − m − x + n′m, then in B(S) either Pi − m ≺ x or
x 4 Pi − m according to Pi − m < x or x ≤ Pi − m. But
Pi − m ≺ x is impossible and hence x ≤ Pi − m. Therefore
x ≤ Pi + (n − 1)m and x 4 Pi + (n − 1)m in B(E(S, n)) which
implies Pi + (n− 1)m ∈ T i.e. Pi −m ∈ A1

• Clearly A2 ⊆ A′2
• If (a, b) ∈ X, say Pi − m + a + b = F (S) and Pi − m ∈ A1. Then
a ∈ X1 ∈ T ′. If possible assume F (E(S, n′)) − b ∈ T ′. Therefore ∃x ∈
(A1 +mn′) ∪A2 ∪X1 s.t. x 4 F (E(S, n′))− b in B(E(S, n′))

59



– If x ∈ (A1 +mn′), say x = Pi + (n′ − 1)m; then x 4 F (E(S, n′))− b
means Pi+(n′−1)m = F (E(S, n′))− b =⇒ Pi−m = F (S)− b =⇒
Pi + (n − 1)m = F (E(S, n)) − b. Now Pi − m ∈ A1 means that
Pi+(n−1)m ∈ T which contradicts the fact that F (E(S, n))−b 6∈ T

– If x ∈ A2 ∪ X1 then x ∈ B(S) ∩ T . Now x 4 F (E(S, n′)) − b in
B(E(S, n′)) means that F (S)− b− x+ n′m ∈ E(S, n′)

∗ If m 6 |F (S)− b− x− n′m; then F (S)− b− x + n′m ∈ E(S, n′)
implies F (S) − b − x ∈ S which implies F (S) − b − x + nm ∈
E(S, n) i.e. x 4 F (E(S, n)) − b in B(E(S, n)). This implies
F (E(S, n))− b ∈ T which is a contradiction.

∗ If m|F (S)− b− x− n′m
· If x ≤ F (S) − b then x ≤ F (S) − b + nm = F (E(S, n)) −
b which implies F (E(S, n)) − b − x ∈ E(S, n) i.e. x 4
F (E(S, n))−b inB(E(S, n)). This implies F (E(S, n))−b ∈ T
which is a contradiction.

· If F (S) − b < x then F (S) − b ≺ x in B(S) and hence
x 6∈ A2, x ∈ X1. So say Pj−m ∈ A1, x+y+Pj−m = F (S),
x ∈ T and F (E(S, n))−y 6∈ T . Now by lemma 9.65 we know
that a 4 F (S) − y in B(S) i.e. F (S) − y − a ∈ S which
implies F (E(S, n)) − y − a ∈ E(S, n) i.e. a 4 F (E(S, n)) −
y in B(E(S, n) and hence F (E(S, n)) − y ∈ T which is a
contradiction.

It follows that X ⊆ X ′

Corollary 9.66.1. If Pi−m ∈ A′2\A2 in the above construction then h(S) = 1,
n′ = 0 and ∃Pj −m ∈ A1 s.t. Pi + Pj = F (S) + 2m

Proof: If F (S) − (Pi − m) ∈ T ′ then ∃x ∈ (A1 + mn′) ∪ A2 ∪ X1 s.t. x 4
F (S)− (Pi −m) in B(E(S, n′)). Then of course x = F (S)− (Pi −m)

• If x ∈ A2 ∪X1 then x ∈ A2

• If x ∈ (A1+mn′), say F (S)−(Pi−m) = Pj+(n′−1)m, Pj−m ∈ A1. This
means (Pj+n′m)+(Pi+n

′m) = F (S)+2m+n′m = (F (E(S, n′))+m)+m
which implies h(E(S, n′)) ≤ 1. But h(S) ≥ 1 =⇒ h(S) = 1, n′ = 0 and
hence Pi + Pj = F (S) + 2m

Theorem 9.67. If h(S) ≥ 1, m(S) ≥ 5 and P (E(S, n1)) = 4 for some n1 ≥ 0.
Then P (E(S, n)) = 4 for all n ≥ 0

Proof: Firstly by theorem 9.59 P (E(S, n)) ≥ 4. Now by corollary 9.59.1

• Case 1: GPF (E(S, n1)) has two connected components and the only good
numerical sets of E(S, n1) are the self-dual ones. Moreover in this case
(Pi+n1m)+(Pj+n1m) = F (E(S, n1))+m+h(E(S, n1))m =⇒ (Pi−m)+
(Pj −m) = F (S) + (h(S)− 1)m, Let T1 be the order ideal of B(E(S, n1))
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generated by Pi − h(S)m,Pj − h(S)m. then the good numerical sets of
E(S, n1) are ∅, B(E(S, n1)), T1, T

∗
1 = T c1 .

