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Abstract

Lack of HIV vaccines have made therapy essential to the reduction of HIV transmission and control of epi-
demics. For the implementation of control strategies, it is critical to understand between-host transmission
dynamics involving proper risk of infection, which depends on the within-host HIV dynamics of the source.
In this study we develop mathematical models linking within-host and between-host HIV dynamics. In par-
ticular, we incorporate antibody response into within-host viral dynamics models to estimate the probability
of transmission from an infected individual to an uninfected indivdual. Our models predict that this proba-
bility is largely dependent on the source’s disease status, including viral load and antibody profile. Using the
probability of infection resulting from within-host models, we then develop models to describe the dynamics
of between-host transmission, which is consistent with HIV prevalence data from South Africa. With these
models, we evaluate how within-host disease status of infected individuals influences the between-host spread
of HIV within communities.

The electronic version of this report is available at http://www.sci.sdsu.edu/math-reu/research.html.
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Chapter 1

Introduction

The HIV epidemic remains one of the most devastating problems worldwide with 36.7 million people living
with HIV/AIDS and an estimate of 1.8 million annual new infections. Given the persistence of new infections
and the lack of prevention strategy, it is of paramount importance to better understand HIV transmission
dynamics, and especially quantify the risk of HIV infection, in order to better control and prevent HIV
endemics. Substantial work has been done to understand HIV dynamics, although previous mathematical
models have exclusively focused on either within-host or between-host dynamics separately. Here we attempt
to link both dynamics by considering how within-host patterns play a role in the between-host transmission
of HIV within communities.

Risk of HIV infection is defined as the probability that a susceptible, HIV-negative individual (recipient)
is infected by HIV by means of contact of bodily fluids from an HIV-positive individual (donor). It has been
established that the risk of infection is dependent on the mode of contact and status of the host, i.e. the
stage of infection of the donor. Wawer et al. [9] has studied 235 HIV-discordant couples in Uganda and
found that the rate of HIV transmission per coital act was highest (1 in 120) during acute-stage infection,
but much lower (1 in 670) during chronic-stage. This is supported by Tuckwell et al. [11], who has modeled
the connection between risk of infection, mode of contact, and number of virus transferred to find that acute-
stage donors have the highest probability of transmission and transfer by needlestick is generally riskier than
sexual transmission, ceteris paribus.

Along with risk of infection, another measure of the danger of an infection is its associated risk of death,
and it is well known that HIV infection shortens an individual’s lifespan by destroying CD4+T cells and thus
weakening the immune system. For this reason, CD4+T cell levels are used as the standard to evaluate HIV
patient’s conditions.

Both risk of infection and risk of death are also influnced by the antibody profile of the patient. Although
the effects of antibodies in HIV patients are not completely understood, Ciupe et al. has found out antibodies
in SIV-positive rhesus macaques reduce SIV infectivity [16], and Tomaras et al. [10] have speculated that
HIV antibodies may reduce infectivity of HIV in a similar fashion. Furthermore, Vaidya et al. [17] has found
significant correlation between rate of viral infectivity decay and rate of increase of plasma antibodies during
HIV infection. Hence, antibodies play an important role in determining the risk of infection.

In this study, we develop mathematical models linking within-host and between-host dynamics. Our
within-host models incorporate both viral load and antibody count to quantify the risk of HIV infection and
life expectancy of an infected individual at each time since infection. Both within-host models demonstrate
that risk of infection and life expectancy change with antibody level thus establishing a connection among
within-host and between-host dynamics. We incorporate the results from within-host dynamics to our two
between host models to study how HIV is transmitted throughout a community.

1.1 Force of infection

Following [15], we assume that the spread of HIV in a population is frequency-dependent : that is, the force of
infection is dependent on the prevalence of the infection in the population, rather than simply the number of
infected individuals. This assumption can be interpreted as the claim that the amount of sexual or otherwise

5



risky behavior is limited and saturated in a large population, as an individual can only have sexual contact
with a limited number of individuals per unit time.

The force of infection, written λ, is defined to be the per capita rate at which susceptible individuals are
infected with HIV. We will use λ in our between-host models.

We assume further that the probability of spreading the virus through sexual contact is purely a function
of time since the donor has been infected, which we call their age of infection, a.

Under these assumptions, we have

λ =
κ

S(t) +
∫∞
0
I(t, a) da

∫ ∞
0

β(a)I(t, a) da,

where κ is the average number of sexual contacts per unit time, S(t) is the number of susceptible individuals
in the population at time t, I(t, a) is the number of infected individuals in the population at time t with
age of infection a, and β(a) is the probability of transmission. Under these assumptions,

∫∞
0
I(t, a) da is the

total number of infected individuals and so S(t) +
∫∞
0
I(t, a) da is the total population at time (t).

Alternatively, we can consider J infected compartments, so that I(t, ·) is constant on

[0, a1), [a1, a2), . . . , [aJ−1, aJ ].

then

λ =
κ

S +
∑J
j=1 Ij

J∑
j=1

βjIj .

The definition of λ indicates that before we can develop our between-host model, we need β, which in
turn will be determined by the viral load and antibody profile of the donor. We also require the death rate of
the infected individuals, which is a function of their CD4+ T cell count, also determined by the within-host
dynamics.
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Chapter 2

Within-host modeling

2.1 Model description

2.1.1 Classical viral dynamics model

We consider the following standard viral dynamics model for HIV, as derived in [14]:
Ṫ = θ − dT − kTV, T (0) = T0

İ = kTV − δI, I(0) = I0

V̇ = pI − cV, V (0) = V0

(2.1)

T, I, and V represent the number of target cells, infected cells, and virions, respectively. CD4+T cells are
produced at a rate θ and die at rate d. Uninfected cells become infected with an infection rate proportional
to target cell and viral particles at rate k and die at rate δ. Viruses are produced by infected cells at rate p
per infected cell and are cleared at rate c. Table 2.1 summarizes the parameters of the model. A schematic
diagram of the model is shown in Figure 2.1.

