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Abstract

For several decades Markov chain Monte Carlo (MCMC) methods have been used in many different fields. One
of the most frequent areas in which they are used is Bayesian statistics where the user needs to approximate in-
tractable posterior distributions and their associated integrals (e.g., posterior expectations). It is often possible to
create a Markov chain that simulates approximate draws from a posterior distribution. Moreover, the simulated
draws in the Markov chain can be used to easily construct MCMC estimators that converge to the unknown quan-
tities of interest. In this manuscript we attempt to answer the following questions in the context of several widely
used Bayesian statistical models.

(Q1) How long should the Markov chain be run before it is sufficiently close to the target distribution? In other
words how much burn-in is necessary?

(Q2) How long should the Markov chain be run in order to make the root mean square error (RMSE) of esti-
mation sufficiently small?

In the first part of this manuscript we provide an answer to (Q1). There is a theorem from Rosenthal| (1995)
that allows one to bound the total variation distance between a Markov chain (obeying certain conditions) and the
target distribution. In previous research, the bounds resulting from the theorem have often been too large. They
suggest that we need to run the chain for perhaps more than 10! iterations which is impossible to do in a realistic
context (and a in reasonable amount of time). We have worked with Rosenthal’s theorem but we have approached
proving the sufficient conditions for it in a different way that allow us to get much more reasonable bounds.
The Markov chains that we studied were Gibbs samplers for 3 commonly used Bayesian statistical models: the
one-sample normal model, the linear regression model, and the linear mixed model.

The second part of the manuscript contains a detailed analysis of the MCMC error of estimation and answers
(Q2). A recent article |Latuszynski et al.| (2013)) gives general bounds on the RMSE for Markov chains and
functions of interest that satisfy certain convergence and integrability conditions. We were able to verify these
conditions in the context of the Bayesian one-sample normal model and the linear regression model. This allowed
us to calculate the minimum number of iterations needed to ensure that the RMSE is smaller than a user-specified
threshold.

Finally, in the third part, the performances of the programming languages R, C++, JAGS, Matlab, and Julia
for running MCMC algorithms are compared using a variety of Bayesian statistical models.



Part I

Markov Chain Convergence Analyses



Chapter 1

Introduction

In this chapter, we will introduce the basic concepts of our research using the 1-sample normal model as an
example. We shall introduce the following Markov chain theory concepts: the Markov transition function, Harris
ergodicity, and the total variation (TV) distance of two probability measures. We shall also demonstrate how to
derive a widely used Markov chain Monte Carlo (MCMC) algorithm called the Gibbs sampler.

We shall first introduce several standard definitions. Given a discrete time Markov chain {®(™)}°°_ with
state space 2 that has a Borel o-algebra %, the Markov transition function is defined as

Pz, A) =Pr(®(*D) ¢ 4| 0 = z)

where x € 2 and A € 4. For all of the Markov chains, we shall write the measure in terms of a conditional
density, called the Markov transition density and denoted as k(-|x), where

P(z,A) = /kz(w|x)dw

A

Throughout this manuscript we assume that the state space .2 is a subset of R? for some d. Now we shall define
the m-step Markov transition function. Let P (z, A) be defined as

P™(z, A) = Pr(®+™ ¢ A | ) = 1),

We should point out that P(x, A) can be regarded as the special case of P™(x, A) when m = 1.

In Bayesian statistics, the posterior distribution of parameters of interest is usually not available in closed
form. Here we use a Markov chain, called a Gibbs sampler that gives us approximate samples from the posterior
distribution. We shall demonstrate how to derive a Gibbs sampler in the following example.

Example 1. LetY1,Y5,...,Y, N (u, 7'71), where T denotes the precision parameter defined as the reciprocal
of the variance. Suppose that the priors for | and T are independent and satisfy

W~ N(a7 b_l) L 7~ Gamma(c,d),
where (a, b, c,d) are hyper-parameters. Let y = (y1,Yy2,...,yn)’, and denote the sample mean by i and the
sample standard deviation by s. Then, the posterior density is characterized by

el o 755 eap {7 [l 2062 4 = 90 4 20] = G- 0 | T ().

Here I (o o) (T) is the indicator function. To derive a Gibbs sampler, we shall first compute the conditional proba-
bility distributions. By completing the square, it easy to show that

1
~N(wy+ (1=
BT,y (wy+( w)a, m+b>7

(n—1)82+n(u—y)2)’

7|,y ~ Gamma (Z—l—c, d—+ 5



nTtT

where w = 2 can be regarded as the weight between the sample mean y and prior mean a. We shall construct
the Gibbs Sampler that first updates T and then p. Then, if we denote the current state by (u, 7) and the future
state by (1’ , '), the Markov chain follows the order of (', ') — (', 7) — (11, 7). The state space &' = RxRT
and the Markov transition density for this Gibbs sampler is

k((/féa T)|(M/77-/)) = f(M|Ta Z’J)f(7'|//a y)

From now on, we shall suppress the dependence on vy, as the response vector is always fixed for our purpose. We
will return to this example later.

We want to understand whether the Gibbs sampler converges to the posterior distribution. In other words, we
want to know whether our “simulation” is valid or not. In order to discuss the convergence behavior, we need to
define a collection of assumptions called Harris ergodicity which we shall denote by assumption (7).

Definition 1. We say that a Markov chain {®(™)}2°_ satisfies assumption () if
1. the chain has an invariant probability measure 11,
2. the chain is Il-irreducible,
3. the chain is aperiodic, and
4. the chain is Harris recurrent.

We define the total variation distance as

||Pm(l‘7 ) _ H(')HTV = sup ||Pm(x,A) — H(A)H
AeB

This is the greatest difference between the probability that after m steps the Markov chain lands in set A and the
chance that a draw from the posterior distribution would be from set A. One can show that if a Markov chain
satisfies (J€), then for every x € 2~

|P™(x,-) — I(:)||lrv — 0 asm — oo.

In other words, any Harris ergodic Markov chain eventually converges to the posterior distribution in total variation
as we continue to run the Gibbs sampler. In practice, it is easy to show that a Markov chain satisfies (7). For the
type of Markov chain that we consider here, a sufficient condition for () is that the Markov transition density
is positive for (almost) all states. In all of the Gibbs samplers we consider (7¢) is satisfied.

The remainder of this chapter is organized as follows. Section [I.1]is sub-divided into three parts: we shall
define geometric ergodicity, the drift condition, and the minorization condition. As an example, we illustrate
how to establish drift and minorization conditions for 1-sample normal model. In Section[I.2] we shall introduce
Rosenthal’s theorem which provides an upper bound for the total variation distance. The bound relies on the
results from the drift and minorization conditions. To understand how well the bound performs, we shall present
some results for the TV distance in the 1-sample normal model.

1.1 Geometric Ergodicity Via Drift and Minorization

Harris ergodicity does not indicate the rate at which a Markov chain approaches its invariant distribution. In order
to know at what rate the chain is approaching the invariant distribution we will need to define another concept.

Definition 2. A Markov chain {®("™15°_ is geometrically ergodic if
1P () = () [rv < M(z)o™
Sorall x € & with some finite function M (x) and constant v € (0, 1).

One approach to show that the chain converges at geometric rate is to establish a drift condition and an as-
sociated minorization condition (Rosenthal, [1995). We shall formally define these conditions in the next two
subsections.



1.1.1 Drift Condition
We first provide a formal definition of drift condition:

Definition 3. For a Markov chain {®"™)°5_, a drift condition holds if there exists some function v : 2 —
[0, 00), some 0 < p < 1, and some L < oo such that

Elo(@™+))0™) = 4] < pu(z) + Lforallz € 2. (1.1)
We shall provide a detailed example how to establish (1.1]).

Example 1 (Continued). We shall establish a drift condition using the function v(u,7) = (1 — §)%. Notice that
function v does not depend on T in its expression. For simplicity, we shall drop T in our notation. By the law of
iterated expectation,

E [U(M(m+1))| ptm = u} =E [E [v(u(’”“))l pm =, 7 = T} | ptm™ = u} (1.2)

= BB [o(u ) 70 = 7] | u) = ] (1.3)

as fm+1|Tm is conditionally independent of [i,,. We shall first focus on the innermost expectation. Recall that

ulr,y ~ N(ng + (1 —w)a, ﬁ) so it is clear that p — g|T,y ~ (ng +(1—w)a—7, #_H)) , where
nzj—l-b

w = Then, the innermost expectation can be simplified into

E((u™)[ 7™ = 1) = B((u — )™ = 1)
= Var(plr, y) + [E(u|7, y)]?
= ey + (- wja =g + nTl—i- b

1
nt+b’

=(1—w)(a—7)?+

(1.4)

Before we compute the outer expectation, we shall obtain an upper bound for the innermost expectation in (I.3).
In this example, we shall provide readers with three types of bounds.

Type 1 Bound:

2
It is clear that (1 — w)? = (#) <1, and ﬁ <

_ 1
Bu(™)jr™ = 1) < (a= )+ 5 -

In this way, we bound the innermost expectation by a constant. Then, when we apply the outer expectation, it is
clear that

m m — 1 m
B [o(u ™)) = 4] <E[<a—y>2+b|u< ) = 1

1
—\2
=@-9°"+5
2, 1
<pv(p) +(a—g)" + 4,
where p can be any constant € [0,1) and L = (a — y)? + b~1. We have established the drift condition for Type 1
bound.

Notice that the Type 1 bound does not require any additional conditions on the hyper-parameter (a, b, ¢, d)
and y. In addition, p can be set to be as small as zero; yet, L can be very large due to the effects of the hyper-
parameter and the data set. As we shall see later, the Type 1 bound on the innermost expectation does not provide
good bounds on the TV distance.

Type 2 Bound:
Alternatively, we can bound the innermost expectation by a function of 7. It is clear that

b\’ 1 1
(1—w)2=( ) <1, andn < —.

nt+b T+b " nr



Therefore, we have
B )™ =) < (a5 + -
By formula (B)), it is easy to show that
_ 2d+ (n—1)s* +n(u - §)?

E(T_1|'u)_ n+2c—2 ’

provided that n + 2c — 2 > 0. Then, when we apply the outer expectation, it is clear that

1
E [U(M(m—&-l))m(m) _ M} <E {(a_y)Q +— | ™ = 4

2d + (n — 1)s® + n(u — )

2
=(@=9)"+ n? 4+ 2cn — 2n

B 1 5 2d+(n—1)s?
_n+20—20(u)+(a 7) +n2+20n—2n.
When n + 2¢ > 3, we have
1 - 2d + (n —1)s?
- el and [=(a—g)?+ 2T\ )5
p n—|—2c—2€[07 ) an (a=7) +n2—|—20n—2n

We have established the drift condition for Type 2 bound.

The Type 2 bound can control the size of L by the sample size n with the price of non-zero p and some condi-
tions on (a,b, c,d) and y. For any sample with decent sample size, L will be much smaller in the Type 2 bound
than the Type 1 bound, consequently leading to a better TV distance. Notice that the Type 2 bound requires that
n + 2c > 3, which is a very weak condition.

Type 3 Bound:
Finally, we present a different method to bound the innermost expectation as a function of 7. It is clear that

b\’ b b b
(1 —_ w)2 = = < = -—,
nt +b (nT)2+2n7b+ b2 " 2n7b  2n7

and we use the bound 1 1

< —.
nt+b - nr

Then, we have ) )
bla — 7) 1 bla—g)*+2
E (mty|pm) —y g 22 22 = A% J) T2
(v(u I 7) 2nt + nr 2nt

Now, we can follow the same kind of computation in Type 2 bound. We eventually have that, if n+2c > M +3,

bla—7)?+2 o7 2d4 (n—1)s?
E (m+Dym) — | ¢ 222 T2 24 b(a—p)?] ==L\ )0
vln I K 2(2c+n—2) o) + 2+ bla y)]4cn—|—2n2—4n’
where ( 2 ( 2
bla—9y)*+2 97 2d+ (n—1)s
=——¢€|0,1 d L=1|2+b(a— —_— .
P= 4evon—4 €[0,1) an [2+ba y)]4cn+2n274n<oo

We have established the drift condition for Type 3 bound.

Type 3 bound requires that n + 2c¢ > b(a — ¥)? + 3, which is a stronger condition. As most priors give
comparatively large variance, then b is relatively small, and a data set with decent sample size will satisfy the
condition for Type 3 Bound. The advantage of Type 3 bound is that when the sample size is decent, it has a
much smaller L than the Type 2 and the Type 1 bound. The property will significantly help when we establish the
minorization condition, which we will introduce in the next subsection.

1.1.2 Minorization Condition
We shall now formally define a minorization condition.

Definition 4. A minorization condition holds if there exists a probability measure QQ on 9 and some set C' for
which w(C') > 0 such that
P(x,A) 2 eQ(A) forallz € C,Ae A, (1.5)

where € is a real number in (0, 1). The set C' is called a small set.



Recall that a drift condition and an associated minorization condition for ® is sufficient to verify that ® is
geometrically ergodic. More specifically, the chain is geometrically ergodic if it satisfies and with
C={xe X2 :v(x) <6} and any 0 larger than 2L/(1 — p) Rosenthal| (1995). We shall demonstrate how to
establish a minorization in our toy example.

Example 1 (Continued). Let C,, - := {(¢/,7") : (' —y)? < &}, where § > 0. Suppose that we can find a density
q(p,7)on & =R x Ry and an € > 0 such that whenever ' € C,, -,

E((u, )|, 7)) = fulm) f(7l0') = € q(u, ) forall (p,7) € 2. (1.6)

Let Q(-) be the probability measure associated with the density q. Then for any set A and any (1',7") € Cy -, we
have

PG A) = [ k(G 7
<e [ awr)audr = q(a),
A
and hence is established. We now construct a q(p, 7) and an € > 0 that satisfy .

Recall that C,, ; == {(¢',7") : (' — §)* < &} and note that for any (i//,7') € C), + we have

flun)f (') 2 fulr) inf o f(r])

(u',m")ECy,+

n (n—1)s%+n(y —5)*?
god+ e

can be written in closed form. By Lemma ({0)) in the appendix, we have

Recall that 7|y ~ Gamma (c + ) We can show that g(7) := inf (v 1nec, . f(T|1)

: n (n—1)s? +n(u’—17)2>
= inf Glc+ -,d+
9(7) (4 7)EC < 9 9
G(c+ g,d+7(”‘21)52), T

G c+%,d+7(n71)282+n6>, T>T*

where
_ 2c+n

1 1_|_n—5
ns 08 2d+(n—1)s%2 )"

*

Now put

e~ [ iratridn = [ ol

The equality above can be shown by the application of Fubini’s theorem. Then, the minorization condition is
satisfied with this € and the density q(j1, 7) = €' f(u|7)g(7). Note that € can be calculated with two evaluations
of the incomplete gamma function. We will return to this model soon.

1.2 Rosenthal’s Theorem for Total Variation Distance

Suppose that the Markov chain & satisfies assumption (7). Here is a slightly simplified version of the Rosenthal
(1995)) result.

Theorem 1. (Rosenthal, 1995) Suppose that ® satisfies the drift condition and the minorization condition on
C ={x:V(x) <} where § is any number larger than % Let &g = x and define two constants as follows

1+90

Then forany 0 < r < 1

[P (2,) —TI() |7y < (1— €)™ + <n[f_)m (1 + L + V(x))

1—p



When applying this result, users have some freedom to choose the values of § and r. In order to let the
bound decrease as the number of iteration grows, users need to specify the values of § and r such that U <.
Furthermore, from our experience, slight changes in § and r can potentially lead to wildly different results. We
shall apply Theorem (1) in a realistic setting to exemplify how the bound works.

Example 1 (Continued). Suppose that our sample has size n = 100, mean § = 110, and standard deviation
s = 13. Recall the prior hyperparameters and choose a = 120,b ~ 0.027,c =~ 21, and d ~ 2351. Then the
drift function established in Section holds with the following p's and L's shown in the table. Notice that
§d =2L/(1 — p) + Kk, where & > 0 and we have full control of its size. We apply a two-dimensional optimization
technique to find k and r so that the total variation distance is less than 0.01 given the smallest number of iteration,
m.

’ Bound \ p \ L \ K \ r \ Expression \ m ‘
Type 1 0 136.97 | 31.98 | 0.0192 | (0.9999917)™ 4 137.97(0.999963)™ | 554,000
Type 2 | 0.0071 | 101.66 | 31.60 | 0.0258 | (0.9999162)™ + 103.39(0.999697)™ | 55,000
Type 3 | 0.0168 | 3.90 | 20.03 | 0.2288 | (0.7874611)™ + 4.97(0.723405)™ 22

Within this setting, we can clearly see the effects of the different types of bounds. Particularly, thanks to a
much smaller L, the Type 3 bound performs incredibly better than the other two. Recall that Type 1 bound does
not require any additional condition on the hyper-parameter (a, b, ¢,d) and y, and p can be set to as small as 0.
However, these properties do not give the Type 1 bound much advantage in our setting, as p in the other two
bounds are very small as well. Type 2 bound performs better than Type 1, but its L still has a large magnitude as
it contains the term (a — )2, which equals 100 in our setting.

The L term in Type 3 bound is significantly smaller because some portion of the term (a — %)? is moved to
p and the remaining part in L is multiplied by %ﬂ;?‘i), which is a very small value given a decent sample
size, n. Admittedly, we do require a stronger condition on the hyper-parameter (a, b, ¢, d) and y so that p does not
exceed 1. The condition states that n + 2¢ > M + 3. Yet, notice that when the prior information about p is
not very precise, b is very likely to be smaller than 1. Given a decent sample size, the condition should be easily
met in most circumstances.

Throughout this example, we demonstrate how to establish drift condition and minorization condition in the
1-sample Normal Model. By examining the total variation distance of the three different types of bound, we
understand their performance in a practical way. The example illustrates that when working with more advanced
models in further context, we should try to apply (and possibly, generalize) the Type 3 bound, which performs
much better than the traditional Type 1 and Type 2 bounds.



Chapter 2

Linear Regression Model

We have so far demonstrated methods by which we can calculate tight bounds for the total variation distance
in the 1-sample normal model’s Gibbs sampler. We shall now turn our attention to the more complicated linear
regression model. Several of the steps used to obtain tight upper bounds will be motivated by similar steps that
were used in the 1-sample model. In Section [2.1] the model is introduced. In Section [2.2] several approaches
to demonstrating a drift condition are presented. Next, in Section [2.3] the associated minorization condition is
proven. Finally in Section some numerical results for the TV distance bounds are presented using 2 models
and several methods of proving the drift condition.

2.1 The Model and the Gibbs sampler

We recall that the Bayesian linear regression model is defined in the following way.
Y|B,0~Nu(XB, I0%)

Yisa response data vector with dimensions n x 1, X is a fixed nonzero data matrix with dimensions n X p, B is
a random parameter vector with dimensions p X 1 and o is the random standard deviation. Within this model we
assume the following independent proper priors on 3 and 7, where 7 = 1/02.

B~ Np(ug,$g) L 7~ Gamma(a, b)

Each of the hyper parameters g, >3, a, b is constant and assumed to be within the correct range for these poste-
riors to be proper. Before we continue we will reparameterize the model to make some calculations easier. Define
B = B — pg so that 8 has a prior mean 0. Also define Y =Y — Xpug. Note that we can write the model in the
following way:
Y|ﬁ> O'NNn(Xﬁv I7LU2)
B~ Ny(0,83) L 7~ Gamma(a,b)

We shall work with the intractable posterior distribution for this reparameterized version of the model for the
remainder of this section. We note by Lemma([7]in Appendix [B|that the Gibbs sampler for this model converges at
the same rate as the Gibbs sampler for the original model. Now as before we cannot get the posteriors in closed
form but one can easily derive the following conditional posteriors for 7 and 5. The conditional posterior for 7 is
given by:

.12
o*(n—p)+ | X (5= 3
2

718,Y, X ~ Gamma | a + g,b—i—

~112
|y -x3" .
=t f=XTX)TXTY,
n—p

where (X7 X)* is the Moore Penrose inverse of X7 X. The conditional posterior for 3 is given by:

BIT, Y, X ~ N,y(19,. XTY,¥,), U, =[r XX +3551

Note that similarly to the 1-sample case we shall be suppressing dependencies on Y and X in our notation
from here on as we assume that they are fixed, known matrices. We will also write Y = y as we consider Y to be



a random vector and y to be an observed data vector.

We shall be considering the Gibbs sampler {(3(™), 7("))}°°_, which updates 7 then 3 such that if we start with
an initial state (8, 7') and reach a final state (3, 7) it will update in two steps. First it updates 7’ to 7 by making
a draw from 7’s conditional gamma density given 3’ and then it updates 5’ to 3 by making a draw from s
conditional normal density given 7. Thus the update order is: (5, 7) — (8',7) = (8, 7).

2.2 Drift Condition

As in Example 1, we will be considering three different types of bounds used to prove the drift condition for the
linear regression model. Each of these bounds is similar to one from Example 1 although they are not exactly the
same (when the linear model is specialized to the 1-sample model). The bounds that were presented earlier act
mostly as a motivation for our overall strategy in bounding the expectation here.

2.2.1 Method 1 Bound

In our first method we want to see if we can prove the drift condition by bounding the entire expectation by a single
constant. If we can do this we will have something similar to a Type 1 bound for the linear regression model. We
don’t expect the bound to perform very well but we want to see if it is at all usable.

Proposition 1. There exist a finite constant L = ||Pxyl|? + tr(XT XXg), where Px is the projection matrix of
X, such that, for every 3 € RP,
E(u(8"D)g™) < L,

where the drift function is defined as
v(B,7) =v(B) = IX(B-B)| .

We see that this clearly implies that our Gibbs sampler obeys the drift condition as this is just the case where
p = 0. We notice that the drift function here does not depend on the previous value of 7, but we know that the
Gibbs sampler doesn’t either so we believe this shouldn’t cause an issue. Now to the proof:

Proof of Proposition. |1|We begin with the following by the law of iterated expectations.
E(|X (8 = B)[P18") = B(E(IX (8" = 3)|2|r ™+, gtm) |50

Note that if we can bound the inner expectation by a constant then taking the outer expectation will leave it
unchanged. We shall focus on the inner expectation for the moment. Note that

B(IX (5D — B[P, gm) = B (80D — BT XT X (B — flrmiD = 1) |
This is a standard situation for the expectation of a normally distributed vector and is equal to the following:

B((B™D - 3T XTX (B - B)|r) = w(XTXT,) + (BB - BIr)T XTXE(B™ Y — Br) .
2.1)

Recall that if A is a non-negative definite matrix then tr(A) > 0. If A and B are symmetric matrices (of the
same dimension) such that B — A is non-negative definite, we write A < B. Also, if A < B then tr(A) < tr(B).
Furthermore, if A and B are positive definite matrices, then A < Bif and only if B~! < A~'. Since Zgl < w-l
it follows that W < X.5. This implies that

r(XTXT,) = (X, XT) <or(XEZsXT) =tr(XTXXp), (2.2)
since XU, XT < XEﬁXT .
We now focus on the last term in 2.)),
(BB = 3)n)" XTXE@B™ Y - fir) = | X[r¥, Xy - 5] 2.3)

For this term we may make use of the following Lemma which is proven in Appendix

Lemma 1. Define g(7) = | X (¥, X Ty — B)||%. Then g(7) is monotone nonincreasing and convex.

10



By Lemma [1| we see that the supremum of g(7) must be ¢g(0) which is well defined. It is then possible to
obtain the following bound:

IX(r- X Ty — )| < supl| X (r, X Ty — 5)|* = | Pxyl® . (2.4)

By combining (2.2)) and (2.4) we may conclude.
E(IX (8D = B)|*|r, 8) < | Pxyll? + tr(XTXEg) .