Now if T is a good numerical set of E(S, n). Then consider the corre-
sponding order ideal T ′ of E(S, n1) given by lemma 9.66.

If h(S) > 1 or n1 > 0 then A′2 = A2 by corollary 9.66.1 and hence T is
self dual and P (S) = 4. Therefore now assume h(S) = 1 and n1 = 0

– T ′ = ∅ =⇒ T = ∅
– T ′ = T1 then A1 = {Pi−m,Pj −m}. As h(S) = 1 T ∩B(S) ⊆ {Pi−
m,Pj −m} therefore the only possible red triangle (of B(E(S, n)))
that Pi + (n − 1)m can satisfy is (Pi + (n − 1)m,Pi − m, b) which
means 2Pi− 2m+ b = F (S). We know that i+ j ≡ F (mod m) which
implies i ≡ b(mod m) which implies b = Pi −m, F (E(S, n)) − b =
Pj + (n− 1)m. Therefore the triangle cannot be satisfied. Similarly
Pj + (n− 1)m cannot satisfy a triangle and hence T is self dual.

– T ′ = B(S) This means X ′ = ∅ which implies X = ∅ and hence
T = B(E(S, n))

– T ′ = T ∗1 = T c1 ; So A1 = PF (S) \ {F, Pi −m,Pj −m}. Conjugates of
Pi+(n−1)m and Pj+(n−1)m are not in T . If possible assume T is not
self dual, therefore at least one Pseudo-Frobenius number does not
have its conjugate. It follows that T ∗ has Pi+(n−1)m,Pj+(n−1)m
and at least one more Pseudo-Frobenius number. Therefore (T ∗)′ =
B(S) and as seen earlier T ∗ = B(E(S, n)) which is impossible.

Therefore in Case 1 we see that P (E(S, n)) = 4

• Case 2: GPF (E(S, n1)) is connected (which means GPF (E(S, n2)) is
connected for each n2), there is exactly one (un-ordered)triple (i, j, r) s.t.
Pi + Pj = Pr + hm (here h = h(S)), Pr − m 6= F , let T1 be the order
ideal of B(E(S, n1)) generated by Pi − hm,Pj − hm and the only good
numerical sets of E(S, n1) are ∅, B, T1, T ∗1
By corollary 9.15.2 there is a S′ s.t. E(S′, h(S)− 1) = S, h(S′) = 1

Let T be a good order ideal of E(S, n), consider the corresponding T ′ of
E(S, n1) given by lemma 9.66

– T ′ = ∅ implies T = ∅
– T ′ = T1; So A1 = {Pi −m,Pj −m}, A′2 = ∅ =⇒ A2 = ∅. {Pi −
hm,Pj − hm} ⊆ X ′ ⊆ T1 ∩ B(S′) = {Pi − hm,Pj − hm} hence
X ′ = {Pi−hm,Pj−hm}. If ∃x ∈ T s.t. Pi−hm 64 x and Pj−hm 64 x
in B(E(S, n)). We must have x ≡ Pi or Pj(mod m), Say x = Pi−(h+
s)m. Then x ∈ B(S), The order ideal ofB(S) generated by x, Pj−hm
in B(E(S, n1)) is not a good numerical set so it must have a Pseudo-
Frobenius number other that Pi−m,Pj −m i.e. x 4 Pu + (n1− 1)m
for some u in B(E(S, n1)). Therefore x 4 Pu+(n−1)m in B(E(S, n))
which is a contradiction.
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– T ′ = T ∗1 ; Say i + α ≡ F (mod m) and j + β ≡ F (mod m) So A′1 =
{Ps−m|Ps−m 6= F} and A′2 = {F (S)−(Ps−m)|Ps−m 6= F, s 6= i, j}.
Therefore by corollary 9.66.1 A2 = A′2 and hence (T ∗)′ = T1 and by
the previous part T ∗ is generated by Pi − hm,Pj − hm

– T ′ = B(S). A1 = {Ps−m|Ps−m 6= F (S)}, A′2 = {Ps−m|Ps−m 6=
F (S)} and by corollary 9.66.1 {F (S) − (Ps − m)|Ps − m 6= F, s 6=
i, j} ⊆ A2. Therefore (T ∗)′∅ or T1. If (T ∗)′ = ∅ then T ∗ = ∅
and T = B(E(S, n)). And if (T ∗)′ = T1 then T ∗ is generated by
Pi − hm,Pj − hm which is a contradiction.