T

I

V

θ

dT

kTV cV

δI

pI

Figure 2.1: Diagram for viral dynamics

2.1.2 Modeling Antibodies: Approach I

Approach I in this study expands upon the viral dynamics model described in (2.1) used to describe the
early stages of HIV infection. As in [18] we extend the previous HIV dynamics by incorporating two possible
effects of virus-specific antibodies: virus neutralization i.e. the reduction of virus infectivity with efficacy
εA, and enhanced viral clearance as a result of an antibody binding to a cell-free virus with per capita rate
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of σA(t). Throughout the paper, A(t) represents the time course of virus-specific antibodies. The efficacy of

virus neutralization due to antibodies is modeled with the formula εA = ηA(t)
1+ηA(t) ∈ [0, 1). That is, εA = 0 in

the absence of antibodies (A(t) = 0) and εA = 1 in the event of extremely high antibody levels (A(t)→∞).
Constants η and σ are introduced in order to scale the net effect of viral neutralization, and viral clearance
by antibodies on viral-dynamics. Note that η = σ = 0 corresponds to the absence of antibodies. From the
data, the trend of virus-specific antibodies is thatthe level remains low for some time following infection, then
steadily increases and saturates at a maximum level. We model the antibody behavior as A(t) = Mtn

Bn+tn ,
where M represents the maximum antibody level, B represents the time post infection when half the antibody
level is achieved, and n is a Hill coefficient. Numerical values for σ, η,M,B, and n are estimated using data-
fitting and are summarized in Table 2.1, and the model is drawn schematically in Figure 2.2. Approach I is
described by the following equations:


Ṫ = θ − dT − (1− εA)kTV, T (0) = T0

İ = (1− εA)kTV − δI, I(0) = I0

V̇ = pI − cV − δA(t)V, V (0) = V0

(2.2)

T

I

(1− εA)kTV V

θ

dT

cV

δI

pI

σA(t)V

Figure 2.2: Diagram for Approach I
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Parameter Meaning Value Source
T0 Initial CD4+T cell count 1000 ml−1 [17]
I0 Initial infected cells 0 ml−1 data-fitted
V0 Initial virus load 1/300 vRNA ml−1 [12]
d CD4+T cell death rate 0.01 day−1 [15]
θ CD4+T cell production dT0 ml−1 day −1 [17]
k CD4+T cell infection rate 0.65 · 10−6 ml RNA−1 day−1 [4]
δ Death rate of infected cells 0.39 day−1 [4]
p Production rate of virus 5000 day−1 [12]
c Death rate of virus 23 day−1 [17]
M Maximum antibody load 2.5 O.D data-fitted
B Time at which A(t) = M/2 21.69 day data-fitted
n Hill’s coefficient 20.96 O.D. day−1 data-fitted
η Scaling factor in εA 0.4 data-fitted
σI Clearance rate of virus by antibodies (Approach I) 0.35 ml ng−1 day−1 data-fitted
α Proportion of virus being infectious 0.9 data-fitted
` Production rate of antibodies .039 day−1 data-fitted
w Death rate of antibodies 0.065 day−1 data-fitted
σII Infectivity reduction of virus by antibodies (Approach II) 6.63·10−6mlng−1 day−1 data-fitted
ζ Clearance rate of virus by antibodies (Approach II) 1/4000 ml ng−1 day−1 data-fitted

Table 2.1: Within-host parameters

2.1.3 Approach II

The main ideas behind this approach are to incorporate antibodies, A, into the within-host model as a
separate compartment and to divide the total viral load V into two: infectious virus VI and noninfectious
virus VN .

Since some virus produced by the infected cells I can be non-infectious, we assume a fraction α ∈ [0, 1]
of newly produced virus becomes infectious and the remaining (1 − α) are non-infectious. Following this
assumption, we have infected cells producing infectious virus VI at a rate αpI and non-infectious virus VN
being created at a rate of (1 − α)pI. Infectious virus and non infectious are both cleared by the body at a
rate of c.

Since both infectious and non-infectious virus trigger production of antibodies, antibodies are produced
at rate ` per virus and get cleared at a rate of w. We assume that antibodies neutralize infectious virus, i.e.
convert VI into VN , at rate σVIA. Antibodies also clear out virions at a rate ζA(VI + VN ).

A schematic diagram of Approach II is given in Figure 2.3. A summary of the parameters are given in
Table 2.1.
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T I

VI

VN

AkTVI

αpI

(1− α)pI

σVIA

θ

dT
δI

(c+ ζA)VI

(c+ ζA)VN

wA

`

`

Figure 2.3: Diagram for Approach II

The model we have is as follows:



Ṫ = θ − dT − kTVI , T (0) = T0

İ = kTVI − δI, I(0) = I0

V̇I = αpI − cVI − σVIA− ζVIA, VI(0) = VI0
˙VN = (1− α)pI + σVIA− cVN − ζVNA, VN (0) = VN0

Ȧ = `(VI + VN )− wA, A(0) = A0

(2.3)

2.2 Model analysis and probability of infection

2.2.1 Risk of infection

For a susceptible individual (recipient) to be infected by HIV through a single contact with an HIV-infected
individual (donor), the following conditions have to be satisfied: first, the virus has to reach the target cells
(transmission); second, at least one target cell has to be infected by the virus (infection); and third, the
infected target cells have to establish a persistent infection (persistence).

First, depending on the mode of transmission, we assume some small fraction, m = m1m2, of the HIV
and antibodies in the bloodstream of the donor actually survive the transmission process, where m1 is the
scaling factor between donor blood and released bodily fluid (e.g. semen), and m2 is the proportion of
released virus that reaches the target cell in the recipient. Hence, mVdonor(a) HIV particles and mAdonor(a)
free antibodies are transmitted and reach target cells of recipients.

After mVdonor(a) virus have reached the target cells of the recipient, the probability of infection, Pinf,
can be expressed as Pinf = PcellPpersist, where Pcell denotes the probability that at least one target cell gets
infected by the transmitted viruses, and Ppersist denotes the probability that an infected cell infection will
establish a persistent infection.

The process, and the probability, of a successful infection through a single contact is depicted schemati-
cally in Figure 2.4.
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HIV-positive donor

HIV-positive bodily fluid containing HIV and antibodies

Virus and antibodies cross mucus membranes of the recipient

CD4+ T cell of recipient infected

Infection persists in susceptible recipient

m1

m2

Pcell

Ppersist

Figure 2.4: Diagram of transmission stages

We first compute Pcell.
Suppose that virus particles infect target cells at a rate ρ per virus, and let

γ(t) = ρ

∫ t

0

V (s) ds (2.4)

be the expected number of infections in target cells in the new host before time t. We will assume that
new infections are an inhomogeneous Poisson process; then the probability of n target cells being infected is
γne−γ(n!)−1. In particular, the probability that no cells are infected at all before time t is e−γ(t). It follows
that the probability that at least one cell is infected before time t is 1− e−γ(t). The probability that at least
one cell is ultimately infected is

Pcell = lim
t→∞

1− e−γ(t). (2.5)

We will now derive ρ and V under the assumptions of each model.
Per our model as well as empirical evidence, the host will not produce a significant number of antibodies for

the first few weeks, so we make the approximating assumption that all free antibodies are those transmitted
by the donor, and not produced by the host. Therefore, Ȧ+wA = 0, and in particular A(t) = Adonor(a)e−wt.
We also assume I = 0 because no cells have been infected yet.