We see that this is a constant which will be unchanged upon applying the outer expectation. Thus we may
make the following overall conclusion

E(IX (8D = B)|P[87) < [|Pxyll + tr(XTXSp) . (2.5)
We see that this is precisely the inequality presented in proposition [I| which completes our proof. O

This proof is sufficient to show that the Gibbs sampler obeys the drift condition but as we shall see in Section
[2.4] the results for the TV distance with this bound are quite poor. We may improve upon this method using several
alternate approaches.

2.2.2 Method 2 Bound

Our goal here is to find something comparable to the type 2 bound. The trace term comes from the variance of

a random vector similar to the ﬁ term from the variance of a random variable in the 1-sample normal model.

We will look for some sort of inverse 7 function as an upper bound of the trace.

Proposition 2. [f X has full rank, n + 2a > p + 2, and 5 + a > 1 then there exists

p

p:n+2a—2

2b — )52
<1 and L:|ny||2+p(+(”p)”>

n+2a—2

such that, for every 5 € RP,
E(U(ﬂ(m+1))|ﬁ(m)> < pv(ﬁ(m)) +L,

We see that p and L are constants with the necessary properties for this to imply the drift condition holds. Note
that while 3 assumptions are needed for this proof, none of them is very strong so our proof is still quite general.

Proof of Proposition 2] Using this method we obtain the same bound that we did in (2.4) but a different bound
for the trace term of (2.1). If we assume that X has full rank then (X7 X)~! is defined thus we may say that
U, < (rXTX)~!. This allows us to obtain the alternate bound

w(XTXV,) = (X0, XT) < (X (rXTX)1XT) = (X7 X (rXTXx)" ) = 2.
T

The expectation for % where 7 is Gamma distributed is given by Lemmain Appendix@ and is well defined so
long as 5 + a > 1. Applying the expectation we get the following,

E(T|ﬁ )—p( n+2a — 2 i n+2a — 2 I1X(5 Al 26)

If this result is combined with (2.4)) then the following overall inequality is true.

B(IX(8™+) — 3)|218) < (p) w(B™) + | Pxyl® +p <

2b + (n — p)&?
n+2a—2

2.7
n+2a— 2 27

We see this is precisely the form of proposition 2] thus the proof is complete. O

11



2.2.3 Method 3 Bound

Here our goal is to find one more method by which we can prove the drift condition which gives results comparable
to the Type 3 bound. We first present some motivation for the method we employ. We want to find a function of
7 that bounds (2.3) rather than bounding it by a constant. If we can find a function with similar properties as an
upper bound this should give us something much tighter. We would also like to bound the trace term from (2.1)
by a close function without having to assume that X has full rank. Ideally we want to find a function that bounds
both simultaneously. For this purpose we use the following lemma which is proven in Appendix [B]holds true:

Lemma 2. Define h(7) := tr(XT X V). Then h(7) is monotone nonincreasing and convex.

We see that both g(7) and h(7) are nonnegative, monotone nonincreasing, and convex thus their sum, G(7) :=
g(7) 4 h(7) must retain these properties as well. A function of the form 2 + ~5, where each +; is a positive
constant, also has these properties. Its expectation returns our drift function in a simple way as well. If we can
find a function of this form which acts as an upper bound of G(7) then it should act as a tight upper bound. With
that in mind we present the following proposition.

Proposition 3. If 5 + a > 1 then there exist positive constants 1,72 such that if

m 2b + (n —p)s>
=—x<1 L= —_— .
P ¥ 2a—2 71( n+ 2a — 2 T

then for every 3 € RP,
E(o(8")[8™) < po(8™) + L.

Proof of Proposition|3] We may calculate the values for -y; and 7, in the following way. Let : € R be a constant.
Define C, := (0, ¢|. Then ~y;, 72 are calculated as

m =sup(r(G(T)) , 72 =G().
C.

We must resort to numerical methods to calculate y; but so long as ¢ is not too large we get accurate results. We
note that by the definitions of «; and 7, the following inequalities must hold.

Gr)< L ifreC, and G(r) <7, ifr ¢ C,.
T

The inequality for ~y; follows directly from its definition and the inequality for vy follows from the fact that
G(7) is monotone nonincreasing. If we take the sum of these functions we get

G(r) < % + o forall T € R

If we then apply the outer expectation to this function we will get the following final bound on E (v( plm~+1) )| 8 (m))

(m+1)7 | a(m) 7 (m) 2b+ (n — p)o?
B IN5™) < o (3) o (PG ) g @8)

We see that this is exactly the inequality from proposition [3] thus so long as y; < n + 2a — 2 then p < 1 and we
have our proof.

We may obtain 7; such that v; < n 4+ 2a — 2 by the following method. We know that if 7 = 0 then 7(G(7)) = 0.
We also know that 7(G(7)) is a continuous function by sum and product of continuous functions. This makes
it possible to select ¢ such that 7, is as close to zero as we like. We thus have p < 1 and have completed our
proof. O

We note in general that decreasing ¢ must either decrease the value of 1 or not change it as we are taking

the supremum over a smaller set. Decreasing ¢ will however increase, or not change, the value of v5 due to G(7)
being a nonincreasing function. There is thus a tradeoff between the size of y; and the size of vy, when we choose
a value for ¢.
It is interesting to see that both of the other methods for proving the drift condition just look like special cases of
this one. If we allow ¢ = 0 then y; = 0 and 2 = G(0) which is exactly the same value that was obtained for L
in method 1. In method 2, we effectively have 1 = p and 72 = || Pxyl|?. This shows that this method is much
more flexible than the other two and why we are potentially able to obtain better bounds on the TV distance.

12



2.3 Minorization Condition

Now each of the methods in the previous section proves that the Gibbs sampler obeys a drift condition but in order
to apply Rosenthal’s theorem we must also prove an associated minorization condition. Conveniently we only
need to consider a single minorization condition that works for each method.

Proposition 4. The Markov chain {(£™), 7(™)}°_ | obeys a minorization condition.

Proof of Propositiond] The Markov transition density for P((8,7), A) is defined as

kB, 7|8, 7") = f(BIT)f(718).

We shall be bounding this density below by another density function which does not depend on the previous step
to establish the minorization condition. For our set C' we define Cj3 := {(8’,7') : | X(8' — B)||> < &} where
0> % is a constant. We see that the set does not restrict 7’ but this is to be expected as we know that (5, 7)
does not depend on 7’. Note that for any 5’ € Cz we have

fBIn)f(718°) = f(BI7) ol f(r18)

Recall that:
A2 X(8 — 212
with R
n—p

w(r) ;= infgec, f(7]|B") can be written in closed form by the following proposition.

Proposition 5. The function w(r) has the following form which is proven in Appendix@

, n
w(T) :ﬁ}g(fJeG<a+2,b+

(n —p)s® + | X (8 —B)IP)
2

G a—l—%,b—i—i("}p)&z) LT

Gla+5,b+ 4(71717;&2”) >

2a +n 6
- 1+—2 ).
5 log( + 2b+(n—p)62>

We see that this form follows from Lemma [6] which is proven in Appendix [B]similarly to the minorization for the
1-sample normal model. With a closed form for w(7) we are now able to calculate €:

*

€= / f(BIMw(r)drds = w(r)dr .
R JR,

R4

Once again an application of Fubini’s theorem is necessary. The final calculation may be done through two
computations of the incomplete gamma distribution. Thus, the minorization condition is satisfied with this € and
the distribution whose density is q(3,7) = e~ 1 f(B|7)w(7). O

2.4 Example: Bounds on the Total Variation Distance

We see that each of the methods we have used to prove the drift condition may be used to calculate TV bounds
by Rosenthal’s theorem. Each of them will be used with two concrete examples to see how they compare. We
shall also consider one new method, denoted method 4, where we bound only the norm term from (2.3) via the
numerical method and we bound the trace term separately using the full rank assumption. Each of these methods
was used for two linear regression models on NBA 2015 data. In each case the values of r, x have been optimized
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to give the best possible results. In all cases the value ¢ was set to be 10° although in general it would be possible
to optimize ¢ and potentially get better results. We begin with the following model:

1
lOg(PPG)Aﬁ, 7~N (ﬁl + ﬂ2MINia 7_) ’

where PPG means points per game and MIN means average minutes on court. We note that in this model we used
a sample size n = 486 and we removed players whose PPG where zero to ensure log(PPG) is well defined. We
now present the following results on the TV bounds:

NBA Log(PPG) Model
H Method p L K r m  Bound Formula H
1 0 72.89 - - - 1 -
2 003919  1.600 3.068 .2067 55 .009151 .9165™ + (.8762™)2.606
3 003919  .1959 2362 3932 13 .006546 .6484™ + (.6303™)1.197
4 003944 1972 2362 3926 13 .006621 .6490™ + (.6307™)1.198

In method 1 the (1 — €) term in Rosenthal’s theorem is unusable. This is because the value of ¢ is so small that
when our algorithm calculates 1 — € it is rounded to 1. The actual computed value of epsilon is extremely small
so the number of iterations necessary to get useful bounds would be impossible to run. Unlike the Type 1 bound
in the 1-sample normal model, method 1 here is not just the worst, it is completely unusuable. Each of the other
methods however gives us useful results although methods 3 and 4 vastly outperform method 2. It is important to
also note that method 4 performs just slightly worse than method 3 thus it seems that choosing to bound the trace
term numerically or using the bound available when X has full rank makes little difference. We now present the
second model that we considered:

1
T

where PF means personal fouls, STL means steals, BLK means blocks, and MIN means average minutes on court.
Each of these is measured per game. Here the sample size was n = 492. In this model the magnitude of the data
was significantly higher than in the previous model and we believed this would cause the bounds to be higher. We
now present the following bounds on the TV distance.

NBA PF Model
| Method p L K r m  Bound Formula |
1 0 7815 - - - 1 -
2 007978 2479 - - - 1 -
3 .0348 4.073  7.0261 .1502 81 .009643 .9428™ + (.9014™)5.219
4 .0358 4.1958 7.075 1469 85 .009802 .9457™ 4 (.9054™)5.352

In this case both methods 1 and 2 give us a result where € is too small for the (1 — ¢) term to approach zero in
a reasonable amount of time. It seems that the bounds from Rosenthal’s theorem become worse if the magnitude
of the data becomes large. In the log(PPG) model method 2 was feasible for calculating useful bounds but that is
no longer the case here. This gives us very strong motivation for using the method 3 bound. We do note that even
with this model methods 3 and 4 are still quite close to each other. This strengthens our hypothesis that the full
rank bound for the trace term is very close to the numerically derived bound.

We see that in the linear regression model we were able to obtain a bound that was similar to the Type 3 bound from

the 1-sample model. As expected this bound vastly outperformed the first two bounds we developed. We hope to
apply some of these ideas to Gibbs Samplers for more complicated models such as the linear mixed model.

14



Chapter 3

Linear Mixed Model

The general linear mixed model has a wide range of applications. Bayesian versions of this model require us
to specify a prior distribution for the parameters but, unfortunately, any non-trivial prior leads to an intractable
posterior density. In this chapter, revisit the work of[Roman and Hobert|(2015) study the convergence properties of
a (block) Gibbs sampler Markov chain based on a (conditionally) conjugate prior. In Section[3.1] we introduce the
setup of the model and the construction of the Gibbs sampler. More detailed introduction can be found in Roman
and Hobert| (2015). In Section we define the drift function and establish the drift condition with a “Type 2”
bound. In Section [3.3] we show that the Markov chain satisfies the minorization condition with a drift function
similar to the one from the previous section. In Section we apply Theorem [I] to understand the performance
of our bound given a concrete setting. We end this chapter with a brief discussion of some future work that will
improve the bound.

3.1 The Model and the Gibbs Sampler

The first stage of the Bayesian hierarchical model is

Y|ﬂ,u,)\ ~ Ny <Xﬂ+ZZiui, )\€1]> R

i=1

where Y is an N x 1 response vector, X and Z; are known matrices of dimensions N x p and N X g;, respectively,
B is a p x 1 regression coefficient, u; is a g; x 1 vector that represents the ith random factor in the model,

w = (ul wl ... ul)T, )\ is the precision parameter associated with 3, each ), is the precision parameter
associated with u;, and A := (A¢ Ay, --- Ay, )T. Given ), the random elements 3 and u are assumed to be

mutually independent and the second stage specifies their prior distribution:
BIA~N(ug,X5) L u|)‘NNq(0’A71)’

where A, = ®I_, Ay, 1y, and ¢ = g1 +¢2 + - - - + ¢, Finally, the third stage of the model specifies the distribution
of the precision parameters, which are independent with marginals given by

Ae ~ Gamma(ae,b.) L Ay, ~ Gamma(a;,b;), fori=1,2,...,r.

The hyper-parameters p15, %3, a = (aec a1 ...a,)" and b = (b. by ...b,)" are all assumed to be known and are
restricted to their usual ranges to ensure a proper prior.

To construct block Gibbs sampler, we shall first define 6 = (37u")T, Z = (Zy Z3 ... Z,),and W = (X Z),
so that

W0 =X3+Zu=XB+ Y Zu.
i=1
Also, let y denote the observed response vector. One can show that

ly — W9||2>

N
Acl0,y ~ Gamma (ae + 5 be + 5

and, fori € {1,2,...,r},

. 2
/\ui|9,y~Gamma (ai_|_ %’ bz + ||U2LH ) .
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Then, we can construct a Markov chain { (A, 0,,,) }55_ that lives on 2 = R, x RPT4_ If the current state of
the chain is (A, 6n,), then the next state, (Ay,41, @m+1), is simulated in two steps. First, we draw A, 1 from
the conditional posterior density of A given 6 = 6,,, which is a product of r 4+ 1 univariate gamma densities.
Then, we draw 6,,,11 from the conditional posterior density of 6 given A = \,,,11, which is a (p 4 ¢)-dimensional
multivariate normal density. In other words, the chain goes in the following order:

(Anu em) — (AnH—la om) — ()\7n+1a am-i-l)-

It is clear that the two marginal sequences, {\, }5°_ and {6, }5°_,, are also Markov chains and their invariant
densities are the marginal posterior distribution of A\ and 6, respectively. One can show that all the three Markov
chains satisfy assumption (), and geometric ergodicity is a solidarity property for these chains, Roman|(2012),
Diaconis et al.| (2008), and [Roberts and Rosenthall (2001). We now state the main result in Roman and Hobert
(2015)).

Theorem 2 (Roman and Hobert|(2015)). The block Gibbs Markov chain, { A, 0,,)}5%, is geometrically ergodic
if

1. X has full column rank,

2. ac > L(rank(Z) — N +2), and

3. minfar +%,....ar + &} > 1(q— rank(2)) + 1.

However, the proof of Theorem |2| does not directly lead to a workable bound for the total variation distance.
To obtain a tight bound, we shall consider a slightly different drift function.

3.2 Drift Condition
Consider the following drift function for the Gibbs Markov chain,
v(0,2) = 0(0) = o[W (0 = 0)* + ||u]?,

where « is a positive constant and = (WTW)TWTy where At denotes the Moore-Penrose inverse of matrix
A. Notice that A
Wo=wWIw) ™ wly = Pyy,

where Py, denotes the projection matrix onto the column space of W. We shall compare our drift function v(6)
with the drift function v’ (#) used in the proof of Theorem [2} where

V'(0) = ally = WoI* + [lul® .
By the orthogonal decomposition of y into Py + (I — Py )y, it is easy to show that
V() = (I = Pw)yll* + | Pwy — WOII* = (I — Pw)yll* +v(6) ,

as W and y are known. Note that ||(I — Py )y||? is a fixed constant. Since the two drift functions are off by a
constant, it is clear that we can follow some ideas in the proof of Theorem@]to establish the drift condition for the
new function. In order to have a tighter bound, we shall assume (slightly) stronger assumptions than Theorem

Proposition 6. Suppose that X and Z have full column rank, and a. > %(2 +p+q— N). Then, there exists a
positive constant o, a constant p € [0, 1), and a finite constant L such that for every §' € RP¥Y,

E(0)]6") < pv(0) + L,
where the drift function is defined as
v(0) = al[W (0 = 0)|1* + [|u]*.

Remark 1. Notice that this proposition does not assume any conditions on a; + 4 for any i € {1,2,...,r},
whereas the third statements in Theorem|[2| requires some (fairly weak) assumptions.

Remark 2. Recall that in the linear regression model, we discussed how to reparameterize the model and set the
prior mean of B to be zero. Here we shall follow the same procedure. It is clear that we can set ug = 0 and
simplify calculation without loss of generality.
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Remark 3. For this remark we will need to introduce some new notation. Define T’ = (AXTX + Egl)_l and
Q' = (NZTM\Z + A,) 7Y, where My = I — N\ XTy ' XT. These definitions follow from Romdn and Hobert
(2013). From the proof of Theorem[2]in[Romdn and Hobert (2015)), we know that the main focus is to obtain upper
bounds for the terms

E(|W (6 = 0)|*|A) = tr(WVar(0I) W) + [W(EOIA) - 0)]° 3.1

and
E(lul?|N) = tr(Q\ ) + | E(u|N)||?, 3.2)

which are complicated functions of \. This comes from the fact that
E(u(0)]0') = E(E(v(0)0'A)|6") , (3.3)

and the inner expectation from (3.3) is equal to the sum of (3.1) and (3.2). Here the definitions of Var(6|\),
E(ul\), and E(0|)\) are:

-1 T, _\2m—1yT 7—17T
E(0|>\,y): T)\ )\eX Y Ae_zl)\ 1—?( ZQ)\ Z M)\y :
/\eQA Z" Myy
—1 2p—1vT 15T -1 1T 1
Var(o]r,y) = | T TAD XU ZQy ZEXT AT X0
_)\eQ)\ Z°XT), Q}\

E(ul)) = X.Qy ' Z" Myy .

Our goal in this section is to obtain a “Type 2 bound for the terms in (3.1]) and (3.2)), i.e. we want to bound
the “trace” terms by some functions of A, and we want to bound each “norm” term by its supremum.
Roman and Hobert/ (2015) show that

tr(WVar(OINWT) = w(Z2Q3 ' Z7) + e(XT ' XT) — to((I — M\)ZQ ' Z7 (I + My)). (3.4)

We shall state some preliminary results that help to bound the “trace” term in (3.4). The proof of this first lemma
is in Appendix[C]

Lemma 3. If rank(X) = p, then for all X € RZH,
1 tr(WVar@INWT) = n(XT ' XT) + tr(MAZ QY ZT M),
2. tr(WVar(OINWT) < (p + rank(Z))A\; .

For the “trace” term in (3.2, we shall construct an upper bound of the form of {* + ~, for some positive v
and 7,. To do so, we need the following lemma which is proven in Appendix [D}

Lemma 4. Ler Q) be defined as before. Then for all (A, Ay, .-y Ay, ) € Rfrl,

0 tr(Q;l) 0 tr(Q;l)
73& <0 and 78/\1“ < 0.

We shall state the construction of the upper bound formally as a proposition.

Proposition 7. Suppose that Z has full column rank. Define h(\.) := tr [(A\ZT M\Z)~1]. Let 1 be some positive
constant and C, be the set (0, 1]. Define y1 = supy_cc, (Ae - h(Ae)), and o = h(t). Then, vy, is well-defined, i.e.
~1 is a finite constant; and,

Q1Y) < % t forall (A Auys -y A, ) € R

Proof of Proposition[7] Ttis clear that
Ae - h(he) = Ao - trf A ZTMAZ) Y = qu[ (ZT M\ Z) 1] .

Recall that M, is a positive-definite matrix, and tr(M)) is finite for all A\, € C,. Then, it is easy to check that ;
is well-defined, i.e. 7, is a finite constant. Then, we shall construct an upper bound for i (\.). Recall that

Q)\ = )\eZTM)\Z + Au
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By Lemma |4, we know that for any fixed A\, € R, tr(Q;l) is monotone decreasing with respect to each \,,.
Then, to obtain an upper bound for tr(Q;l), we shall set each A\,;, = 0. Since Z has full column rank, we have

r(Qy 1) <l A ZTMAZ) ™ = h(Ae).

By the results from Lemma it is easy to show that h(\.) is a monotone decreasing function. For any A\, € C,,
it is clear that

Y1 71
h )\e < T~ <1 ’
(Ae) N N + 72

as 1 = supy_¢c, (Ae - h(Ae)). Forany A, € (¢, 00), it is clear that

n
Ae

as h(\.) is a monotone decreasing function. Hence, we conclude that

h(Ae) < 72 < — + 72,

r(Qy") < h(Xe) < % + 7.

O

Roman and Hobert (2015) show that || E(u[A)|| and [[y — W E(6|A)| are bounded above by some constants.
Then, it is easy check | W (E(0|A) — 6)]| is also bounded above by a constant, as
IW(E@IN) = 0)|* = lly = WEGN)I — || - Paw)yll*.

Given a certain data set, we can use numerical methods to compute the supremum of these “norm” terms, as the
supremum is well-defined. We shall denote that

K,= sup |E@N|?> and Ks= sup |[W(E(B|N) —8)|>.

AeRr7H AERTT!
Now, we shall prove Proposition [6]

Proof of Proposition[8] Recall that v(6) = a||W (6 — 6)||2 + |Ju||2. We shall prove that v(6) satisfies drift condi-
tion. By law of iterated expectation, it is clear that

E[v(0)|0'] = E[E[v(9)|>\,9’}| 0’]
As before, we shall focus on the innermost expectation for now. Notice that the conditional density of 8|\ does
not depend on 6’. By equations (3.1)) and (3.2)), we shall write

E[(0)[, 0'] = E[v(6)|X]

= E[al|W (9 = 0)I1*|\] + El||ul*|A]

= a tr(WVar() )W) + aK, +t(Q") + Ko
Now, we shall apply Lemma and Proposition Notice that rank(Z) = ¢, as Z has full column rank. Then, we
have

Ev@)N] < alp+ A\t + oK, + At + 72 + K.

Recall that R
W (o —6)|? I — P 2+ 2b,
Bty - IO =0 I~ Pyl +
2a.+ N -2 20, + N —2
Now, we compute the outer expectation. We have

E[(8)l0'] < palW(8' = 0)|2+ L = po(6) + L,

where

I(Z — Pw )yll* + 2be
20, + N — 2

(p+ag) +atn
P~ +N-—2 ™ (ap+aq+m)

+OzKu+’YQ+K9.

Since a, > %(2 +p+q— N),itis clear that 2a, + N — 2 > 0 and p > 0. To ensure that p < 1, we need

o> 71
200 + N -2 —p—q’

Since 7, is finite, we can always find some « such that p € [0,1). This concludes our proof and we have
established a drift condition with a “Type 2” bound. O
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3.3 Minorization Condition

Recall that A = (A\e, Auyy- -+, A, )T and 6 = (BTu®)T. Let k(6,\|6’\’) be the Markov transition function for
the chain of {(6(™), \(™))1°c_ ' We know that probability transition kernel is

k(O,NO'N) = fFOIN)F(A]O') .
Recall that our drift function is defined as
v(0) = a||W (0 —6)||> + ||ul|> for some constant c.

We define R
={0": al[W(0' - 0)|* + [|al* < &}

Note that for any 6’ € Sy, we have
FONFO) > FOLN) jnt FO0)
€Sy

Recall that

N <I—Pw>y||2+||w<e—é>||2>
27 e 2 b

Aelf,y ~ Gamma <ae + —,be +

and

Au; |0,y ~ Gamma <ai + %’ b; + ||’LL;|| > ’

where W = (X Z). As ). and all \,,, are independent, we have

Jnf fN8) = inf [ﬂw) 1I f(AuiIG’)] .

Let
Cy, =={0: a|[W (0 —0)||> <6}, and Cy, := {#' : ||a||® < 6} foralli e {1,2,...,r}.