9.4 Red Triangles and bad hyperplanes in Max Embed-
ding Dimension

Remark 9.68. From this section on Pi will be used to denote Pseudo-Frobenius
numbers and Ai used to denote Apery set elements

Remark 9.69. The P values in the polyhedron suggests that certain hyper-
planes divide the polyhedron into regions of distinct P values.

Definition 9.70 (Bad Hyper-planes). Hyper-planes of the form of the form
Ai +Aj = Ak +Al where Ai, Aj , Ak, Al are in the apery set (or equivalently in
PF (S)) (and i+ j ≡ k + l(mod m)) are called bad hyper-planes.

A Numerical Semigroup is called bad if ∃P,Q,R ∈ PF (S) s.t. F + Q =
P +R. Note that all bad semigroups lie on a bad hyper-plane.

Lemma 9.71. S has max embedding dimension. Say Pi, Pj ∈ PF (S) and
i− j ≡ k(mod m), k+ l ≡ F (mod m) then Pi −Pj ∈ B(S) iff F −Pl ≤ Pi −Pj

Proof: Firstly Pi − Pj ∈ B(S) ⇐⇒ F − Pl 4 Pi − Pj 4 Pk. But
Pi − Pj 4 Pk follows from the fact that S has max embedding dimension.

Moreover Pi−Pj ≡ F−Pl(mod m) implies F−Pl 4 Pi−Pj ⇐⇒ F−Pl ≤
Pi − Pj �

Theorem 9.72. If S is of max embedding dimension then S is ignoble iff
∃Pi, Pj , Pl ∈ PF (S) \ {F} s.t. i− j ≡ F − l(mod m) s.t. F − Pl ≤ Pi − Pj

Proof: Follows from lemma 9.71

Remark 9.73. It follows that noble semigroups of max E.D. are geometrically
living in certain smaller polyhedrons of the kunz polyhedron

Moreover they have positive density, which can be calculated by computing
volumes.

Lemma 9.74. S has max embedding dimension. Suppose Pi, Pl ∈ PF (S)\{F},
and i+ l 6≡ F (mod m), i+ l 6≡ 2F (mod m).

Pick j s.t. i− j ≡ F − l(mod m). Then:

• F − Pl > Pi − Pj implies F − Pl 64 Pi i.e. Pl and Pi are not connected in
GPF (S). In this case Pi − Pj not in B
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• If F − Pl = Pi − Pj then F − Pl 64 Pi i.e. Pl and Pi are not connected in
GPF (S). In this case Pi − Pj is in B

• If F − Pl < Pi − Pj then F − Pl 4 Pi i.e. Pi and Pj are not connected in
GPF (S). In this case Pi − Pj is in B

Proof: The conditions ensure Pj ∈ PF (S) \ {F}
Pi− (F −Pl) ≡ j(mod m) so F −Pl 4 Pi iff Pi− (F −Pl) ≥ Aj = Pj +m

iff Pi − (F − Pl) > Pj iff Pi − Pj > F − Pl

Corollary 9.74.1. If S has max E.D. and S is not bad then given Pi, Pl ∈
PF (S) \ {F}, Pi + Pl 6≡ F, 2F (mod m). Then j ≡ i+ l − F (mod m)

Pi, Pl are connected in GPF (S) iff Pi − Pj ∈ B iff Pl − Pj ∈ B

Corollary 9.74.2. We can restate the result as follows: If S has max E.D. and
S is not bad then given Pi, Pj ∈ PF (S)\{F} s.t. i 6= j, i− j 6≡ F (mod m) then
l ≡ F − (i− j)(mod m) implies

Pi − Pj ∈ B iff Pi, Pl are connected in GPF (S) iff Pl − Pj ∈ B

Theorem 9.75. If S is a noble semigroup of max embedding dimension then

• The B poset has the simple structure: x 4 y iff m|y − x and x ≤ y

• If m is odd then P (S) = 2
m−1

2

• If m is even and F is odd then P (S) = 2
m−2

2

• If m and F are both even then P (S) = 2
m
2

Proof: If possible assume there are x 4 y in B-Poset s.t. m 6 |y − x. Say
F −Pl ≡ x(mod m) and Pi ≡ x(mod m). Then Pi, Pl are connected in GPF (S)
and Pi + Pl 6≡ F (mod m)

Note that Noble Semigroups are not bad. Next if Pi + Pl ≡ 2F (mod m)
then Pi + Pl − F ≡ F (mod m) and Pi, Pj < F =⇒ Pi + Pj − F < F which
contradicts Pi + Pj − F ∈ S.