For Approach I, cells are infected at a rate of ρ = (1 − ε(A(a)))kT0 per virus, V (0) = mVdonor(a), and
the logarithmic derivative

− V̇
V

= c+ σA.

Integrating both sides we have

ln

(
mVdonor(a)

V (t)

)
= ct+ σ

∫ t

0

A(s) ds = ct+mσAdonor(a)

∫ t

0

e−ws ds = ct+
mσAdonor(a)

w
(1− e−ws).

Hence

V (t) = mVdonor(a) exp

[
−cs− mσAdonor(a)

w
(1− e−ws)

]
ds.

11



Then from (2.4) and (2.5),

P Icell(a) = 1− exp

{
−(1− ε(a))kT0mVdonor(a)

∫ ∞
0

exp

[
−cs− mσAdonor(a)

w
(1− e−ws)

]
ds

}
.

For Approach II, while mVdonor(a) viruses are transmitted, only a proportion of them, ν = VI

VI+VN
, are

actually infectious. Cells are infected at a rate of ρ = kT0 per infectious virus, VI(0) = mVdonor(a)ν(a), and
the logarithmic derivative

− V̇I
VI

= c+ σA

Similarly to Approach I,

ln

(
mν(a)Vdonor(a)

VI(t)

)
= ct+

mσAdonor(a)

w
(1− e−wt).

It follows that

VI(t) = mν(a)Vdonor(a) exp

[
−ct− mσAdonor(a)

w
(1− e−wt)

]
and so

P IIcell(a) = 1− exp

{
−kT0mVdonor(a)ν(a)

∫ ∞
0

exp

[
−cs− mσAdonor(a)

w
(1− e−ws)

]
ds

}
.

2.2.2 Viral persistence

We will compute the basic reproduction number R0, the expected number of new infected cells if a single
infected cell is introduced to a population of entirely uninfected cells. R0 is computed using the next-
generation matrix method [1]. We shall prove stability of the infection-free equilibria when R0 < 1 and
persistence of the virus when R0 > 1.

First we compute the basic reproduction number R0 of the model. We find F , the new-infection matrix
linearized about the infection free equilibrium, IFE = (θ/d, 0, 0), as

F =

[
0 kθ

d
p 0

]
and the transfer matrix V , the linearization of all of the other terms in the Jacobian of the system (so that
F − V is the Jacobian),

V =

[
δ 0
0 c

]
.

Computing the spectral radius of FV −1, we find R0 = kθp
cdδ .

We follow a similar method for this model. The infection-free equilibrium is given by IFE = (θ/d, 0, 0, 0, 0),

F =

 0 kθ
d 0

αp 0 0
(1− α)p 0 0

 ,
and

V =

δ 0 0
0 c 0
0 0 c


Computing the spectral radius of FV −1, we find R0 = kθαp

cdδ .
In a deterministic model, one expects the virus to persist and tend to its set-point, or infected equilibrium,

if R0 > 1. We write = (T ∗, I∗, V ∗I , V
∗
N , A

∗) for the components of the endemic equilibrium. We can think of
as the values of the infection compartments during the chronic stage, once the infection has stabilized but
AIDS has not yet onset.
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By setting each of the time derivatives Ṫ = İ = V̇I = V̇N = Ȧ = 0 and assuming V > 0, a symbolic
computation gives

T ∗ =
wδc2 + `θpσ

p(`dσ + αwck)

I∗ =
wc2d

δ

R0 − 1

`dσ + αwck

V ∗I = wc2dδ
R0 − 1

wδkc2 + `kθpσ

A∗ = `cd
R0 − 1

`dσ + αwck

V ∗N =
w

`
A∗ − V ∗I .

However, in considering the probability of transmission we use a stochastic model, because during this
time period there are very few infected cells and virions ((VI , I) ≈ 0) and so it is possible, due to its
stochasticity that the virus may go extinct even if R0 > 1. The probability Ppersist that the virus persists in
a new host after it infects a single cell is given by Ppersist = 1− e−R0 [6].

2.2.3 Viral extinction

For both models, the infection-free equilibrium is locally and globally stable iff R0 < 1, and so in this case
the virus will go extinct. The argument for Approach II follows [13].

Theorem 2.1 (global stability of IFE, Approach I). Suppose R0 < 1. Then IFE is globally asymptotically
stable for Approach I.

Proof. Suppose that M > 0 and i > 0 is arbitrary. Then there is a t0 > 0 such that if t > t0 then
|A(t) −M | < i. So we can approximate (2.2) arbitrarily well by the classical model (2.1) with k replaced
by (1− εM )k and c replaced by c+σM by simply choosing t0 large enough. This approximation has a basic
reproduction number

Rapprox
0 =

(1− εM )kpθ

(c+ σM)dδ
<
kpθ

cdδ
= R0 < 1.

The classical model is known to have a globally asymptotically stable IFE if its basic reproduction number
is < 1. Therefore, any approximate solution curve (T̃ , Ĩ, Ṽ )→ IFE. However, assuming no bifurcations, the
actual solution curves depend continuously on the parameters – and indeed the Jacobian matrix is negative
definite in a neighborhood of ((1 − εM )k, p, θ, σM, d, δ), assuming R0 < 1, so there can be no bifurcations
there.

Theorem 2.2 (global stability of IFE, Approach II). Suppose R0 < 1. Then IFE is globally asymptotically
stable for Approach II.

Proof. Let T0 = θ/d be the initial condition on the target cells and

U = {(T, I, VI , VN , A) ∈ R5
+ : T ≤ T0}

be the biologically feasible region. Then

kT0 =
cδ

αp
R0.

Consider the smooth function

L(T, I, VI , VN , A) = T − T0
(

1 + ln
T

T0

)
+ I +

δ

αp
VI .