Define Cp = ((;—; Co,) N Cy,. Then, it is clear that Cy D Sy. Therefore,

g}nf f(Xe |0 Hf U1|0 ] z lnfe lf(Ae|9/)' Hf(AU1|0/)]
=1
: /
> it fOACl0)- Ea}g&f()\u,-lﬂ
> i 16.
>t fO)- 11 o, FOul6)

i=1

Hence, we have
-

FONFNO) = FON) inf FOcl0) - [T it FOuil0)

i=1
Let
— 3 /
ge(Ae) = 9’1€nC'f95 F(Ael),

and, foralli € {1,2,...,r}
0.

i(Ai) = Inf (A
siN) = o O
By Lemma [6] from Appendix [A] it is clear that

Gamma ae+%,be+w Ae < AE

e

Gamma ae+%7be+W) Ae > ¥

e

ge = (3.5)
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and, foralli € {1,2,...,r}

. Loy YW
g = {Gamma (ai + %, b;) Ay <AL (3.6)

Gamma (ai + L& b + g) Ay, > N

;)

where
2a. + N)

( a 16
= — 71 1
Ae a5 B\ T T = Pl )

and, foralli € {1,2,...,r}
2a; + q; 6
Y= 1 1+—.
A 5 Og( o,

Put

T

= i AW ; ’
- /RH,, o O i fON)-TT, it FOl6)dr ad

=1
:/ ge(Ae)dAc - H/ gi(Ni)dA;.
Ry i=17 R+

The computation can be done through integrating r + 1 piecewise functions. Thus, the minorization condition is
satisfied with the € above, and it is easy to check that

q(0) = e f(OIN) ge(Ae) Hgi(/\i)d/\

is a probability density function. We have established the minorization condition for drift function v(6).

Remark 4. Notice that this specific minorization condition is associated to our drift function v(0). If we use
another drift function, the minorization will change accordingly. Generally speaking, in order to have a good
result for €, we need to choose a drift function and bound it in the way that minimizes 6. We choose the drift
function v(0) over v' () because we do not have the constant term ||(I — Py )y||* as a part of 6.

3.4 Example: Bounds on the Total Variation Distance

To help readers understand the performance of our bound, we shall provide a solid example and apply Theorem ]|
to compute total variation distance. As in Chapter[2] we use the NBA 2015 data set and consider the logarithm of
players’ average points per game following a normal distribution. In addition to the linear regression coefficients
1 and (o, we also sort the players by their teams and consider the team effect u; as the random effect for each
team 7. Particularly, we consider

log(PPG);;|8, u, A ~ N (B1 + B2MIN;; + u, AZ'),

where 3 = (31, B2)T and A = (A, A, )T. Notice that we only have one random effect in this model. Sometimes,
people refer to this model as the random intercept model, as we can consider 31 + u; as the random intercept of a
certain player in team ¢.

In this particular example, we have sample size N = 484, and matrices X and Z have full column rank with
p = 2 and q = 30. For prior distributions, we have

B ~N(ug,2s) L Ae ~ Gamma(13.17, 0.958),

where

_ (0365 . w _[ 0614 00216
H5 =\ 0.0733 8= 1-0.0216 0.00835 |

These two prior distributions are given based on some experts who study the data of NBA. Notice that we do not
specify the prior for \,, because the prior for the team effect is not entirely clear. In this paper, we consider three
different priors for A, to illustrate the effect of the random effect prior on the total variation distance.

We first consider A\,, ~ Gamma(10, 20). Based on trials and errors, we pick ¢ = 3.44 to obtain relatively
small p and L, and we have y; = 7.524 and y5 = 2.187. In the future, one may design an algorithm to optimize
¢, but such algorithm must also take the optimization of «, x and r into account.
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In this example, the key to obtain decent total variation distance is to obtain the best € from the minorization
condition. From our experience, when we use a “Type 2” bound in the drift condition, the value of € usually has
significant influence on the total variation bound. With the values of v, and 2, one can apply proposition [6]and
compute p and L.

Then, we shall consider the value of € as a function of a. To obtain the largest e possible, we shall use the
function optimize in R to select a value for a.. In this example, we have o = 1.91. Then, we may use the two-
dimensional optimization function to obtain the best values for x and r. Finally, one can calculate the smallest
number of iteration such that the total variation distance is less than 0.01.

While keeping other priors the same, we shall also consider two other cases where A\, ~ Gamma(10, 50)
or \, ~ Gamma(5, 10). We shall follow the exact procedure described above to obtain the smallest number of
iteration, m. We summarize these two cases in the following table:

H Prior for A\, \ L \ o \ € \ K \ r \ m ‘
Gamma(10, 20) [ 3.44 [ 191 [ 1.8 x 10~* [ 3.10 [ 0.021 [ 1.22 x 10°
Gamma(10, 50) | 3.5 | 3.00 [ 8.0 x 10~* [ 2.33 | 0.020 | 2.55 x 10°
Gamma(5, 10) | 3.44 | 1.52 | 4.7 x107° [ 2.33 [ 0.020 | 5 x 10°

From the table, we notice that € is very small in all three cases, and such a small value imposes a strong
restriction on the performance of total variation distance. If we continue to decrease the shape and the rate for
random effect prior, € will become too small for us to obtain any workable total variation distance.

The most helpful way to improve the total variation bound is to construct a “Type 3” bound by bounding the
“norm” terms by a function of )\ rather than bounding them by their supremum. Meanwhile, it is also valuable to
study the optimization of ¢ and « that will yield a systematic approach to generate the best values for the given
data set and priors.
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Appendix A

Lemmas for 1-Sample Normal Model

A.1 Moments of a Gamma Distribution

Lemma 5 (Moments of a Gamma Distribution). Let X be a random variable of Gamma distribution with shape o
and rate (3. Then

E[XxY] = ﬂ‘tr(l?(;r)t)

forallt € R such that a +t > 0. Particularly, if a > 1, then

Proof. By the definition of moments, we have

BY st -
]E[Xt] :/thmx“ e P L(0,00)d

_ Ba /OO xa+t—1€_’81dx.
L(a) Jo

If o +¢ > 0, we may evaluate this integral by the properties of gamma density function. Hence, we conclude that

5 T(att) _y Tla+)

EX) =1 T(a)

A.2 Infimum of Gamma Lemma
We note that this proof here is based off of the ideas of Jones and Hobert| (2001)).
Lemma 6. Suppose that X is a random variable and
X ~ Gamma (o, 8 +~vz)  for some constants «, 3,7y > 0.
Define C = {z : ¢ < z < d}. Let f(x) denotes the probability density function of X. Then
inf f(x) = min (Gamma(a, 8 + yc), Gamma(a, B8 + yd))

zeC

) Gamma(a, B+ ve) < a*
- | Gamma(a, B +~d) x> z*

where

¥ =

a log <ﬁ+’yd>
y(d —c) B4+ve)
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Proof. For fixed x > 0, consider z € [c,d] as a variable. Then, the density function of X becomes a function of
z. We can write T )
+z “ a—1_—(B+~vz)x
h = 77 vz)T
(2) )~ ¢

To optimize function h(z), we shall compute the first derivative of . By the chain rule, we have

a—1
% - %6_(5””1 [0y (B +72) 7" =y (B +72)%]
- %e_wﬂz)xw(ﬁ +72)* " o - 2(8+42)] o,

As all terms outside the square bracket are positive, we can easily solve for z and conclude that

“-2(E-9)

This is the only critical point of the function h(z). It is clear that

dn . >0 and @

a z=z* dz |z:zj_ < 0’

which implies that z* is a local maximal point. Hence, for z € C, the global minimal point of h(z) is reached
when z = cor z = d. That’s,

12£ f(z) = min (Gamma(a, 8 + vc¢), Gamma(q, 5 + vd)) .

To write as a piecewise function, we need to calculate for what values of x such that Gamma(a, 8 + v¢) <
Gamma(«, 5 + yd). We have

Gamma(a, 5 + y¢) < Gamma(a, 8 + vd)

(6+’yc)a a—1_—(B+~c)z < (6+7d>a a—1_—(B+~vd)x
T = ° ST T €
[0 a

if and only if (8 + v¢)®e™ 7" < (B + yd)¥e
ifand only if alog(B + v¢) — yex < alog(B + vd) — vdx

d
ifandonly if =z < a log (ﬁ+’7 )

if and only if

Y(d—=c) B+ e
We define z* = ﬁ_c) log (gizf) Hence, we conclude that
inf f(z) = | Sammale, A +0e) @ <at
z€C Gamma(o, B +vd) x> z*
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Appendix B

Lemmas for the Linear Regression Model

B.1 Reparameterization Lemma

Lemma 7. If we denote the Gibbs sampler for the reparameterized linear regression model B™ and the Gibbs
sampler for the original model A(™) then the following equality holds

1P (@, ) — 1) = [P (z,-) — (fID)C)]-

where T1(-) is the invariant measure of the chain A"™) and ( f.X1)(-) is the invariant measure of the chain B™).
This essentially means that the rate at which the two chains converge to their stationary distributions is the same.

Proof of Lemma[Z] Here we shall need to use several results from [Roberts and Rosenthal (2001). What we want
to use is their Corollary 2 which states:

Corollary 1. Let {X ("™} be a Markov chain with stationary distribution T1(-). Let Y™ = f(X (™) for some
measurable function f. and suppose that Y (™) is Markovian and de-initializing for X ™. Then

1P (@) = Ty = [PE (2,-) = (f * D ()l|rv

By Lemma 1 from their paper if we can show that our transformation is a deterministic measurable function
f such that f(B("™)) = A(™) then we know that { B(™)} is de-initializing for{ A(™)}. If f is one-to-one then we
also know that B(™) = f~=1(A(™)) which allows us to say that B(™) = f~1(A(™)) where f~' is a measurable
function. We also know that { B(™)} is Markovian as it is also a Gibbs sampler. This would allow us to apply
Corollary 2 which gives us exactly the equality from Lemmal([7}

Let us consider the Gibbs sampler for the original model as having draws (3(™) 7(m)). We shall consider the
Gibbs sampler for the reparameterized model as having draws (3™, 7(™)). We recall that the new model may be
written as

Y‘ﬂ, g~ Nn(Xﬁv InUZ)v
B~ Ny(0,%5), L 7~ Gamma(a,b).
It is clear that the Gibbs sampler for this new model has 3™ = Blm) — 1g and 7(m) = 7(m) for all m. We
see that the transformation from the original chain to the other is just f(5™), 7)) = (30" — 115, 7(™)). This
transformation is clearly deterministic, measurable, and one-to-one thus we satisfy the properties necessary to

apply corollary 2, completing our proof.
O

B.2 Monotone Nonincreasing Matrix Functions
To prove a function g is non-increasing, we shall show that its first derivative is negative wherever the function is

defined. In our derivation, we shall some use techniques about differentiation of matrices of functions. Let’s first
recall some important results in matrix derivatives.
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B.2.1 Review of Matrix Derivatives

Lemma 8 (Lemma 15.4.2 by Harville| (1997)). Let F = {fis} and G = {g;s} represent p X q matrices of
Sfunctions, defined on a set S, of a vector x = (xl, To,. .. ,x(’”))T of m variables. And, let a and b represent
constants or (more generally) functions (defined on S) that are continuous at every interior point of S and are such
that a(x) and b(x) do not vary with x;. Then, at any interior point c (of S) at which F and G are continuously
differentiable, o F' + bG is continuously differentiable and

O(aF + bG) oOF 0G

— g9 e B.1
8xj aaxj+b8xj ( )

Lemma 9 (Lemma 15.4.3 by Harville|(1997)). Let F' = {f;s} and G = {g;s} represent p X q and q X r matrices

T
of functions, defined on a set S, of a vector x = (1;1, Loy, a:(m)) of m variables. Then, at any interior point
c (of S) at which F and G are continuously differentiable, F'G is continuously differentiable and

OFG 0G OF
—=F—+ —G. B.2
aij axj + 8x]G ( )

Remark 5. In the special case where (for x € S) F(x) is constant or (more generally) does not vary with x;,

formula (B.2)) simplifies to
OFG 7 oG

8xj N 8733]
And, in the special case where (for x € S) G(x) is constant or (more generally) does not vary with x;, formula

(B.2) simplifies to

(B.3)

OFG _ OF
8xj N aa?]‘ '

B4)

The results of Lemma [J] can be extended (by repeated application) to the product of three or more matrices.

Lemma 10. Let F', G, and H represent p X q, ¢ X r, and r X v matrices of functions, defined on a set S, of a

T
vector x = (ml, T2, .. ,x(m)) of m variables. Then, at any interior point (of S) at which F, G, and H are
continuously differentiable, F G H is continuously differentiable and

aFﬂ :FGa—H+Fa£H+8iGH. (B.5)
Oz Oz, Oz, Ox;

Remark 6. In the special case where (for x € S) F(x) and H (x) are constant or (more generally) do not vary

with xj, formula (B.5)) simplifies to
OFGH oG

=F_—H. B.6
63&‘]‘ aa:j ( )
We also want to include one helpful result about differentiation of a trace of a matrix.

Lemma 11. Let F = {f;s} represent a p x p matrix of functions, defined on a set S, of a vector x =

(xl, T, ... ,z(m))T of m variables. Then, at any interior point c (of S) at which F' is continuously differen-
tiable, tr(F) is continuously differentiable and

otr(F) oF
=tr|-— B.7
gr; <3%‘) ®7

Finally, we include one property of derivatives of inverse matrices.

Lemma 12. Let F = {f;s} represent a p X p matrix of functions of a vector x = (xl, To,. .. ,x(m))T of m
variables. Suppose that S is the set of all x-values for which F(x) is nonsingular or is a subset of that set.
Denote by c any interior point (of S) at which F is continuously differentiable. Then, F~' is continuously
differentiable at c. And,

oF~! OF

=_pFl—p1 B.
Ox; Ox; (B-8)

Now, with these tools, we believe readers are ready to tackle the problems in the next section.
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B.2.2 Results using Matrix Calculus

Recall that .
U, = (rX X + 251) is a positive-definite matrix.

To calculate the first derivative of W, we denote
Q- =V "= (7X"X +3x;1).

It follows from the definition of derivative that (), is continuously differentiable with respect to 7, as X7 X and
251 are constant. Then, it follows from Lemmathat W - is continuously differentiable. By Lemmas and
it is easy to show that

o (rXTX + 35"
or

0w,  0Q7!

U, =-U . XTXU,. B.
or or (B.9)

=-Q;' 5 =V,

Q-

or
We define

A = X0, X" (B.10)

Notice that A, is non-negative define (i.e. positive semi-definite). By Lemma[J]and Remark [3] it is clear that A,

is continuously differentiable. Then, we have

0A, _ X@\IJT

or or

XT =X (-0, XXV, ) X" =A% (B.11)

By Lemma[9] we can also compute that

d(rA,)

5 —TA?2 + A, (B.12)

Before we start our main problem, we shall state some important properties about generalized matrix inverse
and projection matrices, as we do not assume that X has full rank in our theorem.

B.2.3 Generalized Inverse and Projection Matrices

For any matrix X, we define
Py =X (X"Xx) X" (B.13)

Note that one can show that Py is invariant to the choice of the generalized inverse (X7 X)~. For any matrix
X, it is clear that Py is the projection matrix for C(X). Then, we state the following properties for projection
matrices.

Lemma 13 (Lemma 12.3.4 by [Harville (1997)). Let X represent any n x p matrix. Then, Px X = X that is,
X(XTX)"XTX = X; thatis, (XTX)~ X7 is a generalized inverse of X.

Remark 7. For Moore-Penrose pseudoinverse, it follows from Lemma 13| that
(XTX)*XxT =X+, (B.14)

Lemma 14 (Theorem 12.3.5 by Harville| (1997)). Let X represent an n x p matrix, and let W represent any
n X q matrix such that C(W') C C(X). That is, there exists a matrix F such that W = X F. Then,

PxW =W, and WPy = W7, (B.15)

Now, equipped with all the powerful results stated above, we are ready to move to the main lemma.

B.2.4 Norm Lemma

Recall that, for all 7 > 0, )
g(r) = HTATy — XB’ : (B.16)
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We shall prove that g(7) is monotone nonincreasing and convex for all 7.

Proof of Lemmall] It follows from the Section that g(7) is continuously differentiable with respect to 7.
We shall prove that g(7) is non-increasing by showing that its first derivative is non-positive for all 7 > 0. By the
definition of Frobenius Norm, we have

N\ T ~
g(7) =tr {(TATy - Xﬂ) (TATy _ XB)} . (B.17)
We can expand the terms inside the square bracket and apply the properties of the trace. Then, we have

g(r) = 72w [(A,9)T (As9)] + tr [(XB)T(XB)| = 2w | (Ary) (X B)

We note that each term inside the square brackets is a scalar. Thus, we can drop the trace functions and work
directly with the matrix products. Our next step is to differentiate each of these terms with respect to 7. It is clear
that (X 3)7 (X ) is a constant, so its derivative with respect to 7 is 0. Now, for the other terms, we shall compute
the first derivative term by term. We shall call g; () := 72(A4,y)T (A,y) = 72(yT A, )(A,y). Then, by Lemma

[I0)and formula (B-11), we have
or T or (Ary) + —(yTAT)(ATy)

g(r) =7 y" Ar) g
= 72(y" A;) (= A2y) + 77 (—y" A2)(Ary) + 27(y" AL ) (Ary)
= 272y T A3y 4 2ryT A2y
=2ryT A2 (—7A, + L)y
=2ryT A%(I,, — TA,)y. (B.18)

O(Ary) | 0" A,) o

We shall call go(7) := —27(A,y)T(X3) = —27(yT A,)(X3). Then, by formula , we have
O(TAr) o 4
/ = _9 TiTX
92(7) Y or g
=27 (—7A2 + A)Xp

= —2yT A (I, — TA;)XB. (B.19)
Now, from equations (B-I8) to (B-19), it is very clear that

9'(1) = g1 (1) + ga(7)
=2yl A%(I,, — 7A )y — 29T A (I, — TA)X B (B.20)
We can rewrite g5(7) by using
B=(XTX)TXxTy. (B.21)

It is clear that A, commutes with (I, — TA,). And, C(A4,) C C(X), as A, = X(VXT). For equation (B.19) ,
we shall use the formula in (B-21)) and apply properties of the projection matrix in (B-13) and (B-15). Then, we
have

95(7) = —2y" A (I, — TA;)X B
=0T A (I, - TA)X(XTX)TXTy
=—2TA (I, — TA;)Pxy
= —2yT(I, — 7A;)A. Pxy
= =247 (I, — 7A;)Ary
=—0TA (I, —TA,)y. (B.22)
Now we can combine g} (7) in and gh(7) in by factoring out the common term 2y” A, (I,, — A,)
from the front and y from the back
91 () + g5(7) = 2[y" A (I — TA)(TA; — I)y]
= 2" A (I, — TA;) (I, — TAL )y
= —27(I, —7A)A (I, — TA)y (B.23)
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Let S, := (I, — 7A;)y. We see that S; is a vector and (B.23)) is of the form
—25TA.S, . (B.24)
We recall though that A is a nonnegative definite matrix so this term must be nonnegative. Thus:
g' (1) <OforallT € Ry

which means that g(7) is monotone nonincreasing for all values of 7.
To prove that g(7) is convex we shall first calculate the derivative of S;.

98, I OTA,
or " or Y

= (TA72— - Ar)y
=A (TA; — I,)y
__AS.. (B.25)

Applying (B.23)) we may easily calculate g”' (7):

T
g"(1) = —Q%ATST - 2STT8AT S, — QSTAT%
or or or

= 25T AL A, S, +2STA%S, + 25T A, A, S,
= 657428, . (B.26)

Because A, is nonnegative definite it follows that A2 is too thus (B:26) must be nonnegative. This implies that

g(7) is convex for all values of 7 € R,..
O

B.2.5 Trace Lemma

Here we shall also prove that the trace term that arises in the drift condition is nonincreasing and convex. We shall
denote h(7) := tr(XT X ¥ ,) for ease of reading in this proof.

Proof of Lemma[2] We recall that the trace of a product is unchanged under cyclic permutations thus tr(X TXV) =
tr(XV XT). As before we will denote XV X7 as A,. We see that by equation and Lemma

B'(1) = —tr(A2).

Note that A, is symmetric thus we may say that —tr(A2) = —tr(A, AT). In this form it is clear to see that each
term in the trace is the standard inner product of a vector with itself and is thus nonnegative. This implies that
tr(A2) > 0 and —tr(A2) < 0. We see then that 4(7) is monotone nonincreasing as its derivative is never positive.
Next we shall take the second derivative of i (7) to prove that it is convex. We see that by Lemma@] we get

R (1) = 2tr(A3).

Recall that A, is symmetric thus by the spectral theorem we may write it as A, = QDQT where Q is an
orthogonal matrix. Because A. is nonnegative definite we are also able to write A>/> = QD3/2QT where D3/?

is simply D with each diagonal entry raised to the 3/2 power. We see that Ai/ 2Ai/ 2= A3 and Ai/ %is symmetric.
We may then state

B(r) = 2r(A3/2 A3/2) = 2(A¥2 4327

It is once again clear that each term of the trace is the standard inner product of a vector with itself making it
nonnegative. This implies that the function A”(7) > 0 and thus h(7) is convex. O

28



Appendix C

Lemmas for Linear Mixed Model

This first Lemma is borrowed from |Roman and Hobert| (2015)

Lemma 15. Suppose ) is an n X n matrix of the form
QO=ATAv+17,

where v is a positive constant, A is a non-null m x n matrix and Y is an n X n diagonal matrix with positive
diagonal elements, {v;}"_,. Let OT DO be the spectral decomposition of AT A, so O is an n-dimensional orthog-
onal matrix, and D is a diagonal matrix whose diagonal elements, {d;}?_,, are eigenvalues of AT A. Also, let
D+ denote the n-dimensional diagonal matrix whose diagonal elements, {d;}?_,, are given by

1 _ 17 dizoa
70, 4 £o0.

Then

1 Q' < (ATA) vt + OTD Oow !

2. tr(Q Y <tr(ATA) vt + (n— rank(A))v”_li}l,
3. tr(AQ7AT) < rank(A)v~1,
where (AT A)T denotes the Moore-Penrose inverse of AT A and vyin = mini <i<n{vi }.

Here we present a proof of Lemma 3] which uses the results of Lemma

Proof of Lemma (3] By the properties of the trace, we can simplify the third term in (3.4) by

(I — M\)ZQY'ZT (I + My))

1(Z2Q5' 27 — My ZQ ' ZT + ZQ M ZT My — My ZQ\ ' ZT M,y)
w(ZQ'ZT) — u(MyZQY'ZT) + w(ZQ\' ZT M) — (MAZQ3 ' ZT M)
(ZQ'ZT) — w(M\ZQy ' ZT M,y),

I
-

tr

astr(MyZQ5 ' ZT) = tr(ZQ ' Z" My). Then, it is clear write

tw(WVar(@INWT) = w(ZQ5 ' Z7) + w(XT ' XT) — (I — M\)ZQY ' Z7 (I + My))
=tw(Z2Q'Z7) + u(XT ' XT) — [w(Z2Q5 ' Z7) — u(MrZQ ' ZT M)) ]
=u(XTy'XT) + u(MrZQ ' ZT M,y).