Therefore by previous lemma Pi − Pj ∈ B and we have a contradiction.
It follows that the only edges on the Pseudo-Frobenius graph are when

Pi + Pl ≡ F (mod m) (which are indeed edges)
This means that the graph mostly consists of components of size to except

when 2Pi ≡ F (mod m) in which case Pi is an isolated point.
Now if m is odd then the graph has m − 2 vertices, there is exactly one

i for which 2Pi ≡ F (mod m). Hence the number of connected components is
1 + m−3

2
Next if m is even and F is odd then there is no i for which 2Pi ≡ F (mod m)

hence there are m−2
2 connected components.

Finally if m and F are both even then there are two i for which 2Pi ≡
F (mod m) hence there are 2 + m−4

2 connected components. �
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Remark 9.76. This is not necessarily true in noble semigroups that are not of
max embedding dimension. For e.g. if S =< 6, 7, 8, 11 > then B(S) = {1, 5, 9},
it is noble and 1 4 9

Another e.g. S =< 6, 8, 11, 13, 15 > is noble, B(S) = {1, 3, 5, 7, 9}, cover
relations are 1 4 7, 1 4 9, 3 4 9

Corollary 9.76.1. If we look at numerical semigroups with a fixed multiplicity
m on the kunz polyhedron then:

• If m is odd then numerical semigroups with P (S) = 2
m−1

2 have a positive
density.

• If m is even then numerical semigroups with P (S) = 2
m−2

2 and those with
P (S) = 2

m
2 both have positive densities

Conjecture 9.77. If S is of max embedding dimension and not bad then P (S)
is even

The natural path towards proving this is to prove T 6= T ∗ for each good
numerical set of S

9.5 Multiplicity 5

Remark 9.78. These are the observations we will prove in this section. We
assume m(S) = 5 and S has max embedding dimension for each

• P (S) is even.

• P (E(S, 1)) = P (S) =⇒ P (S) ∈ {4, 6, 8}

• P (E(S, 1)) 6= P (S) =⇒ P (E(S, 1)) = P (S) + 2

• P (S) = 4, 8 have positive density, all other values of P have zero density.

Remark 9.79. We have a Numerical Semigroup of max embedding dimension
and multiplicity 5 (this assumption is maintained throughout this section even
if I forget to mention it in some lemma/theorem)

Say F ≡ 2k(mod 5), the Pseudo-Frobenius numbers of S are Pk, F, P3k, P4k

(so the Apery set of S is (Pk + 5, F + 5, P3k + 5, P4k + 5))
In GPF (S) P3k and P4k are connected, so the graph has at most 2 con-

nected components.
F − Pk ≡ Pk(mod 5) therefore F − Pk 4 Pk and Pk is connected to itself

in GPF (S)
Also P3k + Pk − F ≡ F (mod 5) and P3k + Pk − F > F so Pk and P3k

cannot be connected.
T1 = ∅, T ∗1 = B(S) are good numerical sets

Theorem 9.80. Let S be a numerical semigroup of maximum embedding di-
mension such that m(S) = 5.Then A(T ∪ S) = S =⇒ T 6= T ∗ and hence P (S)
must be even.
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Proof: Suppose that F ≡ 2k mod 5, and let PS be the Psuedo-Frobenius number
such that PS ≡ k mod 5. Similarly, let PP ≡ 4k mod 5, PP ′ ≡ 3k mod 5.

Now, let T ⊂ B such that A(T ∪ S) = S, T ∗ = T . Then T must include
exactly one and exclude exactly one of each pair {b, F−b} ⊂ B. Since PS−(F−
PS) ≡ 0 mod 5, and AS−(AF−AS) = PS−(F−PS)+5 > 0, PS−(F−PS) ∈ S,
and so F − PS 4 PS , implying PS ∈ T, F − PS 6∈ T . Thus, there must exist a
red triangle (PS , a, b), and so either PP − PS ∈ B or PP ′ − PS ∈ B. However,
F − PP ′ + PS ≡ 0 mod 5, and so PP ′ − PS 6∈ B.