Then L(IFE) = 0 and

∇L =

(
1− T0

T
, 1,

δ

αp
, 0, 0

)
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Hence the only critical points are the line T = T0 (on which L ≤ 0), and limT→0 L = +∞ it follows that
L ≤ 0. Moreover,

L̇ =

(
1− T0

T

)
(θ − dT − kTVI) + kTVI − δI +

δ

αp
(αpI − cVI − σAVI)

≤ kT0VI + dT0 − θ
T0
T
− kTVI − dT + θ + kTVI − δI + δI − δc

αp
VI

≤ d(T0 − T ) + kT0VI −
δc

αp
VI ≤ d

(
T0
T
− 1

)
(T − T0) +

(
kT0 −

cδ

αp

)
VI

= d

(
T0
T
− 1

)
(T − T0)− VI

cδ

αp
(R0 − 1) ≤ 0

with equality iff T = T0 and VI = 0. Thus, L is strictly Lyapunov on the interior

{(T, I, VI , VN , A) ∈ U : T < T0 or VI > 0},

where IFE is asymptotically stable by Lyapunov’s theorem.
Now we shall consider a solution curve X satisfying the initial conditions T (0) = T0 and VI(0) = 0.

If I(0) = 0 also then it is easy to see that (VN , A) → (0, 0), whence X → IFE. Otherwise, I(0) > 0, so
V̇I(0) = pI(0) > 0. Thus there is a i > 0 such that VI(i) > 0. Translating back in time by i we arrive
at a solution curve X̃ for which VI(0) > 0, so X̃ tends to IFE. Thus X → IFE also. This completes the
proof.

2.3 Numerical results

2.3.1 Parameter estimation

Approach I M , B, and n in A(t) were obtained by fitting the curve to antibody data (recorded in optical
density) using MATLAB’s “Curve Fitting” tool. In Figure 2.5 we show the results of curve fitting for the
antibody count. Furthermore, it has been estimated that antibodies reduced the viral load of the steady
state

Vs =
pθ

δc
− d

k

by two orders of magnitude. Hence, we obtain the following expression for the steady state of the total viral
load with antibodies:

V =
1

100
Vs =

pθ

δ(c+ σa
w )
− d

(1− εs)k
(2.6)

Solving for σ obtains:

σ =
w

a

(
[
δ

pθ
(

1

100
Vs +

d

(1− εs)k
)]−1 − c

)
(2.7)

Note that εs = ηa
1+ηa because A(t) = a at the steady state. In order to maintain V = 1

100Vs, from (2.7) we

obtain that σ ∈ [0, 1.1] and η ∈ [0, 1]. Otherwise, we get negative values for σ or η. Therefore, we take the
average values of σ and η to get η = 0.4 and σ = 0.35.
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Figure 2.5: Antibody curve fitting

Approach II We take initial number of target cells, T0, to be 104 per ml or 1% of 106 per ml total
CD4+ cell count. We assume this is the start of infection, thus there are no infected cells yet, I0 = 0. The
initial virus concentration is often unknown, but here we took VI0 = 1/300 initial virus RNA copies per ml.
Antibody production is triggered by the creation of virus, so we can take A0 = 0, thus we have the initial
condition for non infectious virus is VN0 = 0.To find ` and w, we fit the antibody and viral load data from
the six patients’ data with our fifth differential equation giving us ` = 0.03866 and w = 0.065382969.

Using the set point of this system from above, we were able to find the proportion of infectious virus,

V ∗I
V ∗I + V ∗N

=
cδ(adσ + αbck)

bδkc2 + akθpσ
.

From [17], we can set this proportion equal to the ratio of infection rate at the set point, β∞ to their
initial infection rate, β0. Plugging each patient’s individual ` and w values into the above proportion and
setting that equal to their respective ratio,β∞

β0
, we solved for σ.
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Ṫ = θ − dT − kTVI
V

VI + VN

k
V ∗I

V ∗I + V ∗N
= k

β∞
β0

Thus we have
cδ(adσ + αbck)

bδkc2 + akθpσ
=
β∞
β0

.

Solving for σ, we obtained a value of 6.63 · 10−4.

2.4 Results

Solutions to the two systems of differential equations, from Approach I and Approach II, are functions with
respect to the age of infection for the viral load, CD4+T cell count, and infected cells. Additionally, Approach
II offers solutions for the antibodies and neutralized infected cells as functions of the age of infection. From
these solutions we calculate Pcell and the rate of viral host death for Approach I and Approach II.

Approach II has RII0 ≈ 3.261 and Approach I has RI0 = α−1RII0 = 3.623. Since Ppersist = 1− e−R0 , then
both Approach I and Approach II Ppersist ≈ 0.96.

2.4.1 Probability of transmission, Approach I

Figure 2.6 of the probability of transmission over the age of the donors infection incorporates the presence
of antibodies by using the Hill function A(t).
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Figure 2.6: Probability of transmission, Approach I

The probability of transmission rises to ≈ 0.06 before leveling off at ≈ 0.0045.
Note from the graph that the inclusion of antibodies in the model significantly decreases the probability

of transmission by nearly half the value in the chronic stage of the infection (months 10-36). Furthermore,
the initial spike in transmission probability at approximately one month into the donor’s infection occurs
because the antibodies in the donor’s blood have not yet begun to fully propagate. In this model, the
probability of transmission remains steady for months until the donor’s infection develops into AIDS.
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2.4.2 Probability of transmission, Approach II

Figure 2.7: Probability of transmission, Approach II

Figure 2.7 similarly depicts probability of transmission in Approach II. The inclusion of antibodies decreases
the probability of transmission.

As with the first approach, there is an initial rise in the probability of transmission to ≈ 0.04 before
leveling off at ≈ 0.0045. Additionally, like with the first approach, the brief spike in the probability of
transmission may be explained by a slow growth in the level of active antibodies present in the donor.

2.4.3 Sensitivity of probability of transmission to m

The proportion of the donor’s viral load that is transmitted to the recipient of the virus is extremely important
towards establishing the probability that the recipient of the virus will become infected. Therefore, the
sensitivity of the probability of infection to different values of m was examined in order to perceive how
different methods of viral load transmission will affect the probability of transmission. A higher value of
m may be associated with a more direct method of viral load transmission, such transmission through as
needle-stick injection drug use or blood transfusion. A lower value of m is for viral load transmissions through
unprotected sex.