This is the first statement in Lemma [3
Recall that Ty, = A\ XT X + Egl = A XT X. Then, if X has full column rank, it is clear that

s (AXTX)!
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Thus, we have
r(XTXT) Sa[ XOXTX)IXT | = pAJt,

where p is the column rank of matrix X. One can show that My = I — A\ XTy 1XT isa non-negative definite
matrix and we shall use Spectral decomposition to write My = '/’ Dy, T for some orthogonal matrix I' and
diagonal matrix Dj; with positive elements. Define

1/2
MY? =TTDy’r,

where D}\//Iz is the diagonal matrix with each element equal to the square root of the each corresponding element
in Dp;. Then, we have

w(MrZQ5 27 My) = (MY M2 205 27 MY MY = w2 HyM ),

where Hy, = M Al/ 2ZQ;lZTM Al/ ?. Notice that Hy is non-negative definite and we can define H i/ ? by the
procedure above. Then, we have

tr(MyZQ5 2T My) = (M) /> Hy M/?)
— w2 )
— w(H,/* M\H,'?).
Notice that in the last step, we use the cyclic property of the trace. Since M) < I, we can write
tr(MyZQ\* ZTMy) = tr(Hy* MyH}/?) < tr(Hy)
By the third statement of Lemma|[I5] we have

tr(Hy) = (M, 2Q5' 27 M}/?) < rank(M)/* Z)A7' = rank(Z)A; !

as M )\1/ 2 is an invertible matrix. Hence, we can conclude that
a(WVar(@INWT) = (XT ' XT) + (M ZQ M ZT My) < (p + rank(Z))A\; L.

e

This completes the proof of the second statement in Lemma 3] O
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Appendix D

Matrix Calculus Results for the Linear
Mixed Model

Before we begin we shall first restate several definitions we presented earlier for ease of reading. Let \ :=
(Aes Auys---» Ay, )T Define Ay, = @7_ Ay, Iy, and ¢ = g1 + - - - + g, In order to simplify calculations, we define

Ty =X XTX + 550, My =1 = AXT ' X7, and Qx = AeZT My Z + A,. Therefore, it is clear that Ty, M,
and (), are differentiable with respect to A. and \,,,. We have

0T

=XTXx
OAe ’
and .
ory —1 T yrp—1
8;6 = -T'XTXT .
Then, we shall have
oM
w: = —XTXT 4 AXTXT XTI XY (D.1)
From now, we denote
Ay = XT ' X7,
and notice that A, and M, commute. Then,
oM
or = AN AAL = A
and
?}% =ZTM\Z — \ITA\M\Z
= ZTMy\(I,, — XA\ Z
=7"M}Z, (D.2)
as A, commutes with M. Thus, we have
Q" _ _
c‘?f =-Q\'ZTM3ZQ " (D.3)
Now, we are ready to prove Lemma[d]
Proof of Lemmal[d]
ot (Q! _ _
QA — w27 MZQ5 )
We recall that M, is a positive definite matrix, and we can write My = M i/ M i/ 2, Then, we have
o tr(Qy 1) _ 1/2 1/2
T: — —w(Q5 ' 2T MYP MM, 2 ZQ5 )
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Notice that @y, Q3 ', and Mi/2 are symmetric, so we have Q;lZTMAl/2 = (M;/QZQ;\I)T. It becomes clear

that
o tr (;2_1 T
7()\ A ) = —tI'[ (M)\l/QZQ)\l) M)\(M)\I/QZQ)\l) ]

Let {¢;}{_, denote the column vectors of M )\1/ °z Q> ". Now, we have

D tr(Qy* B - q
Iéer/\) = —tr[ (M;/2ZQ/\1)TM>\(Mi/2ZQ/\1) } _ 7;¢?MA¢Z

As M, is positive-definite, it is clear that 7 My¢; > O forall i € {1,2,...,q}. Therefore, we can conclude that

6tr(Q;1)
87)\6 <0. (D.4)

That is, tr(Q;l) is monotone decreasing with respect to \.. We shall now consider differentiating with respect to
Au,; . We see that

otr(Qyh)
a)\m

where A,, denotes the partial derivative of A, with respect to A,,. Let {gi); }?:1 denote the column vectors of
Q;l. We may then state:

= _tr(leAQiQ;1> )

. gir1—1
WMD) oy h Qi) =— S o)

Do .
J=4qi
It is clear that 1
9 1(Qx
0 D.5
D, <0, (D.5)
thus tr(Q;l) is monotone decreasing with respect to each \,,. O
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Part 11

Non-Asymptotic Bounds on the MCMC
Estimation Error
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Chapter 1

Introduction

Let X be a Polish space (a separable, completely metrizable topological space) with Borel o-algebra B(X’) and
let 7 be a probability measure. Many problems in Bayesian inference can be written as

E.(f) = /X f(@)n(dz), (LD)

which is an intractable integral one wants to compute. Assume there is a Harris ergodic Markov Chain {X,,,}2°_,
that converges to 7. If one simulates m draws from this Markov chain, and E, | f| < oo, then the following holds:

m

> f(Xi) > Er(f) asm— o0,

i=1

fm:

1
m

with probability 1 by the strong law of large numbers. To assess the qualtity of this estimation, we define the root
mean square error (RMSE) as

RMSE, := \/Ez ((fm _EW(f))z)'

In a paper due to Latuszynski et al.[(2013)), the authors derive non-asymptotic bounds on the RMSE of estimates
from Markov Chain Monte Carlo (MCMC) algorithms. In this paper, we use results from Latuszynski et al.[(2013)
to obtain finite, non-asymptotic bounds on the RMSE in several Bayesian statistical models.

There are three assumptions that must be established in order to use |Latuszynski et al.| (2013)’s results to bound
the RMSE.

Drift Condition: There exist constants 0 < A\ < 1,0 < K < oo and function V' : X — [1, 00) s.t.

AV(x), v ¢ J

1.2
K, x € J (1-2)

PV(z) =E(V(Xp1)|Xn=2) < {
Minorization Condition: There exist Borel set J C X of positive m measure, constant 0 < § < 1, and probability
measure v such that for all A € B(X),
P(z,A) > 6l(x € J)v(A). (1.3)
V-Norm Condition: For the function f from (1.1), define f(z) := f(x) — Ex(f). Then the following must hold:
@l . (1.4)
V(z)

With these conditions established, we are now in a place to describe a way to upper bound the RMSE, which is
given in Theorems 3.1, 4.2, and 4.5 in|Latuszynski et al.[(2013).

where 02 (P, f),Co(P, f),C1(P, f), and Co(P, f) are constants that we can upper bound with the constants from
Appendix [A]

f 1 = su
17l = sup

m

; (1.5)

Steps to Upper-Bound RMSE
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For a function f from (1.1)), we must

1. Establish the Drift Condition for some function V' and constants A < 1, K < co.
2. Establish the Minorization Condition for some ¢ > 0, set J and probability measure v.
3. Establish the V-Norm Condition for f and the drift function V.

4. Using the bounds given in Appendix [A] obtain values of the constants from (1.5) dependent on 4, J, V, A,
and K from steps 1, 2, and 3.

5. Compute the root mean square error from (I.3).

Before continuing, we make a remark on step 5 above. The theorem derived in|Latuszynski et al.| (2013)) is

RMSESUGS<1+CO(P7f))+Cl(Pvf)+02(Paf) (16)
vm m m m

which is an upper bound on (I.5)) by the Bernoulli inequality, which states
(I4+rx) <(Q+a)

for z € [—1,00),r € ZT. It should be noted that the difference between (1.5)) and is small for large m. This
paper uses for consistency but[I.5]gives better bounds for small m.

As noted in|Latuszynski et al.|(2013)), The Markov Chain Central Limit Theorem (CLT) states that

Vi(fm = Ex(£)) % N(0,02,(P, f)),

where o,5(P, f) is the asymptotic variance. It is easy to show that

lim mE(fm — Ex(f))? = 02,(P, f).
m—r o0
This shows that o2 (P, f) is asymptotically correct and therefore cannot be improved, as Latuszynski et al.[(2013)
states.

The outline of this paper is the following. In Chapter [2] we give results on a Bayesian one sample model. In
Chapter [3] we give results on a Bayesian linear regression model. In the Appendices we provide inequalities to
bound the RMSE given in |Latuszynski et al.| (2013)), proofs of lemmas, and alternatives to the proofs in the body
of the paper.
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Chapter 2

The One-Sample Normal Model

2.1 Analysis of the ;-chain

We consider the one sample model with a normal prior distribution for ;¢ and a Gamma prior distribution for 7.
Assume Y1, Ys, ..., Y, |, T i N (u, %) with priors

1
p~N (a, b) 1L 7~ Gamma(c,d).

Then after applying Bayes formula, we obtain the following conditional distributions:

1 nr

~ 0., ——— 0 = i 1— = —
T N(u,n7+b), fp=wy+(1-wa, w ——

and

-1 2 _7)\2
T|M~Gamma(c+g,d+(n )"+ (=) )

2

One can consider w as the weight between the frequentist estimate and the Bayesian estimate of /. It is easy to
see that as n — oo, i — ¥, which says that for large sample sizes, the posterior mean is closer to the frequentist
estimate. We now give two approaches that lead to different bounds on the RMSE. We are considering a Gibbs
sampler that updates in the following way: (7o, ftm) — (Tmt1s i) — (Tim+1, m+1)- This creates a Markov
Chain {(Tm, tim)}2>_,. In the following section, we work with the p-chain {u, }o0_, and we establish drift,
minorization, and V'-norm conditions that allow us to estimate the RMSE of functions of £ only. In Section[2.2]
we establish the same conditions necessary to bound the RMSE of functions of 7.

Theorem 3. The drift condition is satisfied using

. L—|—pw2
2 2

Vitm) = (tm — +1, K=L+ , A= —
(m) = ( 7) pw 7.1

provided w > 1/%, wherep:m,L:pM+(y—a)2+1, and J = [y — w, 7 + w).

n

Proof. Using the law of iterated expectations, we have

PV(/j’m+1) = E[(N’m - ?)2 + 1|N7n+1]
[E[(Mm - y)Q + 1|Tm+1H//"m+1]

E
= E[Var(tm|7m+1) + (Elpm — y‘TM-&-l])Q ltm+1] + 1.

g e have that

Then, since p|T ~ N (i, ﬁ), with i = wg + (1 —w)a, w =

1

(1 =w)2@ = @)Y | + 1,
P— ( ) (¥ — a)”| 1

PV(pm+1) =E
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which we simply bound above by

1 1
LB || + G- 0 1
n Tm+1

Since 7|y ~ Gamma (c +2.d+ M) , we have

2d + (n — 1)s* + n(pmy1 — 7)° - 2
PV(um < — _ 1
(Hm+1) n{ S ySe— +@—a) +
(bm+1=7)* 1 [2d+(n—1)s? - 2
= — — 1
2c+n—2 n 2c+n—2 o+
)2 2
a1l — +1 1[2d+ (n—1)s _ 1
_ (Bmi1 =) 1 ( ) a1 _
2c+n—2 n 2c+n—2 2c+n—2
For convenience we define the constants p := 5——-— +n s and L := pM + ( — a)? + 1. Then the above

bound on PV (fi;,+1) can be written as
PV (pmt1) < pV () + L — p.
For jim € J == [ — w, 7 + ],
PV (pims1) < pV(pms1) +L—p < pw? + 1)+ L—p=pw’* + L= K.

For p,,, ¢ J, the drift condition requires L — p < (A — p)V () for some constant 0 < A < 1. By setting

K L+ pw? L—pJr >L—p+
— = — = sup p= Py
w2+1 HlnngV(um) pme sV (tm) V(km)

the drift condition is established. Lastly, since we require A < 1, it must be true that

w>VvK-—1.

We now prove the minorization condition for the p-chain. The transition density function is

P(jtm 1 lpim) = / Pl [Pp(r o) dr

We can easily see that
Pmsalpn) = [ Dol int p(rlpn) dr
R pwm€J
Then, using a calculation similar to Jones and Hobert| (2001)),
Gamma c—&—%,d—f—M) T<T*

g(7) := inf p(r|p) <
neJ Gamma (¢ + %,d + 7(" Vs fnw ) T>T",

nw?
2d+(n—1)s?

] —/ / (ulm)g(T) du dT—/ g(7) dr,
R+ R+

by Fubini’s Theorem. Note that the minorization condition is independent of the drift function.
It is enough to show that the norm of f is finite, where f(u) = (1 — 7).

where % log (1 + ) := 7". Then the minorization condition is satisfied if we use

||f|\vm—sup—'“*y' <o
(n—7)%+1

Note that in the above computations, we simplified our work by defining f(u) = (1 — %)?. The values of the
RMSE one obtains when using this value of || f||/1/2 are for the random variable (x — 7)7. Shifting by 7 does not
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change the RMSE, since the RMSE is invariant under shifts.
One is often interested in finding the minimum m required such that
P(|fm—Ee(Nl <) >1-a,
for some € > 0, « € (0, 1). This is equivalent to finding the minimum m such that
RMSE(fn) < e/ 2.1)

by Chebyshev’s inequality. In Table 2.1 we fix o = .05 and give the number of iterations required to bound (2.T))
for different e. We are using the Diasorin dataset from chapter 5 of |Christensen et al.|(2010).

Table 2.1: Bounds on the RMSE for the posterior mean of i, Required Number of Iterations m.

€ RMSE Bound m

25 0.0559017 4000
125 | 0.02795085 15000
.01 | 0.002236068 | 2190000
.005 | 0.001118034 | 8720000

2.2 Analysis of the Gibbs Chain

In this section we prove that it is possible to prove the drift condition, minorization condition, and V'-norm condi-
tion for drift functions of the form V (7, u) = (u — §)? + 7" + 7% + 0, for n < 1. The advantage of using the
joint drift function is that the minorization condition allows the user to compute means of functions of both vari-
ables, while only having to establish the minorization condition for one of the variables. In the one sample model
with normal prior distribution, the minorization conditions are easy, but in the regression case, the minorization
condition for the 7-chain is intractable, so we must resort to a joint drift function in this case.

2.2.1 Drift Condition

Theorem 4. For the drift function V (Ty,, fimm) = (pm — )% + 77, + 7% + 0 with
ni=1-(3)7 = (97

K if (T, pm) € J
PV (Tma1, tmt1) <
(s ims) {Avmum) i (s i) # .

where J == {(t,pn) € R¥x R : (u—7)? < wif, and 7" + 77° < wo}, K = p(w} +wi +n) + L, and

,_ L
A= e TP

Proof. By the construction of 1), the range of V' (7,,,, 141, ) s now [1, 00). We begin by splitting PV into three main

expectations. We decide to bound — ! -5 by ﬁ since this is a better bound.

PV(TTTL+17 M?n-{-l) =E ((/f’"rn-l-l - ?)2 + 7-»,:14_1 + 7-;,:_1 + 7]|,U7n7 Tm)

1
=B (o (= 0P = Pl ) + B ) + Bl i) + 1.

This comes from the definition of the second moment of the normally distributed g, |7,,,. We then evaluate the
two rightmost expectations and split the left further into two pieces. We also define ¢ := 2d + (n — 1)s? for
convenience.

1 1 2/ 2 1 ? —\2\—
< - _ _ - - _ T
PV(ns1otnin) £ 28 (Sl ) + 127 - ) E((W+b) um> + Di(C+ (im — 7))

+ D2(< + (,Ufm - ?)2)8 + Tl
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By expanding the denominator of the expectation of the square of the variance of u, we upper bound this quantity
by dropping each term besides the middle 2n 7, term. After rewriting, we combine like terms to arrive at

240 —a)®\ ¢+ (tm —7)
2n 2c+n—2

2
PV (st fims1) < ( - DiC" + Dol + Dol — )% + 1.

Here we have also used the fact that s € (0, 1) to bound the right hand p,,,-dependent term by the function of fi,,,
shown. This function of p.,, is bounded above by the same function shifted up by 1, and we have

2+ b(y — a)?
PV (Trmt1, my1) < (M) ¢+ (pm — ?)2] + D¢+ D2 [(ptm -7+ 1] +n
- 2+b(§—a)2 —\2 2+b@—@)2 —r s
= onern—9) T T S g TP
+ Dz [(pm —9)° +1] + 1.
24+b(y—a)®

Now we define p := Dy + and by some algebraic manipulations recover the drift function:

2n(2c+n—2)
PV (Tog1s ms1) < C(p— Do)+ p [(lm —9)* + 1] + D2 — p+ D1¢" + D2C® + 1

< PV (T pim) + D2 = p+C(p = D2) + Di¢™" + DaC® + 1

= pV (T, pim) + Da(1 = ¢+ %) + p(C = 1) + D1C" + 1.
Now we define the constant

L:=Dy(1=¢+¢)+p((=1)+Di¢"" +1.
Then we rewrite our bound as

PV(TerlvaJrl) < PV(Tmnum) + L.

For (7p,, ftm) € J, we bound above by

PV (Tyg1s Bm+1) < p(w% +W§ +n)+L=K.
For (7, ttm) ¢ J, we require

PV(TerlaMerl) < PV (T o) + L < AV (T o),
which yields
A= # +pz L +0p,
wi twy +1 V(T m)

for all (7, ) ¢ J. Since we require A < 1, we have that

L

2.2.2 Minorization Condition

We now turn to proving the minorization condition for this chain. First we consider the transition kernel, defined
as follows:
f((Tm—i-la /’Lm-i-l)'(Tma Mm)) = fum+1 [Tm+1 (,um-‘rl ‘Tm+1)ffrm+1 [t (Tm-i-l |Mm)

> frumirlrm mtt|Tmer) inf fr o (Tt ),
(Tmsttm )ET*

where J* := {(r, 1) € RT x R : (u —%)? < w;}, and we know that inf J* > inf .J. Note also that this is the

infimum over all (7, ptr,) € J*. Then we recall the following theorem.

2
Gamma (c+ %, d + @) Tl < Tx

9(Tmy1) = inf P(Tmatlpim) <

X _1)s2 2
(Tmspm ) E€J Gamma (c+ 5,d + (71)5%) Tmt1 > 77,

2
27:5:; log (1 + %) . Then the minorization condition is satisfied if we use
1

5= [ [ tulratr) dudr = [ gt ar
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where 7* =




2.2.3 V-norm Condition

We now prove that the V' -norm conditions established in preceding sections may be used to establish the V' -norm
condition in the joint drift case. Consider f () = p — 3. Then,

[fllyi2 = sup _ ln =1
(T>N)6R+XR \/(/,L — y)2 + Tr + = ¥ 77
< sup M
(7,p) ERT XR (u — y)Q
e
=sup ————
HER (M _ y)2

Then one can simply use results from the V'-norm condition on the p-chain to establish the minorization condition.
A comparable approach can be used to establish the V-norm condition for functions of 7.
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Chapter 3

The Linear Regression Model

3.1 Introduction

Suppose we have a vector of data, Y, such that Y |3, 7 ~ N, (X3, %In) with the following priors:
B~ Ny(B0,Co) L 7~ Gamma(a,b).
After applying Bayes formula, we obtain the following posterior conditional distributions:

62(n—p)+|X6—XB|2>
2

718,Y ~ Gamma <Z +a,b+

B|T7 Y ~ Np(mv (I))a
where @ := (TXTX +Cy )~ ,m = @ [rXTY + Cy'Bo] .62 := % and 3 := (XTX)'XTY. We

first present some linear algebra techniques that prove useful when establishing the drift condition. Let A be an
n X n symmetric matrix. We say that A is non-negative definite (nnd) if for all x € R",

T Ax > 0.
We say that A is positive definite (pd) if for all x € R™,
zT Az > 0.

It is easy to see that the sum of a non-negative definite matrix and a positive definite matrix is a positive definite
matrix (similar conclusions can be reached for the sum of positive definite matrices and the sum of non-negative
definite matrices). It is also easy to see that positive definite matrices are invertible. For symmetric n X n matrices
A, B, we now define a relation < by

A <X B iff A— Bisanon-negative definite matrix.

It is easy to see that if A < B, then tr(A4) < tr(B). To prove this, pick an approprite z € R™ and use the
definition of < . We also use the fact that the trace operator is cyclic, meaning that

tr(AB) = tr(BA),

for matrices A, B of appropriate size. One can also prove that A < B if and only if A=! = B~!. Finally, we re-
mind the reader that covariance matrices are always non-negative definite. We use the norm ||A|| = /(tr(AT A)).
With these tools, we are now in a position to establish the drift condition, minorization condition, and V-norm
condition for the regression model.

3.2 Analysis of the 5-chain

Theorem 5. There exist constants X € (0,1) and K € (0,00), set J C R? such that for all 5 € R?,

K ifged
AV(B) ifB ¢ J,

provided w > \/%, where V(B) == || X8 — XB|? + 1,K = L+ pw?, p= e A= Lwti“f.

PV(/Bm+1) = E(V(ﬂm-i-l)‘ﬂm = 5) < {
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Proof. We begin by using the law of iterated expectations:
PV (1) =E [E (X (Bnsr = A)IPI7n) 18 -
We focus first on the inner expectation.
E (11X (Bui1 = B)PI7n) = 14 0(XTX®) + B(Brris — A7) X XE(Brni1 = Blrn) < 2 47
for constants 71, v2 € R found numerically to be v, ~ 2,79 ~ 2 X 1015, Then, we obtain

o o
PV(Bsr) < 1475 + 7y Z2E 0 =) T IX B = A

n+2a—2
We can rewrite the above equation as
20 (2b+6%(n —p)) " A2
PV (B <1 — X (Bm — 1).
(Bmt1) <1472 n+2a72+71 n+2a—2 +n+2a72(” (8 AIF+1)
" (2b+6%(n —p)) "
=1+ — V()
e e T i sa—2 Thi2a—2 )
=L —p+pV(Bm),
where p = ——2L— and L = 1 4 75 + p(2b + 6*(n — p)). Then, for 8,,, € J, we have that PV (B 41) < K,
where K := L + pw?. For 3,, ¢ J, we have that A = Lwti“f. In order for A < 1, we require
L—p L—-1
1 iff _—
w2+1+p< it w > 1=,

We give two examples to justify our definition of \.

Example 1: Consider X7 X = I,, with p = 2. Then, V(3) = 8] + 82 + 1. In order to guarantee that

Pv(ﬁm-‘rl) < /)V(ﬁm) +L—-p< /\V(ﬂm)

for 8 ¢ J, we want to pick A such that A\ = K/V,,,;,,, where V,,,;,, is the minimum value of V' outside J. From
Figure we see that V,,,;,, occurs along the boundary of J. In other words, V;,;, occurs when || X (3 — 3)||? =
w?. To summarize our conclusion, what we have is the following optimization problem:

minimize X8 - B2+ 1,
inimiz 1% - A
subject to the constraint 1X(8— D) > w?

Example 2: Consider

(1 2 T+ (10 14
X—(3 4) such that X X_(14 20)

with p = 2. Then, V(B) = 1087 + 283182 + 2053 + 1, which is shown in Figure[3.2} Although V' no longer has
the same shape as it did in Example 1, we can still set A\ = K /V,,;p,, where Vi = w? 4 1, which occurs along
0J. The same approach can be applied for all matrices X and all values of p. The only change in this case is the
shape of the set .J.

3.2.1 Minorization Condition

In order to prove the minorization condition for the S-chain of the regression case, we refer to the following
proposition, which lower bounds the transition density function.

p(ﬁm-{-1|ﬁm) = /R+ p(ﬁm+1|7-)p(7—|ﬁm) dr.

> m inf m) dT.
> [ 0Bl jnf p(rl8,) dr
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V(B) = 3 + @+l V(B) = 1047 + 2032 + 2843 *3,+1

2000
1500
1000

500 4

Figure 3.1: V(§), Example 1 Figure 3.2: V (), Example 2

Now, using calculations similar to the ones inJones and Hobert|(2001), we know that for g(7,,,) := infg, c 7 p(Tim|Bm).
where J C RP? is the small set discussed previously,

B

Tm) =
9(Tm) {F(aJrg,bwL(np);%rw?), T > TF.

W
2b+(n—p)o?

5o /R p /}R p(BIr)g(r)drds = /R g,

the simplification of which is due to Fubini’s theorem, the minorization condition is satisfied for the 3-chain if we
define v(3) := 6~ [, p(B|T)g(7) dr. This integral can be computed using the incomplete gamma function.

where 7* = 2‘;# log (1 + ) . Then if we define

3.2.2 V-norm Condition

In this section we discuss the conditions necessary to establish the V-norm condition. We are going to use the
following fact:

)\mzn]ln j XTX j )\max]l

where \iin, Amae denote respecively the minimum and maximum eigenvalue of X T X that one can obtain easily
by the spectral decomposition of X7 X. Then,

||fHV1/2 =V Amin-

One area of future work would be to try to improve this bound. For the log NBA data file, we find that || f||;1/2 =~
8.9. (See the Example in Section[3.3.4])

3.3 Analysis of the Gibbs Chain

3.3.1 Drift Condition

We now extend the results of the methods above to the (7, B, )-chain in the regression model using the 7,,, —
Bm = Tm+1 — Bma1 chain using the drift function V : RT x R? — [1,00) by V (Ton, Bm) := || X Bm — X B> +
T2+ TRt wherel >ni=1— ()7 — (f)?