Thus, if (PS , a, b), then a 4 PP − PS . Note a ∈ T → F − a 6∈ T and
similarly F − b 6∈ T → b ∈ T ; we must then have PP − PS ∈ T , and since
PP −PS ≡ PP ′ mod 5, PP ′ ∈ T, F −PP ′ 6∈ T . By the red antichain condition, if
F−PP 4 a, then PP ∈ T, F−PP 6∈ T As above, this would require PS−PP ′ ∈ B
or PP−PP ′ ∈ B, and PS−PP ∈ B or PP ′−PP ∈ B; however, since PP−PS > 0,
we must have PP ′ − PP , PS − PP ′ ∈ B to allow for red triangles; however, this
implies PS − PP > 0, which is impossible. This, together with the fact that
F − PS 64 PP − PS , implies F − P ′P 4 a, b, and this is the unique minimal
element below them; it must be true, then that a ≡ F −PP ′ ≡ PP mod 5, which
would require PP ∈ T , but this has already been shown to be impossible.

Lemma 9.81. If m(S) = 5, h(S) ≥ 1, A(T ∪ S) = S and |T ∩ PF (S)| = 1,
then T can only be one of the following:

• T2 generated by F − Pk, it exists iff GPF (S) has two connected compo-
nents, it is self dual

• T3 generated by Pk−P3k, it exists iff Pk−P3k ∈ B(S) and P4k+P3k ≤ 2Pk

• T4 generated by P3k − P4k, it exists iff P3k − P4k ∈ B(S) and Pk is not
connected to P4k in GPF (S)

Proof:

• Pk ∈ T ;

– If F − Pk ∈ T then T must be the order ideal generated by F − Pk,
denote it by T2. In this case the graph has 2 connected components,
T2 is one of the self dual order ideals. T ∗2 = B(S) \ T2 is another.

– If F−Pk 6∈ T then Pk must satisfy a triangle, but P3k−Pk 6≡ k(mod 5)
and P4k − Pk 6≡ k(mod 5) so no such T is possible.

• P3k ∈ T ; So P3k must satisfy a triangle. P4k − P3k 6≡ 3k(mod 5), but
Pk − P3k ≡ 3k(mod 5). So if (P3k, a, b) is satisfied then a 4 Pk − P3k.
If a ≺ Pk − P3k then by corollary 3.14.1 a 4 Pk which is impossible (in
Case 1). So a = Pk −P3k and T is the order ideal generated by Pk −P3k.
Denote this order ideal by T3, note that in this case Pk − P3k ∈ B(S)

Also Pk − P3k 64 P4k iff P4k − (Pk − P3k) ≤ Pk
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• P4k ∈ T ; it is similar to case when P3k ∈ T , T must be the order ideal
generated by P3k−P4k, we denote it by T4, in this case P3k−P4k ∈ B(S)

P3k − P4k 64 Pk iff Pk − (P3k − P4k) ≤ F iff Pk + P4k − F ≤ P3k iff
Pk + P4k − F 6∈ S

We are done. �

Lemma 9.82. If m(S) = 5, h(S) ≥ 1, A(T ∪ S) = S and |T ∩ PF (S)| = 2,
then T can only be one of the following:

• T5, generated by P4k − P3k and P4k − Pk

• If P4k − P3k = F − Pk then there is a family of good numerical sets, the
number of sets in the family increases by 1 when we go from S to E(S, 1)

• T6, generated by F − Pk, P3k − P4k

• T ∗2 , it exists iff GPF (S) has two connected components, it is self dual

• The adjoin of one of the order ideal described above.