Figure 2.8 shows the probability of transmission as a function of the age of the donors infection and m.
Figure 2.9 shows the probability of transmission for viral ages of fifteen days, one year, and five years. From
these images it is seen that the probability of transmission is very sensitive at later ages of infection, as it
was expected to be. However, in the early ages of infection, the probability of transmission is not sensitive
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to changes in m. The most likely explanation for this behavior in the early ages of infection is that the viral
load within the donor is to low, for the probability of transmission to be affected by different types of viral
load transmission.

Figure 2.8: Sensitivity of Pinf to m
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Figure 2.9: Sensitivity of Pinf to m at fixed times
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2.4.4 Rate of death, Approach I

The following are graphs for the death rate and CD4+T cell count of infected patients as a function of
the age of infection. The behavior of the death rate over the age of infection is inversely correlated to the
behavior of the CD4+T cell count. This is because the viral hosts do not die directly from HIV, viral hosts
die from other diseases, which they are too weak to fight against due to a low CD4+T cell count. Therefore,
as the CD4+T cell count of a viral host diminishes, the viral host’s life expectancy also decreases and so the
viral host’s rate of death increases.

Figure 2.10: Approach I death rate

While infection first begins to grow within the host of the virus, the rate of death initial rises as the
CD4+T cell count of the viral host decreases. Once the number of antibodies begin to increase and the viral
load begins to decrease in the viral host, then the rate of death decreases as well. The rate of death reaches
a steady state of ≈ 0.01 or a life expectancy of ≈ 8.3 years.

2.4.5 Rate of death, Approach II

In Approach II, as with Approach I, the rate of death has an inverse relation to the CD4+T cell count.

Figure 2.11: Approach II death rate
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An initial spike occurs in the rate of death as the CD4+T cell count decreases. The rate of death then
decreases to its steady state value of ≈ 0.015 or a life expectancy of ≈ 5.6 years.
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Chapter 3

AIDS

3.1 Extension of within-host models

AIDS is the final and most severe stage of HIV infection when high viral load and low CD4+ T cell count
cause immunodeficiency and increased risk of developing common infections in the victim. An untreated
HIV-positive individual will generally enter into the AIDS stage after eight to ten years post-infection.

The within-host models described in Chapter 2 are insufficient at simulating risk of infection of the AIDS
stage because they do not account for the spike of viral load, fall of CD4+ T cell count, and drop of antibody
level of AIDS stage. In the aforementioned models, the susceptible T cell count, infected cell count and viral
load reach a stable equilibrium after a few months and stay there. This steady state has been estimated to
fit actual steady states of HIV-positive patients.

It is important to take AIDS stage into consideration so that between-host dynamics will be more accurate.
More specifically, the viral load and CD4+ T cell count of AIDS stage are taken into consideration, since
risk of infection is dependent on viral load and lifespan of AIDS patients is dependent on CD4+ T cell count.

To this end, we extend our existing models by mimicking the behavior of CD4+ T cells and viral load of
the AIDS stage.

3.2 AIDS simulation methods

We do not have data of how CD4+T cell count, viral load, and antibody levels change from chronic stage to
AIDS stage. It is known that CD4+T cell count and antibody levels drops and viral load increases in AIDS
stage. We assume that an untreated individual enters AIDS stage at 3000 days post infection and that AIDS
stage individual’s CD4++ T cell count and antibody level follows an exponential decay function, bounded
below at 0. We also assume that there is an increase of the viral load in AIDS stage and that it is bounded
above at 106. We used a Hill’s function to control the upper bound of the viral load, as well as the rate at
which the viral load increases and the time at which the viral load is half way to its upper bound.

V irus1(a) =

{
V (a) a ≤ 3000

V (3000) + 106(a−3000)7
7007+(a−3000)7 a > 3000 AIDS stage

To mimic actual CD4+ cell count of AIDS stage, we introduce an exponential decay for CD4+ T cell count
beginning at a = 3000 as follows:

CD41(a) =

{
1
10 [T (a) + I(a)] a < 3000
1
10 [T (a) + I(a)] exp {−0.01(a− 3000)} a ≥ 3000 AIDS stage

Antibodies also decay quickly because in the absence of CD4+ T cells, the suppressed immune system of the
infected person can no longer produce HIV-specific antibodies. Hence

Ab1(a) =

{
Man

Bn+an a < 3000

M exp (−0.003(a− 3000)) a ≥ 3000 AIDS stage
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3.3 Risk of infection including AIDS stage

Figure 3.1: Viral load with AIDS modifier

Figure 3.2: Pinf with AIDS modifier
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Figure 3.3: CD4+ T cell count with AIDS modifier

When an HIV infected person enters the AIDS stage their viral load increases. Consequently, the HIV
infected person’s probability of transmission increases and their CD4+ T cell count decreases. The CD4+

T cell decreases in the AIDS stage until it reaches a negligible level. Someone who is infected with HIV
is considered to have developed AIDS when their CD4+ T count goes below 200 per milliliter. When the
CD4+ T cell count of an infected person decreases, their life expectancy decreases as well and so their rate
of death increases.
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Chapter 4

Between-host modeling

4.1 Model description

Clinically, when an individual is infected with HIV, their condition is primarily associated with CD4+T cell
count. We showed in the previous chapters that that the death rate of an HIV-positive individual largely
depends on their CD4+T cell count as HIV weakens an individual’s immune system and decreases their life
expectancy by destroying their CD4+T cells and facilitating their exposure to new diseases. As a result,
CD4+T cell count has become the primary indicator of the strength of an HIV-infected individual’s immune
system. Based on immune levels, the HIV infected population has been divided into four stages of infection:
eclipse, acute, chronic, and AIDS. Furthermore, we also showed that the probability of HIV infection Pinf

largely depends upon an infected individual’s viral load which in turn affects CD4+T cell count. Hence,
there is a close relationship between CD4+T cell count and probability of infection Pinf.

We again use a “two-model” approach, one a transport equation PDE in the number of infected individuals
I and another an ODE.