S

Theorem 6. There exist constants A\ € (0,1) and K € R and a set J C R + XRP? such that for every
(1,8) € RT x RP,

K if (r.8) € J

PV(T, 5) = E(V(Tm+17ﬂm+1)|(7-m’ﬂm) = (7_7 5)) S {)\V(T, /8) UC(T7/8) ¢ J,
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where V (T, 3) := ||X(ﬂ—B)H2+T2+%+n,n::1— (f)# - (g)ﬁ,L: 1+72+%+C(A+D2),
p=A+Dy K =p(w?+wy), andJ ={(r,8) R xRY : |[X(8 = B <w?, 2+ L <wy}.

Proof. We begin by using the law of iterated expectations:

PV (rmns1, Bns1) = B [E (IIX (Brsr = B2 + 7241 + 7okl 7ms1) 1Bms 7in
=E [E (|IX(Bns1 = AP [rms1) + 720 + Tnk0) B )

(2b+ &2(n—p) + [ X (Bm — B)IP)
n+2a—2

<147+ (p+m) +E (T411Bm) +E (T3118m)

This comes from our earlier work in the 3,,,-chain, where we bounded the /3,,,-dependent portion of the expectation
using

E (IX (Bt = A)IPlms1) = 14 (X7 X) +E(Bs1 = Blrins1) X" XEBs = Blimsn) < 2+,

for constants 1,72 € R. We’ve also seen the 7,,, portion of the PV bound before, and we bound it in the same
way, namely:

o -2 o
E (72 4118m) + E (rtal8m) < Dy (C+118m = BI2)  +Ds (¢ + 118w — BIF)

where Dy = ) D, = Lol A =

following upper bound:

- +g;72. Then we combine these previous results to arrive at the
~ A -2 ~
PV (71, Bns1) < 1492+ A+ X (B = BB + D1 (C+ 11X (B = BIZ) + Da (C+11X (B — BI2)
<149+ Di(Q) 2+ (A+ Do)+ (A+ Do) (IX(B = BIP + 7% +771)) = L+ pV (7, ),

where L = 1+ v5 + D1(¢)"2 + (A + D3)¢,p = A + Ds. For (Ty,Bm) € J = {(1,8) € R x RP :
[|X(B—B)||> <w?, 72+ 77! < ws.}, we can bound above by the constant K as follows:

PV (Toi1, Bns1) < L4 p(w? +wy) =: K.
For (T, Bm) ¢ J, we bound above
PV (741, Bmt1) < L+ pV (T Bm) < AV (T, Bn),

and solve this right hand inequality for A. Thus,

L L

A= +p>
w? + wo p=

Since we require A < 1, we require
L
Wit wy > s (3.1

O

Note that because of the definition of the set .J, we have the ability to choose (w1, ws) according to (3.1). In our
code we use the package nlopt:ﬂ, which is used for nonlinear optimization according to inequality or inequality
constraints.

3.3.2 Minorization Condition for the Gibbs Chain

The advantage of using the joint drift function V (7, /3) is that the minorization condition for this chain is the same
as that for the 3-chain, which is given in Section [3.2.1]

!Available at: https://cran.r-project.org/web/packages/nloptr/nloptr.pdf
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3.3.3 V-norm Condition

We now prove that the V' -norm conditions established in preceding sections may be used to establish the V' -norm
condition in the joint drift regression case. Consider f(3) = ;. Then,

sup ‘/BZ‘
(7,B)ERT xRP \/HXB /B)||2+TT+T—S+77

|8i]
X8 = B)II?
w15
p —.
perr [| X (5 = B)|?
Then one can simply use results from the V' -norm condition on the 3-chain to establish the minorization condition.
A comparable approach can be used to establish the V-norm condition for functions of 7.

F sz =

<

sup
(7,B)ERT xXRP

3.3.4 Example: Bounds on the RMSE

One is often interested in finding the mimimum m required such that

]P’(Ifm—Eg(f)l Se) >1-a 3.2)
for some € > 0, a € (0,1). This is equivalent to finding the minimimum rm such that
RMSE(fn) < ev/a (3.3)

by Chebyshev’s inequality We now fix & = .05. In Table [3.1] we compute the number of iterations required
to bound the value from (3.3)) for different 3 When using f(B8) = Bi, we use || f||y1/2 ~ 8.9 and when using

f(r) =7, we use |\f||vl/2 ~ .63, with s = 2

5T =75

2

Table 3.1: RMSE bounds on (;, i = 1, 2, Required Number of Iterations

€ RMSE Bound | Theorem |5, 3; | Theorem |6} 3; | Theorem |6, T
.25 0.0559017 80000 200000 1000
125 | 0.02795085 3100000 800000 4200
.01 | 0.002236068 47800000 121800000 610000
.005 | 0.001118034 190900000 480000000 2440000

Table [3.1] shows that Theorem [3] requires fewer iterations of the Gibbs sampler, but Theorem [6] allows for
estimation for functions of 7.

3.4 Conclusion

In this paper we have used results from|Latuszynski et al.|(2013) to derive non-asymptotic bounds on the RMSE of
the usual MCMC estimators. We showed that it is possible to establish a drift condition, a minorization condition,
and a V-norm condition for the one sample model with normal priors and the regression model. In each case
we showed that these conditions can be established in various ways, highlighting optimal ways of proving such
conditions in the future for more complicated models. We also worked with the case where one considers a joint
drift function, which allows the user to avoid potentially intractable infimum computations in order to establish the
minorization condition. We present numerical results to establish the accuracy of the theorems presented in this
paper. Future areas of research include finding lower bounds on the V-norm in the regression model, bounding
terms of the form
E ( !
u+c

by some function of 7 whose mean is easily computed, and extending the results of this paper to the linear mixed
model and other more difficult statistical models.

|T>7 where p|t ~ N(a,b), a,b,c€R,
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Appendix A

General RMSE Bounds

Here we give upper bounds on the constants that appear in (1.5). See|Latuszynski et al.|(2013).

(i) o)< T 2gr(V) + fm .
" Ifiv = iﬁ“v”z(ﬁ__\%— Lara),

And more upper bounds on constants useful to calculating the above bounds:

K1/2 _ \1/2 K1/2 _ )\1/2
1 _)\1/2 < 1 _)\1/2 ’

(@) w(V'?) <n())

.. < <
(“) ’/T(V> = ’/T(J) 1—X — 1=\ ?
K1/2 K1/2
L 1/2 oA n(171/2 -
(13d) ifE(V7) < Tz then §P™(V'/7) < 1 \/2°
K K
(iv)  ifE(V) < 1 then EP™(V) < =

(v)  ||fllv1/2 can be related to || f||1/2 by

1z < I fllvrje |1+

ﬂ_(J)(Kl/Q _ )\1/2) K1/2 _ )\1/2
1/2) ] 1/2 <|[fllvr/2 It ——5
(1= AY2)inf,e, V1/2(2) 11—\
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Appendix B

Alternative Drift Functions

B.1 Quartic Drift Function

In this section we establish the drift condition for the drift function V(1) = (¢ — 7)* + 1 in order to introduce a
drift condition for more general drift functions.

Theorem 7. The drift condition holds for the u-chain for

K

= —74 1 = 4 = —
Vi = (-9 +1, K=L+p' A=,

provided w > VK — 1 and o > 2, where ) := 2d 4 (n — 1)s%, p := (b2(ﬁlgzgtzbl()y(;a_);)+18),
Li=pp*+1Land J :={peR:V(p) <w}

Proof.

E ((:U“TYL-H - y)4 + 1|7-m = T) |Mm)
E ((ttms1 = 9)*7) lpm) +1

_E [(ﬂ )+ 67— 9)° (ml+ b) +3 (nTlH)Q i

— B39 lun] + 68 | -9 (g ) on | +3E

+1

1 2
(nT + b) [pom

We shall bound each of the above expectations individually, from left to right. The first reduces to:

(i) - a>4|um]

B 4
—bG-a)E|(——) |
nr+b m

+ 1.

E [(ﬂ - y)4|.um} =

=07 —a)'E [((n7)4 + 4(nT)%b 4 6(nT)%b* 4 4nTb® + b4)71 \,um}

<b*(y—a)'E (W) Ium]

_PE-a'y {1%} .

6n2 T2
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We will return to this term after similarly bounding the others. The second bound goes as follows:
o [(3 - 9)* (=) | =6 — 28 | L
B9\ yp) Hm] =PV (nT+b)3um
=6b*(y — a)’E [((n7)? + 3(n7)?b + 3n7b® + b)) |
1
< 2(= 2E -

_ M-y [lemm] .

n2

We will likewise return to this term after finishing the third and final term, which is more straightforward:

2
1 3 1
< —=E|—].
(n7+b) 'um] ~ n? {72}

After factoring out the common expectation and combining like terms in its coefficient, we are left with the
following bound on PV:

(B.1)

b2(g — a)* + 12b(7 — a)? + 18 1
PV(MmH)S( 7 —a) & —a) >E|:T2|Nm:|+1-

6n2

Since 7|u ~ Gamma(a, 3), we know that %| w follows an inverse gamma distribution. Thus we need only compute
the second moment of this distribution to arrive at:

b2y — a)* +12b(y — a)? + 18) (2d + (n — 1)s% + n(pm — 9)?)?
6n2 4(a—1)(a —2)

PV (1) < ( +1. (B2

Letting 1 := 2d + (n — 1)s? we get

b2y — a)* +12b(y — a)? + 18
24n? (a0 — 1) (e — 2)

) (77 + n(tm —?)2)2 + 1.

PV (pm41) < (

We can bound this in the same way that we bound (z + y)? < 222 + 2y? and arrive at

2y —a)t +12b( —a)® + 18\ /n\2  [(b* (Y — a)* + 12b(7 — a)? + 18 _
PV(“m+1)<( 2(a — D{a —2) )( ) ( 2(a — {a —2) )(“’"_y)4+1

) and rewrite the above

n

b2 (g—a)*+12b(g—a)?+18
12(a—1)(a—2)

For convenience we define p := (

n\? 4
PV(umH)Sp( ) + 1+ p(tm — )

n
:p(%>2+1*p+p((um -t +1).
Finally, defining L := p (%)2 + 1, we rewrite as
PV (pmi1) < L= p+pV(pm).
For p,, € J, we bound
PV (pimi1) S L—=p+pw' +1) = L+ p' = K.

For 1., ¢ J, we set

4 _
K _L+pw>L p+

T il Wit = Vi(pm) P

since V' (., ) is continuous. Since we require A < 1, we have that
w> VK — 1.
[

Remark: The motivation behind this theorem is that we are now able to apply theorems from |Latuszynski et al.
(2013) to f(u) = p%. We claim that the ideas presented above can be extended to higher powers of .
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B.2 Drift Functions of Even Degree

We now consider the situation where we use V(1) = (1 — )% + 1, k € N.
Theorem 8. The drift condition for the u-chain is satisfied if we use

K

— 2k —
K—Ler ; A—m,

Vip)=(p-79"*+1,

provided w > VK — 1, where ) :== 2d + (n — 1)s>, p := Ef:o (222“)(22 - 1)”% and L :=
k j=1\""

1 —l—p(%)k,foranyk‘ eN

Proof. Firstrecall that 7| ~ Gamma(a, f3), for

_ 2 _ 2
a=c+2, ﬂ:d+(" 1)s® + n(u y),
2 2
and that
ol — n-(n—2)-(n—4)...6-4-2, n?seven ©3)
n-(n—2)-(n—4)...5-3-1, nisodd.

We define —1!! = 0!! = 1. We will return to this later in our proof. For ease of notation, we remark that since

1
nt+b)’

), and we can thus rewrite

—

we have that i ==y — 5 ~ N ((w - 1)y, #er

PV (pmt1) = E [E (ﬁ%prrl‘Tm = T) |/~Lm] +1
=B [E ((fins1 = B al7) + B 7)™ ) ] + 1.

Calling « := i,, | — E(fi,,1|7), which importantly has mean 0, we can then expand using the binomial theorem
as follows:

PV(pmi1) =E

L ‘ ‘
3 ( .)E(wa)E(ummT)%-wum i

=E

> (%
— \2i
Evaluating this remaining inner expectation yields:

PV(pmt1) =E

=E

(2i — 1!
(20 — 1)
(20 — 1)

B k NP ;
1 ok ) bk—zy2(k—z)
- Z (21) (2i — 1)!!7(%_1,)“ |tm

1

(20 = DUE L1 17)? 2 i | + 1.

(by)>* "

| 1
(nr + pyze—i |

|t

(b?)z(k—z‘)
S G GO
(bg)** "
” (2kk—i) (nT)kbkfi

|t | +1

+1

|t

+ 1.

k

Since this sum within the expectation is only a constant, we can pull it out, yielding:

k
PV(pmi1) <14 @’:) (20 — 1!
=0

pk iz (k=)

1
T )
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and we have only to evaluate the k" moment of 1 |1,,, ~ IG(c, 3). What results goes as follows:

2k . .
ﬁk <2]€> ) bkfzy2(kfz)
PV (1) S 1+ ———— ) [/ ) e —
( +1) H;?:l(a _ ]) ; 22 ( ) (Qk;k_z)nk

Calling 7 := 2d + (n — 1)s? and recalling the value of 3 above, we rewrite our bound as

_ k o

(,,7 4 nu2 )k 2% ) bk—zyQ(kfz)
PV (pmy1) <14 —7> (20 = DN —,
2 ; 2 (R )AL (o — )

We then further bound PV by bounding this binomial as we do with (x + y)* < 2F=1(zk 4 ¢/F):

(2k—1nk + 2k—1nkﬁ2k) k 2% bkfi?2(k7i)
PV (ps1) <1+ m (,)@in” — :
) O e )
k . )
2%k bk71y2(k72)
=1+ (77}C —nF 4 nkV(um)) ( > (2¢ — ! — —.
; 2 Q(Qkk- )”kﬂfﬂ(a —J)

and we define the constants

bk—z@Q(k—i)

k N k
p= Z (22z>(QZ - 1)!!2(21@;1)1—[?:1(& —j), Li=l+p (%)

=0

in order to rewrite more simply as
PV (ptmy1) < L—p+pV(pm).
For p,, € J, we bound PV above by
PV (tmi1) <L —p+pw?* +1) =L+ pu?* = K.
For p,,, ¢ J, we require
PV (tmt1) < L—=p+pV(pm) <AV (),
and solve the right hand inequality for A. This yields

K _L—I—pw2k>L—p
CwR 4l WPl T V()

+p,

for all p,,, ¢ J. Since A < 1, it must be true that

O

One area of future work is to consider drift functions of the form V' (y) = (u — 7)%* 4+ a(u), where o is
a continuous function of . Then it is easy to see the methods we have developed in this paper can be easily
extended to drift functions of this form.
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Appendix C

Improving the V'-norm bounds

Here we provide a theorem which states the conditions on the drift function for the p-chain the V-norm condition.

Theorem 9. Using the drift function V(1) = (u — 7)?* + 1, for k € Z, the V-norm condition is satisfied for
) =p? ifj < k.

Proof. Note that (1.4) requires a bound on || f||, which requires knowledge on E, (f). This mean is unknown in
practice. Instead we bound || f||y;1/> and use the following inequality from Appendix [A}

K1/27>\1/2

Il < N fllve |1+ TToNZ

It is enough to show that the norm of f is finite, where f(u) = (1 —y)?,j € Z.

_lJ
Ao = sup —— =Y

I o iff <k
ek /(=) +1

O

Note that in the above computations, we simplified our work by defining f (1) = (1 — %)?. The values of the
RMSE one obtains when using this value of || f||y/1/2 are for the random variable (u — %)7. Shifting by 7 does not
change the RMSE, since the RMSE is invariant under shifts.

Table demonstrates that it is possible to reduce || f||;-1/2 by choosing different drift functions. This leads us
to believe that different drift functions could lead to reduced RMSE. [B] Theorem [§] we present a theorem that
establishes the drift condition for an arbitrary drift function of the form V (1) = (u — 7)%*,k € N.

Table C.1: Controlling || f]]1/2

J 1 1 0.5 1
k 1 2 2 4
[[£]lvi2 | 110707 [ 0.7549 | 0.7549

This is useful towards our end goal of reducing the upper bound on the RMSE. We now minimize || f||y1/2
with respect to . Using f(u) = (u — )7, for j € Z,

Ufllgs = —£ZT"
Vi —9)% +1
we set
(w—7) 1 [ — 9%+ — k(n—7)%]
(1 — )%+ 1)/?

d
ap vz =
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equal to zero and disregard the case where y© = 7. We solve for the p, which we denote p*, that minimizes

IFAIVEYEE

Plugging p* back into || f||y1/2 yields the following function of j and k returning the supremum of the norm of f:

RSN

We now fix j and optimize with respect to k:

L iy = ()" s i)

the critical points of which occur at k = j and k = 27, since k, j > 0. As Table[C.I|demonstrates, the case where
k = 27 yields || f||y;1/2 = 1/+/2, the minimum for all k&, j € R.
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Part 111

A Comparison of Programming
Languages for MCMC Applications
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Chapter 1

Introduction

With the growing use of Markov chain Monte Carlo (MCMC) methods in a wide range of disciplines, the need
for efficient programs for MCMC algorithms with fast computation times is becoming more prevalent. In this
paper, we will analyze various programming approaches for Markov chains in different statistical models and
compare computation speeds in order to determine the most efficient programming language. We will focus on
five languages: R, C++ (using the Rcpp package in R), Just Another Gibbs Sampler (JAGS), Julia, and MATLAB.
In Section we will discuss and define each programming language and all computational tools utilized in our
research. In Section[I.2] we will define the Gibbs sampler for the one-sample Normal model, and we will compare
the performances of R, Repp, JAGS and Julia. Next, we study the performance of a Gibbs sampler for the Bayesian
linear regression in Section [2.1] In Section [3] we consider different Bayesian cases of the linear mixed model: we
consider models with improper and proper priors, and normal and ¢-distributed random effects. The last model
we will consider is the Probit regression case, and we will investigate the performance of two MCMC algorithms
in each of the programming languages in section Lastly, we will discuss any limitations we had encountered
with the execution of the programming languages in our research. Based on our results, we will provide insight
on which coding-language is optimal for MCMC computation.

1.1 Computational Tools

A simple exercise to understand the similarities and differences of R, Rcpp, MATLAB, and Julia is to build
a function that computes the n'" term of the Fibonacci Sequence. The Fibonacci sequence is defined by the
following expression:

Fo=F, 1+ F, 2, forn>2,

where Fp =0and F; = 1.

A solution is to define a function recursively with initial conditions and iteratively compute the n** Fibonacci
number. To see the differences among R, Rcpp, MATLAB, and Julia, we refer to listings 1-4. There are better ways
of coding the Fibonacci sequence; we code in this manner to show the performing gap among these languages.

fibR <— function (n){

if (n==0){
return (0)

}

if (n==1){

return (1)

return (fibR (n—1) + fibR(n-2))
}
Listing 1.1: R Fibonacci Code

The first programming language we used was R, a free, open-source programming language used for statistical
computing created by Ross Thaka and Robert Gentleman. There are a myriad of benefits using R. With its simple
syntax, R allows users to easily define functions and construct objects. R contains an abundance of statistical
packages from which users can choose to run various functions, and users may also create packages if need be. R
can be downloaded at http: \www.r—-project.org/.

The next programming language we considered in our research was C++ using the Rcpp package in R, allowing
users to integrate R and C++. The reason behind our choice to use the Rcpp package rather than pure C++ is we
are able to read the data and gather our samples in R with ease. Additionally, Rcpp is favorable to many users as
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it generally is able to execute codes relatively quickly. Furthermore, a benefit to using Rcpp is that C++ allows
users to easily define and control object types, such as vectors and matrices. To install the Rcpp package in R,
type install.packages ("Rcpp") in the R console. In order to utilize matrix computations at an efficient
rate, we consider another package within R: ReppEigen. The ReppEigen package allowed the C++ environment to
work with more linear algebra operations that may not have been available in Rcpp alone. To install RcppEigen,
the user would have to type install.packages ("RcppEigen") in the R console.

library (Rcpp)

> sourceCpp (code="

#include <Rcpp.h>

/1 [[Recpp::export]]

double fibCpp(const double x) {

if (x == 0) return(0);

if (x == 1) return(1);

return (fibCpp(x — 1)) + fibCpp(x — 2);
}5

Listing 1.2: Rcpp Fibonacci Code

The third programming language we used is a relatively new programming language, created in 2012 by Jeff
Bezanson, Stefan Karpinski, Viral B. Shah, and others, named Julia. Some consider Julia to be the language of
the future, and it is meant to have a computational speed comparable to other high-level programming languages,
such as C++. Julia’s syntax is straightforward and reminiscent of the syntax used in Python and MATLAB. Julia
is also free and open-source, and the program can be downloaded at julialang.org/,
function fibJulia(n)

if n==0
return 0
end
if n==
return 1
end
return fibJulia(n—1) + fibJulia(n—2)
end

Listing 1.3: Julia Fibonacci Code

Another programming language in which we ran several of our statistical models was MATLAB. MATLAB is
a program created by Jack Little, Steve Bangert and Cleve Moler for technical computing. MATLAB is designed
to compute matrix calculations in an optimal manner, but it is not programmed to run for-loops in an efficient
manner. To purchase MATLAB, visithttp://www.mathworks.com/.

function f = fibnum(n)
2 if n ==
f = 0;
elseif n == 1
f =1;

else

7 f = fibnum(n—1) + fibnum(n—2);
s end

Listing 1.4: MATLAB Fibonacci Code

Lastly, we used the program Just Another Gibbs Sampler (JAGS) to run our statistical models. JAGS is
different than the previous four languages as it only requires the user to define a statistical model — the MCMC
algorithm is chosen by JAGS, not the user. Thus, we will not compare the performance of JAGS to the other four
languages; we will only display the computation times. JAGS was ran in R in order to better read our data, and like
the Repp package; to install the JAGS package in R, type install.packages ("JAGS") in the R console.

With these five languages, we will explore various MCMC algorithms in order to compare performance times.
However, we will only examine the performance of MATLAB in the linear mixed model with normally distributed
effects with proper priors and ¢-distributed effects along with the Probit regression model. In all of our simulations,
the number of MCMC chain length 500,000 with a burn-in length of 500,000; that is, we simulated a total of one
million MCMC draws for each chain. Each program was ran on a 4th Generation Intel Core i5@ 2.9GHz processor
with 12GB of RAM. We now define the Gibbs sampler in the Bayesian one-sample Normal model and compare
the performances of the programming languages used in this example.
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1.2 One-Sample Normal Model
1.2.1 The Model and the Gibbs Sampler

Consider the data Y7, Ya, ..., Yy, |p, 0 ~ N(u, 02) where both i and o are unknown. Now to perform a Bayesian
analysis on our data, it is common practice to assume the following proper prior distributions of p and 7 = ﬁ

1
uw~N (a, b) and 7 ~ Gamma (c,d)

where a, b, c and d € R. When we try to calculate the joint posterior distribution of ;1 and 7, we are left with an
intractable integral. Thus, we must use the posterior conditional distributions, 7|u and p|7, in order to use MCMC
methods to gather approximate samples. One is able to show that the conditional distributions are as follows:

—1 2 = 2
7'|,u,y~Gamma <C+Z’d+ [(n )S —;n(y M) ])

and

1
~N (g, ——
piT,y <u, m+b)

where

ﬂ = '[J’(T) = (n?lb) y + (n'errb) a.
In this model, s is the sample standard deviation, n is the sample size, and ¥ is the sample mean. Now we will
use these conditional distributions to create the Gibbs sampler for the one-sample normal model. Starting with

our initial pair, (t,, 7 ), we must first generate 7,41, and then use 7,1 to obtain fi,,+1. We do this with the
following procedure:

1. Draw Tp11 ~ Gamma (C +2d+ [(n—1)g2+;,(«;—u,m)2])
2. Draw pi41 ~ N (,&m, m) where [i,, = (%) y+ (m) a.

1.2.2 Coding the Gibbs Sampler

Now that we have defined the Gibbs sampler for the one-sample Normal model, we will implement the Gibbs
sampler in R, Rcpp, JAGS and Julia.