Proof:

• Pk, P3k ∈ T ; P3k must satisfy a red triangle, say it satisfies (P3k, a, b)

– If a ≡ 3k(mod m) then Pk − P3k ∈ B(S) and a 4 Pk − P3k. And
F − b = P3k + a ≡ k(mod m). F − b 6∈ T =⇒ F − Pk 6∈ T .
Therefore Pk satisfies a triangle. P3k − Pk < 0 so its not in B(S),
so P4k − Pk ∈ B(S). Say (Pk, a1, b1) is satisfied then a1 ≡ 3(mod 5)
and a1 4 P4k − Pk. Now if a1 6= P4k − Pk then by corollary 3.14.1
a1 4 P4k which is a contradiction. Therefore a1 = P4k − Pk
Also by corollary 3.19.1 a1 = a, so F−b = P3k+a = P3k+P4k−Pk =
A3k+A4k−Ak−m. Max embedding dimension implies F−b+m ∈ S,
F − b 6∈ S shows F − b = Pk ∈ T and we have a contradiction.

– If a ≡ k(mod m) then P4k − P3k ∈ B(S) and a 4 P4k − P3k. Now if
a 6= P4k − P3k then by corollary 3.14.1 a 4 P4k which is a contradic-
tion. Therefore a = P4k − P3k

Now if P4k−P3k 6= F−Pk then by corollary ?? F−Pk 6∈ T and hence
Pk satisfies a triangle. P3k − Pk ≡ F (mod 5) so P3k − Pk 6∈ B(S).
Therefore P4k − Pk ∈ B(S) and a1 4 P4k − Pk. (here (Pk, a1, b1) is
the triangle that is satisfied). Next if a1 6= P4k − Pk then a1 4 P4k

which is impossible. So a1 = P4k−Pk. It follows that T is generated
by P4k − P3k and P4k − Pk. We denote this order ideal as T5

On the other hand if P4k−P3k = F−Pk then P4k−(F−Pk) = P3k 6∈
S, in this case all order ideals not containing P4k, and containing
F−Pk, P3k work. Note that the number of such order ideals increases
by one from S to E(S, 1)
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• Pk, P4k ∈ T ; then P4k does not have its conjugate in T , and hence must
satisfy a red triangle (P4k, a, b). Pk − P4k ≡ F (mod 5) so we must have
P3k − P4k ∈ B(S), a 4 P3k − P4k. If a 6= P3k − P4k then by corollary
3.14.1 a 4 P3k which is a contradiction. Therefore a = P3k − P4k.

P3k − Pk ≡ F (mod 5) and P4k − Pk ≡ P3k(mod 5) so neither can be in
T and hence Pk cannot satisfy a red triangle. So F − Pk ∈ T and T is
generated by F − Pk, P3k − P4k. Denote this order ideal by T6

• P3k, P4k ∈ T ;

– If both F − P3k, F − P4k are in T then T is self dual and GPF (S)
has two connected components.

– If only F − P3k is in T then T ∗ ∩ PF (S) = {Pk, P4k} and hence
T = T ∗6

– If only F−P4k is in T then T ∗∩PF (S) = {Pk, P3k} so either T = T ∗5
or T is the adjoin of a good numerical set of the family described in
that case.

– If neither of F − P3k, F − P4k is in T then they both must satisfy
a triangle. Pk − P4k ≡ F (mod 5) and P3k − P4k ≡ 4k(mod 5), so
P3k−P4k ∈ B(S). Also Pk−P3k ≡ 3k(mod 5), P4k−P3k ≡ k(mod 5),
so Pk−P3k ∈ B(S). Say the triangles being satisfied are (P3k, a1, b1)
and (P4k, a2, b2). a1 4 Pk − P3k, in fact a1 = Pk − P3k (because
Pk 6∈ T ). F − P3k 4 a2 4 P3k − P4k, F − b2 = P4k + a2 ≡ 3k(mod 5)
which contradicts corollary 3.19.1

We are done �

Lemma 9.83. If m(S) = 5, h(S) ≥ 1, A(T ∪ S) = S and |T ∩ PF (S)| = 3,
then T can only be one of the following:

• T ∗1 = B(S)

• T ∗3

• T ∗4

Proof: If T has at least one minimal element then T ∗ has ≤ 2 Pseudo-
Frobenius numbers and is covered by previous lemmas.

Otherwise Pk, P3k, P4k must all satisfy red triangles. But the largest one
among them cannot, so no such T exists. �

Theorem 9.84. If m(S) = 5, h(S) ≥ 1 then either P (E(S, 1)) = P (S) or
P (E(S, 1)) = P (S) + 2

Proof: Follows from last three lemmas.