4.1.1 ODE model

Our model is largely based on that given by Rahman et al. [15] with the major difference being we don’t
consider treatment. In our model, we consider a homogeneous sexually active population between the ages
of 15-49 years, and divide them into five groups: a susceptible group S and four infected groups I1, I2, I3,
and I4 (corresponding to the eclipse, acute, chronic, and AIDS stages respectively) categorized based on
probability of infection Pinf. The transmission dynamic of our model is as follows: people become sexually
active and are recruited into the susceptible population S at rate Λ. A susceptible individual moves to the
compartment I1 at rate λ if he/she is infected by an individual from any of the four infected compartments.
If a susceptible individual is never infected then he/she dies or leaves the sexually active population at rate
µ0. The individuals in I1 either die at a rate µ1 or move to I2 at rate δ1 due to changes in their CD4+T cell
count and Pinf. Similarly, people in I2 die at a rate µ2 or move into I3 at rate δ2, and people in I3 die at a
rate µ3 or move into I4 at rate δ3 where they die at rate µ4.

We use HIV prevalence data in South Africa from 1990 to parameterize our model. We divide our
population as follows: N is the total population of South Africa. It was estimated that 0.3% of the population
was infected with HIV/AIDS. However, we cannot uniformly distribute infected individuals into different
stages of infection due to the different time span of each stage. From the previous model we approximate
the eclipse phase to last from days 0-16 post infection, acute phase to last from days 16-80, chronic phase
last the remaining 8 years, and AIDS from years 8-10 post infection. Hence Ij(0) = 0.003N length of stage j

10 years

where j = {1, 2, 3, 4}
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The between-host ODE model is described by the following equations:

Ṡ = Λ− (λ+ µ0)S,

İ1 = λS − µ1I1 − δ1I1,
İ2 = δI1 − µ2I2 − δ2I2,
İ3 = δI2 − µ3I3 − δ3I3,
İ4 = δI3 − µ4I4,

(4.1)

where

λ = κ

4∑
j=1

βj
Ij

S +
∑4
k=1 Ik

is the force of infection, as derived in Chapter 1.

S I1 I2 I3 I4λS δ1I1 δ2I2 δ3I3

Λ

µ0S µ1I1 µ2I2 µ3I3 µ4I4

Figure 4.1: Diagram for between-host ODE model

Parameter Meaning Value

N Total population 2 · 107 people

κ Average unprotected sexual contacts month−1 person−1

Λ Recruitment rate into S0 µ0S0 people month−1

δ1 Transfer rate from I1 to I2 1.88 month−1

δ2 Transfer rate from I2 to I3 0.47 month−1

δ3 Transfer rate from I3 to I4 0.01 month−1

µ0 Death rate of susceptible population 0.0024 month−1

µ1 Death rate of eclipse population 0.0024 month−1

µ2 Death rate of acute population 0.0075 month−1

µ3 Death rate of chronic population 0.0042 month−1

µ4 Death rate of AIDS population 0.01 month−1

S0 Initial susceptible population N(1− 4 ∗ 0.003)

I10 Initial population in eclipse phase 0.003N 16
10∗365

I20 Initial population in acute phase 0.003N 64
10∗365

I30 Initial population in chronic phase 0.003N 365∗8−80
10∗365

I40 Initial population in AIDS phase 0.003N 2∗365
10∗365

Table 4.1: Parameters for ODE model
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4.1.2 PDE model

As opposed to dividing the infected population into 4 compartments based on CD4+T cell count, we can use
an age structure partial differential equation model. Using this approach we can consider infinitely many
ages of infection in our between host model. Similarly to the ODE model, individuals enter the susceptible
population at a rate Λ, and grows out of the sexually active age or dies naturally at a rate d.

Thus the force of infection is given by

λ = κ

∫∞
0
β(a)I(t, a) da

S +
∫∞
0
I(t, a) da

.

The model is an age-structure model similar to that given by Hakansson [7], and is given as follows:
S′ = Λ− dS − λS
∂I
∂t + ∂I

∂a = −µ(a)I(t, a)− dI(t, a)

I(t, 0) = λS,

(4.2)

where β(a) is the probability of infection as a function of age from the infected host and µ(a) is the death
rate due to age, both of these parameters come from the within host model.

4.2 Model justification

We now will show the significance of giving probabilities and death rates that vary over time, as opposed to
assuming that they are constant.

First we suppose that the probability is constant (taken at its steady state) but allow the death rate to
vary, and observe that the rate of change of the prevalence varies significantly.
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Figure 4.2: Prevalence: within host vs constant probability

29



Similarly for the death rate. If it is taken at its steady state (or even slightly above its steady state) not
enough AIDS patients die and the prevalence is overestimated.

Figure 4.3: Prevalence: death vs constant death rate
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4.3 Model analysis

We shall now present stability results for a generalized form of the ODE (4.1) where we assume that there
are J infected compartments, so that the force of infection

λ = κ

∑J
j=1 βjIj

S +
∑J
k=1 Ik

.

Of course, this reduces to the model when J = 4, but for the sake of future work (possibly including
compartments for treatment) we do not make this assumption.

One can also interpret these results as being significant even for approximations of the PDE. The relative
difficulty of model analysis in infinite dimensions, gives us a practical use for our ODE model.

Let α = δ + µ, δJ = 0, and allow j to range over {2, 3, . . . , J}. Then our generalized system is
Ṡ = Λ− (λ+ µ0)S

İ1 = λS − α1I1

İj = δj−1Ij−1 − αjIj where j = 2, . . . , J

. (4.3)

4.3.1 Basic reproduction number

We begin by deriving the basic reproduction number B0, which can be interpreted as the expected number of
new infections if an eclipse-stage individual is introduced to a perfectly susceptible but healthy population,
to show that B0 = 1 is a bifurcation point of the model (4.3).

In the argument that follows, if A is a matrix, then we will write (A)i,j for the i, jth entry of A. Moreover,
we will write solution curves as

(S, ~I) ∈ R× RJ

where ~I = (I1, I2, . . . , IJ) is the vector of infected compartments.
Let S0 = Λ/µ0 be the initial condition on susceptible individuals. Then, the disease-free equilibrium of

(4.3) is given by DFE = (S0,~0). This follows by considering the system of equations
Λ = (λ+ µ0)S∗

λS∗ = α1I
∗
1

δj−1I
∗
j−1 = αjI

∗
j

(4.4)

and letting ~I = ~0. In this case, the force of infection λ = 0, and so both sides of each equation vanish, except
Λ = µ0S, which of course converges to S = S0.

Recall that the linearization of the infected components about the disease-free equilibrium DFE can
be written F − V , where F is the new-infection matrix and V is the transfer matrix. From there, the
next-generation matrix will be given by FV −1 as usual.

It follows from (4.3) that at DFE, the total population S +
∑J
k=1 = S, so

Ṡ = κ

J∑
j=1

βjIj .