Within R, there are functions that generate random variates of common distributions that are already pre-
defined making it easier to run any statistical model. With a method of generating gamma and normally distributed
variates, coding in R wasn’t too difficult. Like C++, a variable needs to be defined to store the MCMC chain output.

> GibbsNorm = function(iterations , burnin, nthin, mu_prior_precision, mu_prior _mean,

tau _prior _shape, tau_prior_rate, mu_initial , tau_initial , data){
tau .GS <— rep(NA, iterations)
mu.GS <— rep(NA, iterations)

y.bar <— mean(data)

tau .GS[1] <— tau_initial

mu.GS[1] <— mu_initial

s <— sd(data)

n <— length(data)
post_shape=tau_prior _shape + 0.5 % n

for(i in 1:burn.in ){
temptau <— rgamma(l, shape = post_shape,
rate = tau_prior_rate + 0.5 * (n % (y.bar — tempmu)”"2 + (n—1) * s"2))
weight <— n % temptau / (n * temptau + mu_prior_precision)
tempmu <— rnorm (1, mean = weight % y.bar + (1—weight) * mu_prior_mean,
sd =1 / sqrt(n * temptau + mu_prior_precision))

for(i in 1:iterations){
for(j in 1l:nthin){
temptau <— rgamma(l, shape = post_shape,
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rate = tau_prior_rate + 0.5 % (n * (y.bar — tempmu)”2 + (n—1) * s72))
weight <— n % temptau / (n * temptau + mu_prior_precision)
tempmu <— rnorm (1, mean = weight * y.bar + (I1—weight) * mu_prior_mean,
sd =1 / sqrt(n % temptau + mu_prior_precision))
}
}

sigma.GS <— 1 / sqrt(tau.GS)

return(list (mu = mu.GS, tau=tau.GS, sigma=sigma.GS))

Listing 1.5: One Sample Normal Source R code

GibbsNorm input description:
e iterations: Aninteger value that provides the net length of MCMC chain for main sample

e burnin: An integer value that provides the number of draws for MCMC chain to initialize before
main sample

e nthin: An integer value that provides the number of draws to consider before storing main sample,
i.e. every second; every third; etc.

e mu_prior_precision: A numeric value that provides the precision parameter for the prior distri-
bution of p

e mu_prior_mean: A numeric value that provides the mean parameter for the prior distribution of p

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7

e data: A numeric vector consisting of the observed values from a normal distribution for Bayesian
analysis

Since C++ has no immediate package to generate variates from distributions, we have to source functions that
generate common distributions that are pre-defined from R. In Listing 6 at line 22, a call is initialized to used the
functions “rnorm” and “rgamma”. This allows for the C++ function to perform the same tasks as the function in
listing 5, but with the speed performance improved.

2 sre="
int n_iterations = Rcpp :: as<int >(iterations);
4 int burn = Rcpp :: as<int >(burnin);
s int Nthin = Rcpp :: as<int>(nthin);
6
7 Repp :: NumericVector mu(n_iterations);
s Repp :: NumericVector tau(n-iterations);
o Repp :: NumericVector sigma(n_iterations);
10
11 double tempmu = Rcpp :: as<double >(mu_initial);
2 double temptau = Rcpp :: as<double >(tau_initial);
13 double s = Rcpp :: as<double >(data_sd);
4 double y = Rcpp :: as<double >(data_mean) ;
15 double n = Rcpp :: as<double >(data_size);
16 double a = Rcpp :: as<double >(mu_prior _mean);
17 double b = Rcpp :: as<double >(mu_prior_precision);
18 double ¢ = Rcpp :: as<double >(tau_prior _shape);
19 double d = Rcpp :: as<double >(tau_prior_rate);

RNGScope scp;

> Repp:: Function rnorm (”rnorm”) ;
3 Rcepp:: Function rgamma(”’rgamma’) ;
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for (int j = 0; j < burn; j++){

temptau = Rcpp :: as<double >(Rcpp :: rgamma(l, (¢ + ( n / 2.0)),

1.0 / (d + (((n—1.0) * pow(s, 2) + n * (pow(y—tempmu, 2))) / 2.0))));
tempmu = Rcpp :: as<double >(Rcpp :: rnorm(l,

((n = temptau) / (n * temptau + b)) * y + (b / (n * temptau + b)) x a,
1.0 / sqrt(n % temptau + b)));

// N_iterations MOMC Chain

for (int i = 0; i < n_iterations; i++){

for (int j = 0; j < Nthin; j++){

temptau = Rcpp :: as<double >(Rcpp :: rgamma(l, (¢ + (n / 2.0)),

1.0 / (d + (((n—1.0) % pow(s, 2) + n * (pow(y—tempmu, 2))) / 2.0))));
tempmu = Rcpp :: as<double >(Rcpp :: rnorm (1,

((n = temptau) / (n * temptau + b))x y + (b / (n x temptau + b)) * a,
1.0/sqrt(n * temptau + b)));

> }

s mu[i] = tempmu;
tau[i] = temptau;

s sigmal[i]= 1.0/sqrt(tauli]);

return Rcpp :: DataFrame :: create (Rcpp :: Named(”Mu”) = mu,
Repp :: Named(”Tau”) = tau, Rcpp :: Named(”Sigma”) = sigma);

GibbsNormcpp = cxxfunction(signature (iterations = “int”,
burnin="int”, nthin = ”int” ,mu_prior _mean ="numeric”,
mu_prior_precision = “numeric”,
tau_prior _shape ="numeric”,
tau_prior_rate = “numeric”,
mu_initial = “"numeric”, tau_initial = "numeric”,
data_mean = “numeric”, data_sd = “numeric”,
data _size = "numeric”),
src, plugin = "Rcpp”)

Listing 1.6: One Sample Normal Source Rcpp code

GibbsNormcpp input description:
e iterations: An integer value that provides the net length of MCMC chain for main sample

e burnin: An integer value that provides the number of draws for MCMC chain to initialize before
main sample

e nthin: An integer value that provides the number of draws to consider before storing main sample,
i.e. every second; every third; etc.

e mu_prior_precision: A numeric value that provides the precision parameter for the prior distri-
bution of p

e mu_prior_mean: A numeric value that provides the mean parameter for the prior distribution of p

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e mu_initial: A numeric value that provides the initial value for MCMC for p

e tau_initial: A numeric value that provides the initial value for MCMC for 7

e data_mean: Sample mean of the observed values from a normal distribution for Bayesian analysis

e data_sd: Sample standard deviation of the observed values from a normal distribution for Bayesian
analysis

e data_size: Sample size of the observed values from a normal distribution for Bayesian analysis
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28

29

Julia is often considered as the language of the future, the creators want users to be able to code with ease
with the benefit of running programs as fast as C or C++. Translating the functions as defined in listing 5 to Julia
syntax was not too difficult. Coding in Julia was rather simple; there were many similarities in syntax to R such as
creating space for the MCMC sample and generating functions. To generate random variates in Julia, it involved
using the rand function and a distribution of choice. Thus, making it simple to run the Gibbs sampler.

function GibbsNorm(iterations , burnin, nthin, mu_prior_mean, mu_prior_precision ,
tau_prior_shape , tau_prior_rate , tau_initial , mu_initial , dataset)
n = length(dataset)
ybar = mean(dataset)
s = std(dataset)
X = fill (0.0, iterations , 3)
tempmu = mu-initial
temptau = tau_initial

post_shape = tau_prior_shape + (n / 2)

for i in 1:burnin
rate = tau_prior_rate + (((n—1) * s”2 + n * (ybar — tempmu)~2) / 2.0)
temptau= rand (Gamma(post_-shape, 1.0 / rate))
w = (n % temptau) / (n * temptau + mu_prior_precision)
tempmu= rand (Normal ((w * ybar) + ((1.0 — w) * mu_prior_mean), 1.0 / sqrt(n * temptau +
mu_prior_precision) ) )
end

for i in 1l:iterations
for j in 1:nthin
rate = tau_prior_rate + (((n—1) * s"2 + n * (ybar — tempmu)~2) / 2.0)
temptau= rand (Gamma(post_shape, 1.0 / rate))
w = (n * temptau) / (n * temptau + mu_prior_precision)
tempmu= rand (Normal ((w * ybar) + ((1.0 — w) * mu_prior_mean), 1.0 / sqrt(n * temptau +
mu_prior_precision) ) )
end
X[i, 2] = temptau
X[i, 1] = tempmu
X[i, 3] =1 / sqrt(temptau)
end

return X
end

Listing 1.7: One Sample Normal Source Julia code

GibbsNorm (Julia) input description:
e iterations: An integer value that provides the net length of MCMC chain for main sample

e burnin: An integer value that provides the number of draws for MCMC chain to initialize before
main sample

e nthin: An integer value that provides the number of draws to consider before storing main sample,
i.e. every second; every third; etc.

e mu_prior_precision: A numeric value that provides the precision parameter for the prior distri-
bution of p

e mu_prior_mean: A numeric value that provides the mean parameter for the prior distribution of

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e tau_initial: A numeric value that provides the initial value for MCMC for 7
e mu_initial: A numeric value that provides the initial value for MCMC for p

e data: A numeric vector consisting of the observed values from a normal distribution for Bayesian
analysis
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Unlike R or Repp, JAGS requires the user to provide the prior information and data set information to run a
Gibbs sampler. A new script has to be made of type “.jags” in order to initialize the Markov chain. Within R,
jags.model allows for the user to provide all the information on their model of interest. The functions update
and coda.samples allow for the user to let the chain run a burn-in length and keep their MCMC sample of
interest, respectively.

1 cat(”

2 var

mu_prior _mean, mu_prior_precision , tau_prior_shape, tau_prior_rate, mu, tau, y[N];
4 model {

for (i in 1:N){

6 y[i] ~ dnorm(mu, tau)
7 }
8 mu ~ dnorm(mu_prior _mean , mu_prior_precision)
9 tau - dgamma(tau_prior_shape,tau_prior_rate)
10
11 ”, file= “onesamplenorm.jags”)
"
13 jagsfit <— jags.model(file = “onesamplenorm.jags”,
14 data = list(’mu-prior_mean’ = mu.prior.mean,
15 ‘mu_prior_precision’ = mu.prior.precision ,
16 “tau_prior _shape’ = tau.prior.shape,
1 ’tau_prior _rate’ = tau.prior.rate,
18 'y’ = outcomes,
19 N’ = length (outcomes)
),

21 n.chains = 1, n.adapt = 0)

. update (jagsfit , 500000)
24

»s MOMC. out <— coda.samples(jagsfit ,

26 var = ¢(’mu”,”tau”),
2 n.iter = 500000,
28 thin = 1)

Listing 1.8: One Sample Normal Source JAGS code

jagsfit input description:
e mu_prior_mean: A numeric value that provides the mean parameter for the prior distribution of

e mu_prior_precision: A numeric value that provides the precision parameter for the prior distri-
bution of 1

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7

e v: A numeric vector consisting of the observed values from a normal distribution for Bayesian analysis

N: Sample size of the observed values from a normal distribution for Bayesian analysis

1.2.3 Results

For the one-sample Normal model we used a simulated data set to run our Gibbs sampler, and the overall perfor-
mances Repp, JAGS, and Julia are not too different from one another. For one million draws, (500,000 for the
MCMC Length and 500,000 for the burn-in length) computational time is relatively low. Each of the languages
performed within ten seconds, with Rcpp performing the quickest and R the slowest. Due to how we defined our
Gibbs sampler, R has the slowest performance because of how it handles for-loops compared to Rcpp and Julia.
The Gibbs sampler requires no matrix calculations so everything done in the coding aspect is scalar computation.
We see that JAGS performed second to that of Rcpp. Since writing the model in JAGS is easier to program than
the Gibbs sampler, one may consider JAGS as a preliminary tool to obtain approximate samples for Bayesian
analysis.
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Language | Average Time (secs) | Relative Time
R 8.981 27.162
Repp 0.331 1
Julia 1.141 3.452
Language | Average Time (sec)
JAGS 1.026

Next, we consider the Bayesian linear regression model.
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Chapter 2

Linear Models

2.1 Linear Regression with Proper Priors

Consider the following data modeling equation:

Y|B,0 ~ Ny (Xﬁ7ln02)

where Y is an n x 1 vector of observed data, 3 is an p x 1 vector of regression coefficients, o is the standard
deviation, X is a known n x p matrix and e denotes the random error where ¢|o ~ N,,(0, I,,02).

In order to perform a common Bayesian analysis, we will need to assume the commonly used proper priors
for S and T = %, respectively:

B ~ N.(Bo,Co) L 7 ~ Gamma(a, )

Once again, we are left with an intractable integral when trying to calculate the joint posterior distribution;
hence, we must construct a Gibbs sampler to obtain approximate samples from the posterior distribution. One can
show that the conditional posterior distributons are:

) and B|r ~ N, (2 [rXTY +C;'Bo] %)

7|8 ~ Gamma (a—i— g,b—i— 55 + (ﬁ_ﬁ)QTXTX(B—ﬁ)

where 3 = (XTX)"'XTY, SSE = |[Y — XJ|%, and £ = [rXTX +Cy']™"

Thus a Gibbs sampler can be defined by beginning with some initial point (3(?), 7(°)) € RP x R . Then to proceed
from (3™, 70m) € RP x R to generate (31 7(m+1)) for m > 0, we follow the two steps:

i m+1 " SSE+(B™ —B)TXT X (8™ —j)
1. ObtalnT( + )NGamma (a"_%,b'f' -

2. Obtain S ) ~ N, (M) [y (mtD),

where M (™D = VOt [70mt D XTY 4 O L] and V0D = [70mtDXTY 4 g

2.1.1 Coding the Gibbs Sampler

We will now program this Gibbs sampler in R, Rcpp, Julia, and JAGS. This is a slightly more complicated model
than the one-sample Normal case, but coding the Gibbs sampler remains to be not too difficult. The coding
implementation requires many matrix computation and operations to obtain the posterior MCMC sample.

When coding in R, we run into the dilemma of which function efficiently computes the inverse of a large
matrix. Unlike Repp and Julia where the computation of the inverse of a matrix is optimized for the language its
being executed in, R has more than one way to compute the inverse. R has solve function and the composition
function chol2inv (chol () ) ; the latter function runs quicker than the solve function but is less stable. The
solve function computes the inverse by using matrix algebra—i.e. row operations—but for large matrices there is
a significant toll on the functions speed performance. Due to most statistical problems desiring a large sample, the
composition function is the preferred choice for overall performance.
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1

> Gibbslm <— function (iterations , burnin, nthin, Response, ModelMatrixX,

}

N <—
r <—

prio
beta
e <—

prior _mean_beta, prior_cov_beta, tau_prior_shape,
tau_prior_rate, start.beta){

length (Response)

ncol (ModelMatrixX)

r.cov.beta.inv <— chol2inv (chol(prior_cov_beta))
.prior.term <— prior.cov.beta.inv %+«% prior _mean_beta
Response — ModelMatrixX %+% beta . hat

SSE <— t(e) %% e

tau _

prior _shape.pos <— tau_prior_shape + N/2.0

tXX <— t(ModelMatrixX) %*% ModelMatrixX
tXy <— t(ModelMatrixX) %+% Response

beta
beta

.hat <— chol2inv (chol (tXX)) %+% tXy
<— matrix (NA, nrow = iterations , ncol = r)

tau <— rep(NA, length = iterations)

temp_beta <— start.beta
V_inv <— matrix (NA, nrow = r, ncol = r)
for(j in 1 : burnin){
diff <— temp_beta — beta.hat
postrate <— tau_prior _rate + (SSE + t(diff) %% tXX %% diff) / 2.0
temp_tau <— rgamma(l, shape = tau_prior_shape.pos,
rate = postrate)
V_inv <— temp_tau x tXX + prior.cov.beta.inv

V <— chol2inv (chol(V_inv))
temp _beta <— V %«% (temp_tau * tXy + beta.prior.term) + t(chol(V)) %+% rnorm(r)

}

for(
fo

i in 1 : iterations ){
r(j in 1:nthin){
diff <— temp_beta — beta.hat
postrate <— tau_prior_rate + (SSE + t(diff) %% tXX %% diff) / 2.0
temp_tau <— rgamma(l, shape = tau_prior_shape.pos,
rate = postrate)

V_inv <— temp_tau x tXX + prior.cov.beta.inv
V <— chol2inv (chol(V_inv))

}

be

temp _beta <— V %x«% (temp_tau * tXy + beta.prior.term) + t(chol(V)) %+% rnorm(r)

ta[i , ] <— temp_beta

tau[i] <— temp_tau

}

sigm

a<— 1/ sqrt(tau)

return( list(beta = beta, tau = tau , sigma = sigma))

Listing 2.1: Linear Regression R code

Gibbslm input description:

iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

prior_mean_beta: A numeric vector for the mean parameter of the normal distribution of 3

prior_cov_beta: A numeric matrix for the covariance matrix parameter of the normal distribution

of 5

tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
-
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w oo =

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7

e start.beta: A numeric vector of initial values for MCMC for 3

There are no significant limitations to programming the Gibbs sampler in Rcpp as most of the functions that
were used for the one-sample Normal scenario carried over to the linear regression case. However, because we
are starting to deal with lots of matrices and vector computation we work with ReppEigen which allows for more
linear algebra operations.

>

Sre<<—
using Eigen :: Map;
using Eigen :: MatrixXd;
using Eigen :: VectorXd;
using Eigen :: Vector2d;
using Rcpp :: as;

typedef Eigen :: Map<Eigen :: MatrixXd> MapMatd;
typedef Eigen :: Map<Eigen :: VectorXd> MapVecd;

int n_iterations = Rcpp :: as<int>(iterations);
int burn = Rcpp :: as<int >(burnin);
int nthin = Rcpp :: as<int >(n_thin);
double a = Rcpp :: as<double>(tau_prior_shape);
double b = Rcpp :: as<double >(tau_prior_rate);

Rcepp :: NumericMatrix Xc(ModelMatrixX) ;
Repp :: NumericMatrix CC(Beta_Prior _CovMat) ;

Rcpp :: NumericVector Yc(Response);
Rcpp :: NumericVector BetaC(Beta_prior _mean);
Rcpp :: NumericVector betainitc (beta_initial);

const MapMatd X(Rcpp :: as<MapMatd>(Xc)) ;
const MapMatd CNot(Rcpp :: as<MapMatd>(CC));

const MapVecd Y(Rcpp :: as<MapVecd>(Yc));
const MapVecd BetaNot(Rcpp :: as<MapVecd>(BetaC));
const MapVecd betainit (Rcpp :: as<MapVecd>(betainitc));

int NRowX = X.rows (), NColX = X.cols();
const MatrixXd C_inv = CNot.inverse () ;
const MatrixXd tXX = X.transpose () * X;

const MatrixXd tXXinv = tXX.inverse () ;

const VectorXd tXY = X.transpose () * Y;
const VectorXd betahat = tXXinv x tXY;

3 const VectorXd diff =Y — X % betahat;

const double SSE = diff.squaredNorm () ;
const double TauPosShape = a + (NRowX / 2.0);

MatrixXd V(NColX, NColX) ;

MatrixXd V_inv (NColX, NColX) ;

MatrixXd betaMCMC(n_iterations , NColX);
MatrixXd tempbeta(1l, NColX);

VectorXd eta (NColX) ;

VectorXd normals (NColX) ;
VectorXd diffbeta (NColX) ;
VectorXd tau(n_iterations);
VectorXd sigma(n_iterations);

double rate = 0.0;
double temptau = 1;
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1

> tempbeta = betainit;

RNGScope scp;
Rcpp :: Function rnorm (”rnorm”) ;
Rcpp:: Function rgamma(”rgamma”) ;

for(int j = 0; j < burn; j++){

diffbeta = tempbeta — betahat;

rate = b + 0.5 x (SSE + diffbeta.transpose() * tXX % diffbeta);

temptau = Rcpp :: as<double>(Rcpp :: rgamma(l, TauPosShape, 1.0 / rate));
V_inv = temptau x tXX + C_inv;

3 V.= V_inv.inverse () ;

normals = Rcpp :: as<MapVecd>(Rcpp :: rnorm (NColX));
eta = temptau * tXY + C_inv * BetaNot;
tempbeta = V % eta + V.11t ().matrixL () % normals;

}
for(int i = 0; i < n_iterations; i++){
for(int j = 0; j < nthin; j++){

diffbeta = tempbeta — betahat;
rate = b + 0.5 x (SSE + diffbeta.transpose() * tXX x diffbeta);
temptau = Rcpp :: as<double>(Rcpp :: rgamma(l, TauPosShape, 1.0 / rate));

s Voinv = temptau * tXX + C_inv;
s V = V_inv.inverse () ;

normals = Rcpp :: as<MapVecd>(Rcpp :: rnorm (NColX)) ;
eta = temptau * tXY + C_inv * BetaNot;
tempbeta = V % eta + V.11t ().matrixL () * normals;

betaMCMC.row (i) = tempbeta.transpose () ;

> tau[i] = temptau;
3 sigma[i] = 1.0 / sqrt(temptau);
}
return Rcpp :: DataFrame :: create (Rcpp :: Named(” Beta”)= betaMCMC,

Rcpp :: Named(”Sigma”)=sigma) ;

) GibbslmCpp = cxxfunction(signature(iterations = “int”, burnin = "int”,
n_thin = ”int”, Response = "numeric”,
ModelMatrixX = “numeric”, Beta_prior_mean = “numeric”,
Beta _Prior _CovMat = “"numeric”,
tau _prior _shape = “numeric”,
tau_prior _rate = “numeric”,
beta_initial = “numeric”), src, plugin="RcppEigen”)

Listing 2.2: Linear Regression Rcpp Code

GibbslmCpp:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e n_thin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e Beta_prior_mean: A numeric vector for the mean parameter of the normal distribution of /3

e Beta_Prior_CovMat: A numeric matrix for the covariance matrix parameter of the normal distri-
bution of 8

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
-

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7

e beta_initial: A numeric vector of initial values for MCMC for (3
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Similar to coding the model in Rcpp, Julia had no difficulty in defining a function for the Gibbs sampler. Many
of the functions that were used in the one-sample Normal case carried over to the linear regression scenario where
the main difference was working with multiple matrices and vectors rather than scalars.

i function GibbsLM(iterations , burnin, nthin, Response, ModelMatrixX, beta_prior_mean, beta_
prior _covarmat, tau_prior _shape, tau_prior_rate, Betalnitial , Taulnitial)

2 n = convert(Float64 , size (ModelMatrixX , 1))

3 m = size (ModelMatrixX , 2)

Y Beta = fill (0.0, iterations , m)

5 Tau = fill (0.0, iterations , 1)

6 tempbeta = fill (0.0, 1, m)

7 tempbeta = Betalnitial’

8 temptau = Taulnitial

9 sigma = fill (0.0, iterations)

10 BetaHat = fill (0.0 ,m)

1 Rate = 0.0

12 V_inv = fill (0.0, m , m)

13 eta = fill (0.0, m)

14 CholV = fill (0.0, m, m)

15 XX = ModelMatrixX >« ModelMatrixX

16 tXy = ModelMatrixX’ * Response

17 BetaHat = inv (tXX) = transpose (ModelMatrixX) * Response

18 SSE = (norm(Response — (ModelMatrixX * BetaHat)))"2

19 post_shape = tau_prior_shape + (n / 2.0)

20 for i in 1l:burnin

2 Rate = norm((tau_prior_rate + ((SSE + (tempbeta — BetaHat’) % tXX * transpose ((tempbeta —
BetaHat’))) / 2 )))

23 temptau = rand (Gamma(post_shape, (1.0 / Rate) ) )

24 V_inv = (temptau) * tXX + inv(beta_prior_covarmat)

5 V = inv(V_inv)

26 normals = rand(Normal(0,1), m)

27 eta = (temptau * tXy) + (inv(beta_prior_covarmat) x beta_prior_mean)
28 CholV= transpose (chol(V))

29 tempbeta = transpose ((V % eta) + (CholV * normals))

30 end

» for i in l:iterations
for j in 1:nthin
34 Rate = norm((tau_prior_rate + ((SSE + (tempbeta — BetaHat’) % tXX * transpose ((tempbeta —
BetaHat’))) / 2 )))
temptau = rand (Gamma(tau_prior _shape + (n / 2.0), (1.0 / Rate) ) )

36 V_inv = (temptau) = tXX + inv(beta_prior_covarmat)
37 V = inv(V_.inv)

38 normals = rand (Normal(0,1), m)

39 eta = (temptau * tXy) + (inv(beta_prior_covarmat) * beta_prior _mean)
40 CholV= transpose (chol(V))

4 tempbeta = transpose ((V % eta) + (CholV % normals))
2 end

13 Beta[i, :] = tempbeta’

44 Tau[i] = temptau

45 sigmal[i] = (1.0 / sqrt(Tau[i]))

46 end

i return [Beta Tau sigma]
49 end

Listing 2.3: Linear Regression Julia Code

GibbsLM input description:
e iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.

e Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model
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e beta_prior_mean: A numeric vector for the mean parameter of the normal distribution of /3

e beta_Prior_covmat: A numeric matrix for the covariance matrix parameter of the normal distri-
bution of 3

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e BetaInitial: A numeric vector of initial values for MCMC for 3

e TauInitial: A numeric value for MCMC for 7

In JAGS there was a slight obstacle of how to define the linear model: whether to define the model component
wise or define the model in matrix notation. In listing [2.1.1] we define the model component wise; however, if
one decided to write the model using matrix notation they would observe a dramatic difference in computational
performance. This reason is unknown to us, however we believe that it is due to the intended specific syntax that
the creator wanted when implementing the Gibbs sampler.