Theorem 9.85. If m(S) = 5, h(S) ≥ 1 then P (E(S, 1)) = P (S) implies
P (S) ≤ 8

67



Corollary 9.85.1. P ≥ 10 implies #{S|m(S) = 5, P (S) = P, F (S) ≤ F} =
#{S|m(S) = 5, P (S) = P + 2, F (S) ≤ F + 5}

Lemma 9.86. If m(S) = 5, h(S) ≥ 1 and S is not bad then

• P3k − Pk 6∈ B

• Pk − P4k 6∈ B

• Pk is connected to P4k in GPF (S) iff Pk − P3k ∈ B iff P4k − P3k ∈ B

• P3k is connected to itself iff P3k − P4k ∈ B

• P4k is connected to itself in B(S) iff P4k − Pk ∈ B

Corollary 9.86.1. Under the assumptions of the lemma an edge from Pk to
P4k and a loop on P3k cannot simultaneously exist

Corollary 9.86.2. Under assumptions of the lemma

• T1, T ∗1 exist

• T2, T ∗2 exist iff Pk is not connected to P4k in GPF (S)

• T3, T ∗3 exist iff Pk is connected to P4k in GPF (S) and P4k + P3k ≤ 2Pk

• T4, T ∗4 exist iff P3k is connected to itself in GPF (S)

• T5, T ∗5 exist iff Pk is connected to P4k and there is a loop around P4k in
GPF (S)

• T6, T ∗6 exist iff there is a loop around P3k in GPF (S)

Theorem 9.87. If m(S) = 5, h(S) ≥ 1 and F + P 6= Q + R for ∀P,Q,R ∈
PF (S) \ {F}. Then:

Note the trivial edges of GPF (S) are the edge between P3k, P4k and loop
on Pk

• If GPF (S) only has the trivial edges then P (S) = 4

• If the only non trivial edge on GPF (S) is a loop on P3k then P (S) = 8

• If the only non trivial edge on GPF (S) is a loop on P4k then P (S) = 4

• If the only non trivial edges on GPF (S) are loops on P3k and P4k then
P (S) = 8

• If the only non trivial edge is Pk connected to P4k then P (S) = 4

• If the only non trivial edges are the edge between Pk, P4k and a loop around
P4k then P (S) = 4 or 6 according to P4k +P3k > 2Pk or P4k +P3k ≤ 2Pk
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Proof:
Claim1: If Pk is connected to P4k but there is no loop around P4k then

P4k + P3k ≤ 2Pk
This is because Pk connected to P4k means Pk − P4k − F ∈ S which is

iff Pk + P4k − F > P3k And there is no loop around P4k so 2P4k − F 6∈ S i.e.
2P4k − F ≤ Pk. Adding the two (Pk + P4k − F ) + Pk > P3k + (2P4k − F ) i.e.
2Pk > P3k + P4k

Lemma 9.88. P4k +P3k ≥ 2Pk (it follows in some manner from kunz inequal-
ities)

Corollary 9.88.1. S is of max ED, m(S) = 5, S is not bad, P (S) = 6 imply
P4k + P3k = 2Pk.

In particular they lie on a hyperplane and have density 0

Theorem 9.89. For multiplicity 5, P (S) = 4, 8 have positive densities, all
other values of P combined have density 0.

Moreover density of P (S) = 4 is approximately 0.29:
And density of P (S) = 8 is approximately 0.71 : (exact values can calcu-

lated by computing volumes)

Remark 9.90. We observe that finitely many hyperplanes divide the polyhedron
into a number of regions, in each region the semigroups have the same GPF (S)
and it determines P (S)

Here is the distribution of various values of P for semigroups with F ≤ 133

The following graphs show the density different values of P plotted against
Frobenius number.
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If we restrict ourselves to numerical semigroups that are of max embed-
ding, not on bad hyperplanes and not on the hyperplane P4k + P3k = 2Pk (we
know that such semigroups have density 1). Then we get the following graphs
(remember that P (S) can only be 4 or 8) which show the density of P (S) = 4
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converging to around 71% and of P (S) = 8 to around 29%

9.6 Multiplicity 6

Conjecture 9.91. If m(S) = 6 (and no further restrictions) then P (S) can
take all values other than 5

Conjecture 9.92. Say S is of Multiplicity 6 and of max E.D. and not bad. Say
the generators of S are 〈6, a1, a2, a3, a4, F 〉 s.t. a1 < a2 < a3 < a4 then:

• P (S) is even as conjectured earlier

• If P (E(E(S, 1))) = P (S) then P (S) is one of 4, 6, 8, 12, 16

• If P (S) ≡ 2(mod 4) and P (S) 6= 6 then P (E(S, 1)) = P (S) + 2

• If P (E(S, 1)) 6= P (S) then a1 + a4 = a2 + a3

• a1 + a4 6= a2 + a3 implies P (S) = 4, 6, 8, 12, 16
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• If whenever {i1, i2} 6= {j1, j2} implies Ai1 +Ai2 6= Aj1 +Aj2 then P (S) =
4, 8, 16 and thus these are the only values that can have positive density

• P (S) = 4, 8, 16 are the only ones that have positive density

Definition 9.93 (Singular Hyperplanes). A hyperplane of the form Ai1 +Ai2 =
Aj1 +Aj2 , {i1, i2} 6= {j1, j2} is called a singular hyperplane.

The following graph plots densities of of P for semigroups of F ≤ 79 with
max embedding dimension, not lying on a singular hyper plane (we know that
singular hyperplanes behave differently and have density 0). The graph shows
the only P values are 4, 8, 16 and 4 appears around 80% times.

The next graphs show how densities of different values of P evolve with the
frobenius number. We again restrict to semigroups of max embedding dimension
not lying on singular planes. It appears that all 3 will converge to positive values.
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9.7 Conjectures Regarding densities of P (S) in kunz Poly-
hedron of fixed multiplicity

Conjecture 9.94. S is of max embedding dimension

• If S is not bad then P (S) is even

• If S is not bad and whenever i1, i2, j1, j2 are pairwise distinct Ai1 +Ai2 6=
Aj1 +Aj2 then P (S) = P (E(S, 1))

• If whenever {i1, i2} 6= {j1, j2} implies Ai1 + Ai2 6= Aj1 + Aj2 then P (S)
takes the values (and only these values): 22, 23, . . . 2m−2 and thus these
are the only values that can have positive density

• 22, 23, . . . 2m−2 all have positive densities

• density of 2d
m
2 e−1 is the largest among them (probably > 0.5)

• density of 2d
m
2 e is the second highest
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Conjecture 9.95. The hyperplanes Ai1 + Ai2 = Aj1 + Aj2 divide the kunz
polyhedron into a number of regions. All points in the same region take the
same value of P (S)

Remark 9.96. Things to investigate further:
Can the degree of the polynomial of P (E(S, n)) be bounded in terms of the

number of hyperplanes that S is on.
For k < m − 2 if 2k 6 |P (S) can we say which hyperplanes S must be on

depending on k

Remark 9.97. Possible approach:
Prove that If S is of max embedding dimension and not on any of the

hyperplanes described above then the only red triangles that can be satisfied are
of the form (Q,P −Q,F − P ).

If this is true then all good numerical sets are generated by subsets of
DPF (S) and the DPF -Poset determines which subsets of DPF (S) generate
good numerical sets.

Numerical semigroups in the same region determined by those hyperplanes
have the same DPF -Posets

Some kind of combinatorial argument to show that P (S) must be a power
of 2

This graph shows the density of values of P for m = 7 when restricted to
semigroups of max embedding dimension that are not on a singular hyperplane

The next 4 graphs show that the densities of P (S) = 4, 8, 16, 32 actually
seem to converge to positive values.
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For higher multiplicities generating this data is a bit harder as even though
semigroups outside of non-singular hyperplanes have density 1, they are quite
sparse for smaller frobenius numbers

We therefore plot the densities of P values among Max ED, non bad
semigroups, we see clear spikes at certain powers of 2
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Note that for m = 10, 11 the total number of semigroups being considered
is 171 and 176 respectively which is much smaller than previuos once. Nonethe-
less we still see spikes at certain powers of 2

79



10 Algorithmically Determining P(S)

We consider empty voids, noble semigroups, and ignoble semigroups separately.

if empty void then
P(S)=1

end if
if noble semigroup then

check Pseudo-Frobenius Graph for P(S)
end if
for all subsets of maximal void elements do

put complement into ”bad set”, put subset into ”good set”
for all elts of subset do

construct list of inclusion conditions
end for
construct all combinations of conditions
for all combinations constructed do

add described numbers to ”good set”, ”bad set”
take order ideal of ”bad set”, order filter of ”good set”
check that ”good set” and ”bad set” do not overlap
for all antichains of remaining elts of void do

add one to P(S)
end for

end for
end for
return P(S)
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