Therefore, for each j, (F )1,j = κβj and (F )k,j = 0 for each k ≥ 2.
Similarly, (V )j,j = αj for each j ≤ J and (V )j+1,j = −δj for each j < J , with zeroes elsewhere in V .

Then V −1 is lower-triangular, and for each k ≥ j,

(V −1)k,j =

∏k
i=j+1 δj∏k
i=j αj

.

It follows that (FV −1)k,j = 0 for each k ≥ 2 and

(FV −1)1,j = κ

J∑
i=j

βi

∏i
m=j+1 δj∏i
m=j αj

=
κ∏J
i=1 αi

J∑
i=j

βi i∏
m=j

δm

J∏
m=i

αm

 .
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Clearly now FV −1 is a rank-1 linear map, so all but one of its eigenvalues is 0. But the vector v =
(1, 0, 0, . . . , 0) ∈ RJ is mapped to (FV −1)1,1v, so it is an eigenvector. Thus the last eigenvalue, and in
particular the spectral radius, is given by (FV −1)1,1. So we have B0 = (FV −1)1,1. In particular,

B0 =
κ∏J
j=1 αi

J∑
j=1

βj j∏
k=1

δk

J∏
k=j

αk

 . (4.5)

It is of theoretical and practical interest that B0 is linear in κ: it confirms the insight that the rate of sexual
contact in a society is one of the main deciding factors in the spread of HIV.

4.3.2 Epidemic resolution and persistence

When B0 < 1, we will show that the epidemic is self-resolving by way of showing global stability of the
disease-free equilibrium. B0 = 1 is a bifurcation point of the model, and we show that the disease-free
equilibrium is unstable when B0 > 1.

We begin by restricting ourselves to the biologically feasible region U ⊂ R× RJ consisting of the images
of all solution curves (S, ~I) for which S ∈ [0, S0] and each Ij ≥ 0. Since S ≤ S0 for all time provided that S0

is an initial condition, this is no loss.
Define the infectious region of U , written U , to be its interior. Then

U = U ∩ R+ × RJ+.

To show the existence of an endemic equilibrium, we again solve the system (4.4) using a computer
algebra system. We find that for each j,

I∗j =
S0

δ1 − µ1

j∏
i=2

δi−1
δi + µi

and that S∗ is the solution to the quadratic equation

0 = Λ−

(
µ0 +

∑J
j=1 βjI

∗
j

S∗ +
∑J
j=1 I

∗
j

)
S∗.

However, proving stability of the endemic equilibrium is quite difficult because the model is high-dimensional
and nonlinear.

We instead compromise and show that the epidemic will not resolve itself if B0 > 1; one must instead
introduce treatment to lower B0 to below 1 in order for the epidemic to resolve.

Recall the definition of uniform persistence [2].

Definition 4.1. An epidemic is said to be uniformly persistent if there exists a i > 0 such that for each
solution curve (S, ~I) ∈ U of the epidemic,

lim inf
t→∞

min
1≤j≤J

Ij(t) > i.

We interpret uniform persistence as meaning that the epidemic will not resolve.

Theorem 4.2. If B0 < 1, then DFE is globally asymptotically stable. But if B0 > 1, then the epidemic is
uniformly persistent.

Proof. For convenience, let N = S +
∑J
j=1 Ij be the total population.

Suppose that B0 < 1. Let c ∈ RJ+ be defined by

ci =
1∏J

j=i αj

J∑
j=i

βj j∏
k=i

δk

J∏
k=j

αk

 .
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In particular, B0 = c1.
Let L(S, ~I) = 〈c, ~I〉. Then L ∈ (R × RJ)∗ is positive and smooth, and L(DFE) = 0, so L could be

Lyapunov on U if L̇ ≤ 0 and L̇ = 0 precisely at DFE.
We claim that L is, in fact, Lyapunov. This will follow because

L̇ = 〈c, İ〉 = c1(λS − α1I1) +

J∑
j=2

cj(δj−1Ij−1 − αjIj).

Now S ≤ N and λ = 〈β, I〉, so λS ≤ 〈β, I〉. Moreover,

I1(c2δ1 − c1α1) =
I1∏J
j=2 αj

(β1

J∏
j=2

αj) = β1I1

and similarly one can check Ij(cj+1δj − cjαj) = βjIj for each j ∈ [1, J ] ∩ N. Grouping like terms,

L̇ ≤ c1〈β, ~I〉 −
J∑
j=1

Ij(cj+1δj − cjαj) = (R0 − 1)〈β, ~I〉.

Since β ∈ RJ+, it follows that L̇ ≤ 0 with equality iff ~I = ~0. An application of Lyapunov’s theorem completes
the proof of global stability.

Now suppose instead B0 > 1. Let

S̃(ε) =
S0 − ε

S0 + (J + 1)ε
≤ 1.

By Theorem 4.6 in [3], it will suffice to prove that if W is the stable manifold of DFE, then W ∩U is empty.
Then, any positive solution of the system is uniformly persistent.

Thus, suppose that there is a solution curve (S, ~I) ∈ W ∩ U . Then by stability of DFE, for each ε > 0,
if t is large enough,

|~I(t)| < ε. (4.6)

Introduce the “weighted linearization” D = S̃F − V , so that given ε,

İ = (F − V )~I ≥ D(ε)~I (4.7)

where the inequality is taken componentwise. Clearly D(0) = F − V is the linearization at DFE.
Let σ(ε) = SpecD(ε) be the spectrum of D(ε). Then, because B0 > 1, σ(0) has a positive element by

Theorem 2 in [5].
By continuity of Spec, we can choose ε small enough that σ(ε) has a positive element. So there is a

solution to the ODE Ẋ = D(ε)X which grows exponentially. It follows from (4.7) that I blows up, in
contradiction to (4.6). Thus W ∩ U = ∅, which completes the proof.

The proof of Theorem 4.2 does not appear to use finite-dimensionality in an absolutely essential way;
thus we can conjecture that the basic reproduction number of the PDE can be recovered by a limiting
argument on (4.5), similar to the ones used in the definition of an integral, and that one expects to recover
the same results of global stability, bifurcation, and uniform persistence. Arguments similar to those given
by Harkansson [7] may suffice to accomplish this, but we do not pursue this “functional-analytic” approach
here.