2

1 cat(
2 var

Response [N], MIN[N], prior.mean[P], prior.precision[P, P],
4 tau _prior _shape, tau_prior_rate, beta[P], tau;

model {

6 # Likelihood specification
7 for (i in 1:N){
8 Response[i] ~ dmnorm(mul[i], tau)
9 mu[i] <— beta[l] + beta[2] * MINJ[1i]
10 }
1" # Prior specification
12 beta[] ~ dmnorm(prior.mean[], prior.precision/[,])
13 tau ~ dgamma(tau_prior_shape, tau_prior_rate)
14 sigma <— sqrt(l / tau)
15 3,
16 file="LinearRegressionNBA .jags”)

s jagsfit <— jags.model(file = "LinearRegressionNBA .jags”,

19 data = list(’Response’ = log (NBA.r$PTS),

20 "MIN’ = NBA. r $MIN,

21 "N’ length (NBA. r$MIN) ,

2 P’ = ncol (ModelMatrixX) ,

23 ‘prior.mean’ = as.vector(prior.mean.beta),
2% *prior.precision’ = solve(prior.cov.beta),
25 “tau_prior _shape’ = tau.prior.shape,

26 ‘tau_prior_rate’ = tau.prior.rate),

27 inits = list(’beta’= as.vector(beta.hat),’ tau’=1),

28 n.chains=1,

29 n.adapt=0

30 )

30 update (jagsfit , 500000)

33 MOMC. out <— coda.samples(jagsfit ,

34 var = c(”beta”, "sigma”),

35 n.iter = 500000,

36 thin = 1)

Listing 2.4: Linear Regression JAGS Code

jagsfit input description:
e Response: A numeric vector of observed data for linear model
e MIN: A numeric vector of observed data for the variable MIN for linear model of NBA

e N: Sample size of the observed values
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e P: The number of columns for the model matrix of linear model, i.e. (Number of predictors used for
linear model) + 1

e prior.mean: A numeric vector for the mean parameter of the normal distribution of 3

e prior.precision: A numeric matrix for the covariance matrix parameter of the normal distribu-
tion of 8

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
-

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e beta: A numeric vector of initial values for MCMC for 3

e tau: A numeric value for MCMC for 7

2.1.2 Results

For the linear regression model, we used a subset of the NBA 2015 Season data; we excluded players who did not
play for more than five games and those who did not score any points, on average, per game, leaving us with a
sample size of 468 players. With this subset, we used the following linear model equation:

1
log(PTS;)|8,7 ~ N (31 + BoMIN;, )
-

where ¢ indicates the player.

As one can see from the table below, Rcpp outperformed both R and Julia by more than thirty seconds and four
seconds, respectively. R performed the slowest out of all of the languages. Unlike the one-sample Normal case
where R was strictly performing scalar computation, R is now performing matrix calculations. In order to execute
this task, R invokes the programming language C which expedites the computation time, however, with R’s poor
handling of for-loops, its overall performance time is still slow. Although we are uncertain which algorithm JAGS
is employing to generate the samples, we see that there is little variation in computation time between R and JAGS
in this example.

NBA 2015 Season Data Computation Times:

Language | Average Time (sec) | Relative Time
R 32.564 25.322
Repp 1.286 1
Julia 5.452 4.240

NBA 2015 Season Data JAGS Computation Time:

Language | Average Time (sec)
JAGS 29.176

Now we will expand on the linear regression model and introduce the linear mixed model.
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Chapter 3

General Linear Mixed Models

Consider the data model equation the general linear mixed model:

Y=XB8+Zu+¢

where Y is an N x 1 random vector of observations, X is an N X p matrix of covariates with rank (X) = p,
Bis ap x 1 vector of regression coefficients, Z is a known, non-zero N x ¢ matrix, and € ~ Ny (0,021). The
vector of random effects, u = (uy, ug, ..., u,)", may have one of the following assumptions: u; ~ N(0, L) or
u; ~ t4(0, /\i) We assume that both « and e are independent random vectors. In this paper, we will focus on three
cases of the Bayesian linear mixed model: models with improper and proper priors, and models with normally

distributed and t-distributed random effects.

3.1 Linear Mixed Model with Improper Priors

First we will consider a linear mixed model with improper priors. Here we will assume the following priors for

(B7 )\67 >\u)
B ~ flat prior A, ~ Gamma*(a.,b.) A, ~ Gamma®(a,,b,)

where

Gamma , oc 2z 1e™0®
:

and both a and b can be positive or negative.

For the purpose of this paper we will use the three-block Gibbs sampler as defined in Roman and Hobert[s
2012). Let A = (AAy)T and 6 = (BTuT)T. The basic idea is to use (X', 6') to generate (X, 6 ) followed by
using (X, 0') to generate (), #). To obtain (), 0) given (X', 6") we proceed with the following:

1. Obtain A.|0’, y ~ Gamma (ae + %, be + W) where W = (X Z) such that X8 + Zu = W.

2. If b, + w is positive, generate \, |0,y ~ Gamma (au + 4,0y + W) Ifb, + w equates to zero,
then generate A\, |0,y ~ Gamma (a, b) for a,b > 0.

3. Next, we must generate |\ from a p + ¢- dimensional Normal Distribution with the following mean vector
and covariance matrix, respectively:

B = (XTX)IXT(I - N\ZQ, ' ZTPY)y ]

AeQy 1 ZT Ply

AXTX) T+ (XTX)IXTZQ 2T X (XTX) ™ —(XTX) ' XTZQ5!

Var(0|\) = O 27X (XTX) ! 05!

where PL =T — X(XTX)"'XT and Q\ = A\ ZT P+ Z + I \;".
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3.2 Linear Mixed Model with Proper Priors
3.2.1 Normally Distributed Random Effects

Consider the Linear Mixed Model except with proper priors from Roman and Hobert[s (2015). We begin by using
the following proper priors for (5, Ae, Ay ):

B ~ Np(Bo,X3) L Ae ~ Gamma(ae,be) L A, ~ Gamma(ay, by,)

What follows is a posterior distribution that is intractable. Romédn and Hobert’s (2015) provides a Gibbs
sampler with blocks A and € based off the conditional posterior distributions. We will use the same process as
the improper prior case, however, there is no need to perform the checks to obtain A, |0’ as that issue only occurs
when we have improper prior distributions. Thus we can proceed with generating |0’

1. Draw e
N —W
|0’ ~ Gamma ( a, + —, b, + lly —wor|®
2 2
2. Draw -
)\u|0’ ~ Gamma (au + %, by + ||u2|>

Now we will generate 6|\ from a p + ¢- dimensional Normal Distribution with the following mean vector and
covariance matrix, respectively:

B = | T8 OXTy 45 180) - NTUIXT 207 27 Ry
" \Q7 Z R,
—1 2—1 T 15T 1 1T .
Var, (0|\) = [ I ATy X0 2Qp Z5XT 0 ATy X 20y ]
“AQ7 ZTXT; Qr

where Ty = A XTX+3,", Ry = May—XTy 'S5 B0, My = [=AXTy ' X7, and Qr = A ZT My Z 4Ny I,

3.2.2 t-Distributed Random Effects

Suppose instead of Normally distributed random effects, we assume that the random effects follow a ¢-distribution.
The model we would be consider is:

Y8, ty Aey A ~ N (X B+ Zu, A1)
B~ Ny(tp, X5), Ae ~ Gamma(a, be), ui| Ay ~ ta(0, A1)

Ay ~ Gamma(a,, by, )

where Y is an NV x 1 data vector, X is a known N X p matrix, Z is a known N X ¢ matrix, 5 is a p X 1 vector
of regression coefficients, u = (u1, us, .. ., uq)T is the vector of random effects, ). is a precision parameter, and
A, ! is the squared scale parameter.

To perform Bayesian analysis, we use the Gibbs sampler from |Roman et al./s (2016). The authors introduce
a new variable, 7, to the previous model in order to run the Gibbs sampler. What follows is an indirect route that
requires obtaining draws from the posterior distribution of the slightly more complicated model:

Y|B,u, Aes Au ~ Nu(X B+ Zu, A ')

B~ Ny, X5), Ae ~ Gamma(a,, be), ui| Ay ~ ta(0, A, 1)

) U

d d
Ay ~ Gamma(a,, b, ), n; ~ Gamma <2, 2) for i=1,2,...,q

where d denotes the degrees of freedom.
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Their Gibbs sampler involves three blocks: 7 = (171,72,...,15) A = (Ae; Ay) and 6 = (BTu”)T. Given
(A™,n™,0™), the steps to obtain (A1, 9™+ g™+1) is as follows:
1. Draw /\e"l’]7 0 ~ Gamma (ae + %7 be + W)

where ||y — W)|| is the Frobenius norm.

1D}/ 2ul|?
2. Draw Ay |n, 6 ~ Gamma ( a, + 4,0, + —5—
where D;, = diag (11,72, - - -, 7lq)-

2
3. Draw 7;|0, X independently from Gamma (%, %) fori=1,...,q
4. Generate 0|\, n from a multivariate Normal distribution with the following mean vector and covariance

matrix, respectively:

Bl ) = Ty A X Ty + X5 p) — N2T5 ' XTZQ5 L ZT (Myy — XT3 'S5 ug)
1 AeQr 2T (Myy — XTS5 1)

) = | 75T AT IGUATXI AT X705,
T —AeQy 27 XTy Ry,

3.3 Results

For the analysis of the linear mixed model, we will consider the same subset of the NBA 2015 season data used in
the linear regression example. The random intercept model that we consider is:

IOg(PTS”) = ﬂl + ﬁQMIN” + 'LLj + €;

where 7 indicates the player, j indicates the player’s team, and the random effect u; is team affiliation.
We consider analyzing the performance of the computing languages in the following scenarios: improper
priors, normally distributed random effects, and ¢-distributed random effects

3.3.1 LMM with Normal Random Effects and Improper Priors

For the improper prior case, we see that Rcpp continues to outperform both Julia and R. Repp can compute the
Markov Chain in this model about twenty seconds faster than Julia. Relatively, each programming language does
not vary too much from one another as R only takes four times as long to finish one iteration. The computation
times for the linear mixed model are comparatively slower than the results seen in the one-sample Normal case
due to the heavy matrix calculations involved. Lastly, JAGS took the longest to finish the calculations, taking
roughly eight minutes to generate the approximate samples.

Linear Mixed Model with improper prior computation times:

Language | Average Time (sec) | Relative Time
R 165.84 4.660
Repp 35.585 1
Julia 52.675 1.480

Language | Average Time (sec)
JAGS 486.567

3.3.2 LMM with Normal Random Effects and Proper Priors

In this example, all languages took roughly the same amount of time to generate our samples as in the improper
case. Repp continued to have the fastest computation time with Julia following closely behind. In the proper case,
our programs, with the exception R, took at most twenty more seconds to compute than in the improper case.
For an additional language comparison, we programmed the Gibbs sampler in MATLAB, which took longer to
compute than R, Rcpp and Julia. Although MATLAB is programmed to complete matrix calculations quickly,
MATLARB is not equipped to handle many nested for-loops in an optimal manner. Since our program consisted of

71



nested for-loops, MATLAB had a subpar performance. Furthermore, R used C to perform the matrix calculations,
thus it relatively twice as long as Rcpp and Julia to compute the approximate samples. Lastly, JAGS had the
slowest computation time, taking around eight minutes. All of the languages had a similar performance in the

improper and proper case.

Language | Average Time (sec) | Relative Time
R 167.856 2.925
Repp 57.391 1
MATLAB 236.346 4.118
Julia 71.335 1.243
Language | Average Time (sec)
JAGS 499.2

3.3.3 LMM with t-Distributed Random Effects and Proper Priors

Unlike the previous linear mixed model examples, all programming languages, with the exception of JAGS, took
more than twenty minutes to complete one iteration. Julia had a faster computation time than Rcpp in this model.
One reason being is Rcepp had to call R to be able to run numerous functions, such as the Frobenius norm function.
We also included an extra for-loop in the code in order to generate D,,. These factors combined hindered Rcpp
from outperforming the other languages. Moreover, R took almost four times as long to compute our samples than
Julia. As in the aforementioned linear mixed model cases, the algorithms consisted of a lot of matrix calculations,
which slowed computation time for all of the languages. Here we observe that performance of JAGS was also
slower in this model, taking an additional three minutes to produce our samples.

Language | Average Time (sec) | Relative Time
R 5555.864 3.906
Repp 1654.690 1.163
MATLAB 1760.597 1.238
Julia 1422.387 1
Language | Average Time (sec)
JAGS 663.481

Now we consider our last model, the Probit regression model.
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Chapter 4

Probit Regression

4.1 The Model and the MCMC Algorithms

Consider Y7, ..., Y, are independent Bernoulli random variables such that P(Y; = 1) = F(z!3) where z; is a
p x 1 vector of known covariates associated with Y;, 8 is a p x 1 vector of unknown regression coefficients and
F'(-) denotes the cumulative distribution function (CDF). It follows that

PYi=y1,....,Yn =ys|B) = H Tﬁ i _F(%Tﬁ)]l_yl

=1

One of the common methods for modeling Binary data is to consider a Probit regression model. For a Probit
Regression Model, we let F'(-) be the standard normal CDF; i.e. F(z) = ®(z). A useful method for making
inferences on 3 by Bayesian analysis is to consider a flat prior on 3.

Albert and Chib’s (1993) algorithm (henceforth, the “AC algorithm™) provide a way of obtaining a MCMC
sample from the posterior distribution of 8. To transition from current state 5 to the new state 3’, one must
consider the following steps:

1. Draw 21, ..., 2, independently with z; ~ TN (z' 3,1, v;)
2. Draw 8’ ~ N, (XTX)7'XT2, (XTX)™1)

A modified version of the AC algorithm is |Liu and Wus (1999) PX-DA algorithm which also provides a
method of obtaining a MCMC sample from the posterior distribution of . It involves one more additional step
sandwiched between the steps in the AC algorithm. To transition from current state 3 to the new state 3’, one must
consider the following steps:

1. Draw 21, ..., 2, independently with z; ~ TN (2 3,1, y;)

2. Draw g? ~ Gamma(%,2>7" | (z; — 27 (XTX) 71 X7T2)?)

3. Set 2’ = (gz1,...,920)T

4. Draw 8 ~ N, (XTX)2XT2 (XT X))

4.2 Coding the AC Algorithm

We will show the code for the AC algorithm and not the PX-DA algorithm in this section. For the code for the
PX-DA algorithm refer to the appendix.

Coding the AC algorithm in R, Rcpp, Julia, and MATLAB proved to be a challenge. Because the method
involved generating random truncated normal variates, there were many barriers to defining the function. In
addition, the model requires several nested for-loops causing many of the functions to slow significantly compared
to the previous models.

i GibbsProbit = function(iterations , burnin, nthin, Response, ModelMatrixX, betainitial){
X <— ModelMatrixX

Y <— Response
XX <— t(X) %% X
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txxinv <— solve (tXX)
n <— length (Y)
p <— ncol(X)

BetaMCMC <— matrix (NA, nrow = iterations , ncol = p)
tempbeta <— betainitial

z <— matrix (NA, n,l)

V <— t(chol(txxinv))

for

(k in 1:burnin){

for(j in 1:n){

}

center <— t(X[j,]) %+% tempbeta
if(Y[j1 == 0){

z[j] <— rtruncnorm(l, a = —Inf, b = 0, mean = center, sd = 1)
if(Y[j1 == 1){
z[j] <— rtruncnorm(l, a = 0, b = Inf, mean = center, sd = 1)

}

betahat <— txxinv %% t(X) %% z
tempbeta <— betahat + V %+% rnorm (p)

}

for

(i in 1:(iterations)){

for(k in 1:nthin){

for(j in 1:n){
center <— t(X[j,]) %+% tempbeta
if (Y[j] == 0){
z[j] <— rtruncnorm(l, a = —Inf, b = 0, mean = center, sd = 1)

}
E(Y[j] == DA{

z[j] <— rtruncnorm(l, a = 0, b = Inf, mean = center, sd = 1)
}

}

betahat <— txxinv %% t(X) %% z
tempbeta <— betahat + V %x% rnorm(p)

BetaMCMC[i ,] <— tempbeta

}

return (as .mecmc(BetaMCMC) )

}

Listing 4.1: Probit Regression R code

GibbsProbit input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e betainitial: A numeric vector of initial values for MCMC of 3

For R, there were several ways of generating truncated normals. There are two packages that we’ve worked
with msm and truncnorm to generate truncated normals. In t runcnorm, we use the function rt runcnorm

to generate the truncated normals that are neccessary for the algorithm.

Sre<—
using
using
using
using
using

typed

>

Eigen :: Map;
Eigen :: MatrixXd;
Eigen :: VectorXd;
Eigen :: Vector2d;
Rcpp :: as;

ef Eigen :: Map<Eigen :: MatrixXd> MapMatd;
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26

typedef Eigen:: Map<Eigen :: VectorXd> MapVecd;

int MCMCiter = Rcpp :: as<int>(iterations);
int burnin = Rcpp :: as<int >(Burnin);
int n_thin = Rcpp :: as<int >(nthin);

Rcpp :: NumericMatrix Xc(ModelMatrixX) ;
Rcpp :: NumericVector Yc(Response);
Rcpp :: NumericVector Betalnitialc (Betalnitial);

const MapMatd X(Rcpp :: as<MapMatd>(Xc)) ;
const MapVecd Y(Rcpp :: as<MapVecd>(Yc));
const MapVecd Betainitial (Rcpp :: as<MapVecd>(Betalnitialc));

int n
int p

X.rows () ;
X.cols ()

const MatrixXd tXX = X.transpose () * X;
const MatrixXd tXXinverse = tXX.inverse () ;

MatrixXd betaMCMC(MCMCiter, p);
MatrixXd V(p, p);

VectorXd tempbeta = Betainitial;
VectorXd Z(n);

VectorXd betahat(p);

VectorXd normals(p);

double center = 0.0;

V = tXXinverse. 11t (). matrixL () ;

RNGScope scp;

Rcpp :: Function rtnorm (”rtnorm”);
Rcpp :: Function rnorm(”rnorm”);

s Repp :: Function dnorm(”dnorm”);
Rcpp :: Function pnorm(”pnorm”);

for(int k = 0; k < burnin; k++){
for(int j = 0; j < n; j++){
center = X.row(j) * tempbeta;

if(Y[j] == 0.0){
Z[j] = as<double >(rtnorm (1, center, 1, R_Neglnf, 0));

if(Y[j1 == 1.0){

Z[j] = as<double >(rtnorm (1, center, 1, 0, R_PosInf));
}

}

betahat = tXXinverse * X.transpose () x Z;

> normals = Rcpp :: as<MapVecd>(Rcpp :: rnorm(p));

63 tempbeta = betahat + V % normals;
64 }

65

e for(int i = 0; i < MCMCiter; i++){
e for(int k = 0; k < n_thin; k++){
es for(int j = 0; j < n; j++){
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center = X.row(j) * tempbeta;
if(Y[j] == 0.0){
Z[j] = as<double >(rtnorm (1, center, 1, R_Neglnf, 0));

if(Y[j] == 1.0){
Z[j] = as<double >(rtnorm (1,center ,1,0, R_PosInf));

 }

betahat = tXXinverse * X.transpose () * Z;
normals = Rcpp :: as<MapVecd>(Rcpp :: rnorm(p));
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2 tempbeta = betahat + V *x normals;
83

s+ betaMCMC.row (i) = tempbeta.transpose () ;

85}

86

g7 return Repp :: DataFrame :: create(Rcpp :: Named(”Beta”) = betaMCMC) ;

88

9 GibbsProbitcpp = cxxfunction(signature (iterations = "int”, Burnin = “int”, nthin = "int”,
90 Response = "numeric”, ModelMatrixX = “numeric”,

91 Betalnitial = “numeric”), src, plugin="RcppEigen”)

Listing 4.2: Probit Regression Rcpp code

GibbsProbitcpp input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e Betainitial: A numeric vector of initial values for MCMC of 3

In Repp, there were several complications; mainly sourcing the functions in R into Rcpp. For example, if one
were to use the rt runcnorm function when defining the function in Rcpp, a load of errors will present itself in
the compilation stage stating the the package is not available in Rcpp. This led for us to use the function rtnorm
from the msm package, which integrated well with Rcpp. However, when we tested the function, we noticed a
significant toll on computation time. It took nearly 1 second to generate a truncated normal in Rcpp compared to
generating it in R which took about 0.001 of a second. This proved to be a big handicap when working with Rcpp
for the probit model.