However, we can show that the PDE has a disease-free equilibrium (S0, 0). Indeed, in this case one has

S′ = 0

∂tI + ∂aI = 0

I = 0

which is clearly an equilibrium, though we do not claim that it is stable.
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4.4 Results

Public health officials are primarily concerned with the prevalence of HIV, number of new infections generated
by HIV, and the death rate due to HIV in a population.

4.4.1 Prevalence

One of the major concerns in the epidemiology of HIV is the prevalence of the disease, or what percent of
the total population is infected. From the South African data given by Rahman et al. [15], we wanted to
remain consistent with approximately 20% prevalence after 20 years post infection.

We were able to achieve results consistent with the data from South Africa by adjusting the value of κ,
the number of contacts, to agree with the data.

We first show the prevalence over time predicted by the ODE model. Both yield results that are consistent
with the data from South Africa. We found the value of κ to be 4.4 and 5.5 in the ODE and PDE models,
respectively.
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Figure 4.5: Prevalence over 50 years as given by PDE model

We also compare the prevalence over time of the ODE and PDE over the first 25 years.
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Figure 4.6: Comparison of prevalence of models

4.4.2 New infections

It is also important to know the number of new infections generated by the disease in a specific period of
time. Using the ODE model, we find the number of new infections generated over time.

Figure 4.7: New infections as given by ODE model

We can also see this term distributed over ages of infected:
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Figure 4.8: New infections as given by PDE model

In figure 4.8, it is evident that the most transmissible age of infection is in the acute stage, this is
approximately 3 weeks post infection. This is valuable information to target treatment for these people at
this infectious time to lower prevalence in the population.

Figure 4.9: New infections as given by PDE model

Figure 4.9 shows that the highest number of new infections come from individuals who have had HIV
for approximately three weeks. These newly infected individuals have much higher viral loads and in turn
higher probabilities of transmissions, so of course infect the most people. As an individual’s age of infection
increases, they are causing less infections, and when someone has had HIV for 12 years, they are infecting
almost no people. An individual will most likely not live 12 years because of the extremely low CD4+ count
and in turn cannot infect others. .
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Infected population over time

We can see the number of infected people at different stages of infection at any time t in the between
host model,scaled by the length of time spent in the stage.. (Notice that because the ecliptic and acute
populations are so similar, the two curves are superimposed.)

Figure 4.10: Scaled infected populations as given by ODE model

Similarly, we can see the infected population of different ages using the PDE model.

Figure 4.11: Infected population as given by PDE model

We see that it takes approximately 200 months for the infected population to rise. It is clear that this
initial infection is from individuals with age in the acute phase. As time and age progress, we also see that
individuals start to die, the number of infected people living with an age greater than approximately 125
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months is zero. This is due to the fact that This is past the AIDS stage and the individual has a very high
viral load and low CD4+cell count, so a very high death rate.

4.4.3 Death rate

We first show the death rate of the population as a whole, as depicted by the ODE.

Figure 4.12: Death rate as given by ODE model

Now we show the age distributed death rate, as given by the PDE model. There are two main peaks in
the death rate, where age is 0 and where age is around 8 years. When individuals are newly infected they
experience a sudden drop in CD4+ cell count, which leads to an increased rate of death. The second peak
represents when an individual has had HIV for approximately 8 years which represents AIDS.

Figure 4.13: Death rate as given by PDE model
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Chapter 5

Conclusion

5.1 Discussion

Mathematical modeling of both between-host and within-host HIV dynamics has, over the past few decades,
revealed many features of the disease [14]. However, previous between-host models have not used within-
host HIV dynamics to generate the parameters, such as the transmission rate and the rate of death, for a
between-host model. We successfully created a model that links within-host and between-host viral dynamics,
and showed that the previously ignored shortcomings, which arise from assuming a constant death rate and
transmission rate and in neglecting the effect of antibodies, actually have a significant effect on the long-term
behavior of the between-host model.

In order to link within-host and between-host dynamics, we first developed a within-host model that
accounted for the effect of antibodies on the viral load and infected CD4+T cells. Two approaches were
used to model the antibody profile of a donor, one through fitting a function of antibodies with respect
to the available data, the second by modeling the dynamics themselves. Both approaches were used to
generate the probability of transmission and death rates of individuals in the population who are infected.
The two within-host models’ probability of transmission and death rates largely agree in their qualitative
and quantitative trends. Additionally, it was found that the probability of infection is very sensitive during
the chronic stage of infection to the proportion of the viral load that is transferred to the recipient; this
finding is supported by higher infection transmission rates among needle-stick transmitted HIV infections,
which are associated with a higher viral load transmission, then the infection transmission rates of sexually
transmitted HIV infections.

We then used the results of the within-host model, modified using a piece-wise model to represent the
onset of AIDS, as an input for a pair of frequency-based models, one an ODE model designed for theoretical
work and the other a transport equation-based model designed to recover numerical results. Again, the two
models largely agreed, and a generalization of the ODE model approximates the PDE model arbitrarily well,
as shown by the method of lines.

Numerically, we observe that the infection is most likely to be transmitted between weeks 2 and 4, what
we define as the acute stage of the infection. In contrast, the transmission of the infection is less probable
in the eclipse stage prior to the acute phase. Regarding policy implementation, it is during the acute phase
when it would be most effective, even if a majority of new infections emerge from the chronic and AIDS
phases, because so many more individuals are in the chronic or AIDS phases than the acute phase, and so
targeting the acute patients would have the greatest effect per person.

We also observe that the between-host epidemic eventually reaches a “critical mass” at around 30 years,
at which point the population of susceptible individuals becomes small enough that the prevalence cannot go
any higher. This suggests that if the epidemic was allowed to spread without treatment, it would eventually
level off.
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5.2 Future work

Our model has several limitations that could be addressed. We had limited data on the antibody profile in
the acute phase and the viral load and CD4+T cell count in AIDS phase, limiting the numerical usefulness
of the model. Most unrealistically, the between-host model does not have treatment compartments, but if
the within-host model could be extended to account for treatment then it would not be difficult to extend
the between-host model, either by adding more compartments as done by Rahman et al. [15] or by adding
a third temporal variable denoting time since the beginning of treatment.

We further assumed that sexual contact happens with a randomly selected individual in the population,
and did not distinguish between gender and sexuality. While these are standard assumptions to make in
a frequency-based epidemic model, it is possible that a more realistic model would be a network model as
done by Keeling et al. [8], rather than a differential model; but we do not pursue this possibility.
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