1cat( ”

2 var

3 Response [N], ModelMatrixX [N,P], beta[P], lowerbd, upperbd;
4 model{

5 for(i in 1:N){

6 Y[i] ~ dbern(q[il])

7 q[i] <— phi(ModelMatrixX[1i,]%+% beta[])

: }

9

10 for(i in 1:P){

1 beta[i] ~ dnorm(0,1/var) #pseudo SIR prior

12

13 }7, file="ProbitRegressionIlmproper.jags™)

14 jagsfit <— jags.model(file = ”"ProbitRegressionIlmproper.jags”,
15 data = list(’Response’ =Y,

16 ’ModelMatrixX’ = X,

17 N’ = length(Y),

18 P’ = ncol (X),

19 var’ = 100000000),

20 inits = list(’beta’= rep(0, ncol(X))),
21 n.chains=1,

2 n.adapt=0

%)

24

»s update (jagsfit, 100)

26 MOMC. out <— coda.samples(jagsfit ,

27 var = c(”beta”),

28 n.iter = 1000000,

29 thin = 1)
Listing 4.3: Probit Regression JAGS code
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jagsfit input description:
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

N: Sample size of the observed values

e P: The number of columns for the model matrix of linear model, i.e. (Number of predictors used for
linear model) + 1

e var: A numeric value that provides the prior variance for the distribution of 3

e beta: A numeric vector of initial values for MCMC of 3

Coding the Probit model in JAGS was relatively easy to write up. However, because there is no flat prior
distribution in the directory, we have to consider a pseudo-flat prior for the analysis. This means that were running
a different Markov Chain than the one stated in the AC algorithm. So comparisons of JAGS with the other
languages is not a true fair comparison, despite the coding ease.

i function DAProbitModel(iterations , burn_in, nthin, Response, ModelMatrixX, startbeta)
n = size (ModelMatrixX, 1)

3 p = size (ModelMatrixX, 2)

4 BetaMCMC = fill (0.0, iterations , p)

5 TempBetaMCMC = startbeta

6 z = fill (0.0, n, 1)
txx = transpose (ModelMatrixX) * ModelMatrixX

8 txxinverse = inv(txx)

9 V = transpose (chol(txxinverse))

1" for i in l:burn_in
12 for j in 1:n
13 center = ModelMatrixX[j, :] * TempBetaMCMC

14 if (Response[j] == 0)

15 z[j] = rand(Truncated (Normal(center[1], 1), —Inf, 0.0))
16 end

17 if (Response[j] == 1)

18 z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))
19 end

20 end

21 BetaHat = txxinverse x transpose (ModelMatrixX) * z

2 TempBetaMCMC = BetaHat + (V % rand(Normal() ,p))
23 end

26 for i in l:iterations

27 for k in 1:nthin

28 for j in 1:n

29 center = ModelMatrixX[j, :] * TempBetaMCMC

30 if (Response[j] == 0)

31 z[j] = rand(Truncated (Normal(center[1], 1), —Inf, 0.0))
3 end

33 if (Response[j] == 1)

34 z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))
5 end

36 end

38 BetaHat = txxinverse * transpose(ModelMatrixX) * z
39 TempBetaMCMC = BetaHat + (V % rand(Normal() ,p))

10 end

41 BetaMCMC[i ,:] = transpose (TempBetaMCMC)

12 end

14 return BetaMCMC
45 end

Listing 4.4: Probit Regression Julia code
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DAProbitModel input description

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e startbeta: A numeric vector of initial values for MCMC of 3

In Julia, the obstacle of generating truncated normals was non-existent. Using pre-defined functions that allow
us to generate truncated random variates, we were able to write the function with ease. Furthermore, there was no
significant toll in computing performance in order to generate the truncated normals.

i function [BetaMCMC] = ProbitDA (iterations , burnin, nthin, Response, ModelMatrixX, startbeta)

2 n = length (Response);
X = ModelMatrixX;
= Response;

t y
5 p = size(X,2);
6 BetaMCMC = repmat (0.0, iterations , p);

8 tempbeta = startbeta;

10 z = repmat (0.0, n,1);

1 znew = repmat(0.0, n, 1);

12 XX = X' x X;

13 txxinv = inv (tXX);

14 V = transpose (chol(txxinv));

16 for i = 1:burnin
17 for j = l:n
18 center = X(j,:) * tempbeta;

19 pd = makedist( Normal’, center, 1);
if(y(j) == 0)
21 z(j) = random(truncate (pd,—inf ,0));

end
23 if(y(j) == 1)
24 z(j) = random(truncate (pd,0, inf));
25 end
2 end
28 betahat = txxinv *x X’ % z;
29 tempbeta = betahat + (V % normrnd(0,1,p,1));
30 end
31
for i = l:iterations
for nth= 1:nthin
for j = 1:n
36 center = X(j,:) * tempbeta;
37 pd = makedist( Normal’, center, 1);
if(y(j) == 0)
39 z(j) = random(truncate (pd,—inf ,0));
40 end
! if(y(j) == 1)
2 z(j) = random(truncate (pd,0, inf));
13 end
14 end
45
16
47 betahat = txxinv *x X’ % z;
18 tempbeta = betahat + (V % normrnd(0,1,p,1));
49 end
50 BetaMCMC(i ,:) = tempbeta;
51 end
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52 end

Listing 4.5: Probit Regression MATLAB code

Due to the extreme similarities between Julia and MATLAB, translating the code was not too difficult. How-
ever, generating truncated observations had to be implemented differently. It involved defining the distribution
every single time we have to draw from a different truncated normal based on the algorithm. This placed a sig-
nificant toll on the speed performance for MATLAB, slowing the function to draw a single MCMC observation at
a rate of approximately 1 per second. Which is too slow to even consider running since we want samples of size
500,000 with a 500,000 burn-in sample.

4.3 AC and PX-DA Algorithm Results

The data set used for the AC and PX-DA algorithm was the Pima Indians Diabetes data set from the National
Institute of Diabetes and Digestive and Kidney Diseases. The data set is comprised of 768 Pima Indian females,
at least 21 years old, and it records the presence of diabetes in each participant. If a participant tested positive
for diabetes, she was given a class value of 1, otherwise she was given a class value of 0. Below is the Probit
Regression model equation we used for this example:

P(Y; =1|B8) = (81 + Saglucose;) .

For the AC Algorithm, Julia outperformed all of the other languages. One reason for this result is Julia
has a predefined truncated normal distribution function, whereas neither MATLAB nor Rcpp contains a function
for this distribution. This limitation forced us to find other methods to create a truncated normal distribution.
In MATLAB, we were forced to define a truncated normal distribution within our for-loops. With a MCMC
length of 500,000, a burn-in length of 500,000 and a sample size of 768, we had to define the truncated normal
function 768,000,000 times in one iteration. This subsequently slowed our program profoundly, forcing us to
not consider the computation time. Similarly, to use a truncated normal distribution function in Repp, we had to
continuously call R. Once again, this slowed Rcpp’s overall performance; one iteration took over sixteen hours to
finish. Although R performed as expected, it is important to note that R took over two hours to execute the same
task that Julia completed in five minutes. For the AC Algorithm, Julia was the optimal choice of programming
language, even outperforming JAGS which is most likely using a different Markov Chain.

AC Algorithm Results:
Language | Average Time (sec) | Relative Time
R 9528.818 29.092
Repp 59018.580 180.185
MATLAB Too Slow -
Julia 327.545 1

AC Algorithm JAGS Results:

Language

Average Time (sec)

JAGS

664.02

For the PX-DA Algorithm, we saw similar results to that of the AC Algorithm with Julia having the best
performance compared to R and Rcpp. While using this algorithm, we still encounter the issue of constantly
calling R in order to generate our truncated normals in Rcpp. Thus, Rcpp still performs very slowly. Since the
AC and PX-DA Algorithms are two algorithms for the same model, there is no need to run JAGS for the PX-DA
algorithm. While the PX-DA algorithm is a more efficient algorithm to generate approximate samples for the
Probit Regression model, it has a longer computation time than the AC algorithm. However, the PX-DA algorithm
allows the MCMC chain to converge more rapidly. Hence we are left with a trade-off: a faster computation time
with a longer MCMC chain or a slower computation time with faster convergence, ultimately requiring a smaller
MCMC chain.

PX-DA Algorithm Results:

Language | Average Time (sec) | Relative Time
R 25080.408 4.005
Repp 61930.8 9.890
Julia 6261.812 1
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4.4 Limitations/Conclusion

Throughout our research, we discovered each programming language had its benefits and limitations. The greatest
benefit of R is its simple syntax and many functions, making it very easy to code the Gibbs samplers in each
statistical model. Also, R’s ability to call C for matrix calculations increases R’s performance, making R a fa-
vorable choice of programming language. However, when the dimensions of the matrices become too large, the
performance of R slows considerably. Rcpp, on the other hand, is capable of executing programs with a lot of
matrix calculations, and other programs, in a timely manner. Unlike R, Rcpp is limited on functions, and we
were forced to call R on numerous occasions to attain functions to use in our models. As a consequence of this
constant reliance on R, Repp can perform very slowly, as was exhibited in the Probit Regression model example.
Also, Repp’s syntax is not simple as R, and there is no integrated development environment (IDE) that will clearly
describe programming errors. Although Rcpp outperformed Julia several times during our research, the overall
performances of Rcpp and Julia varied by very little. Julia’s performance is very comparable to Rcpp’s perfor-
mance. Julia additionally has syntax very reminiscent of other programming languages, like MATLAB, making
learning Julia an easy process. However, it is more difficult to translate types in Julia than in Rcpp and MAT-
LAB. Since MATLAB is programmed for mathematical computations, it can perform operations, such as matrix
calculations, quickly. One limitation to MATLAB is it lacks a truncated normal distribution function, forcing us
to define the distribution ourselves, which slows MATLAB drastically. Furthermore, MATLAB does not handle
for-loops well so MATLAB never performed faster than Rcpp or Julia.

Although we are unable to make a fair comparison of JAGS and the other four languages, JAGS is a useful
program for creating Gibbs samplers, but its shortcomings may affect users seeking to run specific models with
large data sets. The most beneficial aspect of JAGS is its simplicity. Rather than manually programming an entire
Gibbs sampler, the user needs to only define the variables and indicate which models to use. JAGS is then able to
compute the Markov chain to generate the approximate samples. However, JAGS is programmed to use the method
it deems best to compute the samples, and the method chosen is ultimately unknown to the user. Furthermore,
when writing scripts for JAGS, there is a significant speed performance difference between writing the script
in matrix notation versus writing it component wise, i.e. listing the linear model row-by-row. This can cause
difficulties when coding Gibbs samplers with a data set with many variables. Also, JAGS can be considerably
slow in certain models, such as the linear mixed model with both the proper and improper distributions. Overall,
JAGS may not be the most ideal choice when using certain statistical models.

In conclusion, each language has their own uniqueness. Each computing language makes it easier to do
certain tasks than others; however, when it comes to Bayesian analysis with MCMC, the best overall language is
Julia. With computing performance rivaling C++ and simple to code interface, it makes for a great tool in heavy
computation.
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Appendix A

One-Sample Normal Model

A.1 R/Rcpp/JAGS Workflow

# Set Working Directory to Source Files
getwd ()
setwd ()

Call Libraries and Source Files
install .packages (”Rcpp”)
install .packages (”RcppEigen”)
install.packages(”coda”)
install .packages(”inline”)
install . pacakges(”rjags”)

library (Rcpp)
library (RcppEigen)
library (coda)
library (inline)
library (rjags)

source (”OneSampleNormSourceCode -2016—08—09.R”) # Loads the One Sample Gibbs Sampler Functions
# Set Directory to Save Output

getwd ()
setwd ()

25 HEHHHHHHHAHHHAHHHHHHHH AR AR AR RS

######## Simulating Dataset #######
#EHHHHHHHHH R R R

set.seed(999) # Initialize Seed

n <— 50
outcomes <— floor (rnorm(n, mean=110, sd=13))

3 # the value of mu used to simulate the data is 110 and the value of sigma is 13.

write .csv (outcomes, file = "OneSampleNormalData.csv”) # Saves Simulated Data for Julia

summary (outcomes )
hist (outcomes)

# Summary stats
y.bar <— mean(outcomes) # MLE

> 8 <— sd(outcomes)

HAHHH AR AR R R HBH R AR R R R AR
### Finding Hyper—Parameters ###
H#HHHHHHH R R

s # mu prior

find .normal ( prior .mean=120, percentile=130, p=0.95)

mu. prior .mean <— 120
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5> mu. prior.sd <— 6.08
53 mu. prior.precision <— 1 / mu.prior.sd"2

ss # plot of prior for mu

s6 plot(density (rnorm (10000, mean=mu. prior.mean, sd=mu.prior.sd)),
57 main=expression (paste ("Prior Density of 7, mu)),

58 xlab=expression (mu), ylab="density”)

60 # tau prior

61 # Returns prior mode guess for sigma

2 normal. percentile.to.sd(mean.value=120, percentile=140, p=0.95)
63 # Returns prior percentile guess for sigma

s+ normal.percentile .to.sd(mean.value=120, percentile=145, p=0.95)

66 # Returns shape and rate parameters for the Gamma distribution of tau
7 gamma.parameters <— find.tau.gamma(prior.sigma.mode=12.15,
68 sigma. percentile=15.19, p=0.95)

70 tau.prior.shape <— gamma.parameters$a
71 tau.prior.rate <— gamma.parameters$b

73 # plot of prior for tau

74 par (mfrow=c (1, 2))

75 plot(density (rgamma(10000, shape=tau.prior.shape, rate=tau.prior.rate)),

/6 main=expression (paste ("Prior Density of 7, tau)),

77 xlab=expression(tau), ylab="density”)

7 plot(density (1/sqrt(rgamma(10000, shape=tau.prior.shape, rate=tau.prior.rate ))),
79 main=expression (paste (”Prior Density of ”, sigma)),

80 xlab=expression (sigma), ylab="density”)

82 HHHHFH
s3 #### Running the MCOMC Gibbs sampler ###
84 HHAHFHHAHAHHAHAHHAHHABHHHAHAHBAHAHBHHHAH

s # Set Number of Chains for Gibbs Sampler
g7 iterations = 4

9 # R Function
90 set.seed(999)

o for(l in 1 :iterations){

93 start . time<—Sys.time ()

9 MOMC <— GibbsNorm(data = outcomes, tau_prior_shape = tau.prior.shape,
95 tau _prior_rate = tau.prior.rate,

9% mu_prior_precision = mu.prior.precision ,

97 mu_prior _mean = mu. prior.mean, iterations = 500000,
98 mu_initial = 1, tau_initial = 1,

99 burnin = 500000, nthin = 1)

100 Sys.time () — start.time

101
102 print (paste (7 ######HHHHHHHHHHAHHAARHHHHH 7))
103 print (paste(” This is iteration: ”, 1))
104 print (paste (7 ######HHHHHHHHHHHHHAHFHFHHH 7))
105
106 print (summary (as . mcmec(MOMCSmu) ) )
107 print (summary (as .memc(MOMC$tau)))
108 print (summary (as .mcmc(MOMC$sigma) ) )
109 #write.csv(x = MOMC, file = paste (”OneSampleNormal_",1,” _iteration _-R_2016—07—19.csv”,sep=""))
10 # Saves MOMC Chain Output
111
}

112
114

116 # Repp Function
17 set.seed(999)

o for(l in 1 :iterations){

120 start=Sys.time ()

121 gibbs=GibbsNormcpp(iterations = 500000, data_sd = sd(outcomes),

122 data _mean = mean(outcomes), data_size = length(outcomes),

123 mu_prior_mean = mu.prior.mean, mu_prior_precision = mu.prior.precision ,
124 tau _prior _shape = tau.prior.shape, tau_prior_rate = tau.prior.rate,
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125 mu_initial = 1,tau_initial = 1, burnin = 500000, n_thin = 1)
126 Sys.time ()—start
127

128 print (paste (7 ######HH#HHHHHHAHHHAHHHHHA#E 7))

129 print (paste (” This is iteration: 7, 1))
130 print (paste (7 ######HHHHHHHH#HHHHHHHHHHH#E 7))

132 print (summary(as.mecmec( gibbs$Mu)))

133 print (summary (as.mcmc(gibbs$Tau)))

134 print (summary (as.mecmc(gibbs$Sigma)))

135 # write.csv(x = MCMC, file = paste (”OneSampleNormal _”,1,” _iterationRcpp -2016—08—09.csv”,sep
=)

139 # JAGS Function
40 set.seed(999)

2 for(l in 1 :iterations){

143 jagsfit <— jags.model(file = “onesamplenorm.jags”, #jags file

144 data = list(’mu_prior_mean’ = mu.prior.mean,

145 ‘mu_prior_precision’ = mu.prior.precision,
146 “tau_prior _shape’ = tau.prior.shape,
147 ‘tau_prior_rate’ = tau.prior.rate,
148 'y’ = outcomes,

149 N’ = length (outcomes)

150 )a

151 n.chains = 1, n.adapt = 0)

152

153 start.time <— Sys.time ()

154 update (jagsfit , 500000) # Progress the burn in length of the chain

156 # Obtain main chain observations and monitor the parameters of interest
157 MOMC. out <— coda.samples(jagsfit ,

158 var = c(”mu”,”tau”), # Tell JAGS what to keep track of
159 n.iter = 500000,

160 thin = 1)

161 Sys.time () — start.time

163 print (paste (7 ########H##H#HHHHHHHH#7#ARE 7))
164 print (paste(” This is iteration: ”, 1))
165 print (paste (7 ######H##HHHHHH#HHHFHHHH#E 7))

167 print (summary (MCMC. out))
168 #write.csv(x = MOMC, file = paste (”OneSampleNormal _-”,1,” _iterationJAGS _2016—07—19.csv”,sep

=)
169 }

Listing A.1: One Sample Work Flow R code
A.2  Julia

I # Pkg.add(” Distributions”)
> # Pkg.add(”DataFrames”™)
3 using Distributions , DataFrames

s srand (1234)

7 function GibbsNorm(iterations , burnin, nthin, mu_prior-mean, mu_prior_precision ,
tau_prior_shape , tau_prior_rate , tau_initial , mu_initial , dataset)

8 n = length(dataset)

9 ybar = mean(dataset)

10 s = std(dataset)

1 X = fill (0.0, iterations , 3) # first column for mu and second for tau, third for sigma for
MOMC chain

12 tempmu = mu_initial

13 temptau = tau_initial

14 post_shape = tau_prior_-shape + (n / 2)

15 for i in 1:burnin

16 rate = tau_prior_rate + (((n—1) * s"2 + n *x (ybar — tempmu)“2) / 2.0)

17 temptau= rand (Gamma(post_shape, 1.0 / rate))

18 w = (n * temptau) / (n * temptau + mu_prior_precision)
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tempmu= rand (Normal ((w * ybar) + ((1.0 — w) * mu_prior_mean), 1.0 / sqrt(n * temptau +
mu_prior_precision) ) )
end

for i in 1l:iterations
for j in 1:nthin
rate = tau_prior_rate + (((n—1) * s"2 4+ n *x (ybar — tempmu)"2) / 2.0)
temptau= rand (Gamma(post_-shape, 1.0 / rate))
w = (n * temptau) / (n * temptau + mu_prior_precision)
tempmu= rand (Normal ((w * ybar) + ((1.0 — w) * mu_prior_mean), 1.0 / sqrt(n * temptau +
mu_prior_precision) ) )
end
X[i, 2] = temptau
X[i, 1] = tempmu
X[i, 3] =1 / sqrt(temptau) # sigma
end

return X

35 end

46

48

# Import Data

df = readtable ("OneSampleNormalData.csv”) # imports data and a enumerated list in first column
datas=df[:x_1] # Call data

# Set Number of Chains for Gibb Sampler
iterations = 10

for 1 in 1:iterations
@time dataoutput = GibbsNorm (500000, 1, 500000, 120.0, 1/6.08"2, 21.02, 3250.647, mean(
datas), 1.0, datas)
describe (convert (DataFrame , dataoutput))
# writedlm (string (" OneSampleNormalProperData”,1,”. txt”), dataoutput )
end

Listing A.2: Julia Code
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Appendix B

Linear Regression

B.1 R/Rcpp/JAGS Workflow

# Set Working Directory

getwd ()
3 setwd ()

#

Call Libraries

install
install
install
install
install
install

library (Rcpp)
library (RecppEigen)
library (coda)
library (inline)
library (rjags)
library (car)

source (”LinearRegression _NBADataSourceCode_-2016—08—09.R”) #calls

#

Set Directory to Save Output
getwd ()
setwd ()

5 NBA = read.csv(file

= "NBA2015Data.csv”,header

to Source Files

and Source Files
.packages ("Rcpp”)
.packages (" RcppEigen™)
.packages(”coda”)
.packages(”inline ™)
.pacakges (”rjags”)
.packages(”car”)

NBA.r=subset (NBA, NBASPTS>0 & NBA$GP>5)

fit= Im(formula = log(PTS) ~ MIN, data = NBA.r)

plot(fit$fitted . values,

abline (a
step (fit ,direction = “backward”)

0, 0, col="red”)

35 ModelMatrixX = model. matrix (fit

ModelMatrixY = log (NBA. r$PTS)

beta.hat <— solve (t(ModelMatrixX )%+%ModelMatrixX) %*% t(ModelMatrixX) %+% ModelMatrixY

write
write

prior
prior

.csv(ModelMatrixX , file =
.csv (ModelMatrixY , file =

tau. prior.shape <— 0.001
tau.prior.rate <— 0.001

fit$residuals)

)

”"NBAmatrixX.csv”)
”NBAmatrixY .csv”)

.mean. beta <— rep(0,ncol (ModelMatrixX))
.cov.beta <— diag(ncol(ModelMatrixX))=*100

s HEHFHAHFH AR AR R R AR AR AR AR AR

#### Running the MOMC Gibbs sampler ###

HHHHHHHHHH AR R HH R HA R R R
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52 # Set Number of Chains for Gibbs Sampler
s3 iterations = 1

ss # R function

s set.seed(999)

s7 for (1 in l:iterations){

58 start.time <— Sys.time ()

59 MOMC <— Gibbslm(iterations = 500000, burnin = 500000, nthin = 1,

60 prior _mean_beta = prior.mean.beta, prior_cov_beta = prior.cov.beta,
61 tau_prior _shape = tau.prior.shape, tau_prior_rate = tau.prior.rate,
62 Response = ModelMatrixY , ModelMatrixX = ModelMatrixX ,

63 start.beta = beta.hat)

64 print(Sys.time() — start.time)
66 summary (MCMC)

68 print ( paste (7 ######HHH####HF R HHEH#E 7))
69 print (paste ("#### This is iteration: 7, 1, 7 ####7))
70 print ( paste (7 #######H#HHHHHH A 7))

73 print (summary (as .memc(MOMC$beta)))

74 print (summary (as .mcmc(MOMC$sigma)))

5 # write.csv(x = MCMC,

76 # file = paste(”LinearRegression_BostonDataR_",1,” _iteration _2016—07—20.csv”,
7 # sep=""))

» }

si # Rcpp Function

2 set.seed(999)

s for (1 in 1l:iterations){

84 start = Sys.time ()

85 Gibbs=GibbslmCpp(iterations = 500000, burnin = 500000, n_thin = 1,

86 Beta_prior_mean = prior.mean.beta, Beta_Prior_CovMat = prior.cov.beta,
87 tau_prior _shape = tau.prior.shape,

88 tau _prior_rate = tau.prior.rate,

89 Response = ModelMatrixY , ModelMatrixX = ModelMatrixX ,

90 beta_initial = beta.hat)

91 print (Sys.time ()—start)

%) summary ( Gibbs)

93 print ( paste (7 #######H#HHHHHH AR A AR #ET )
94 print (paste ("##### This is iteration: 7, 1, "####7))
95 print ( paste (7 ######HHHHFHHHHAHAHHHHHHHAHAAHHHHART )
96

97 for (ii in names(Gibbs)){

98 print (summary (as.memc(Gibbs[[ii]])))

99 }

100 # write.csv(x = MCMC,

101 # file = paste(”LinearRegression_BostonDataRcpp_",1,” _iterationRcpp _2016—07—20.csv
102 # sep=""))

6 # JAGS Function

07 set.seed(999)

s for(l in 1 :iterations){

109 jagsfit <— jags.model(file = ”"LinearRegressionNBA .jags”,

110 data = list(’Response’ = log(NBA.r$PTS),

11 "MIN’ = NBA. r$MIN,

12 N’ = length (NBA. r$MIN) ,

13 P’ = ncol(ModelMatrixX) ,

114 ’prior.mean’ = as.vector(prior.mean.beta),
15 ‘prior.precision’ = solve(prior.cov.beta),
116 ’tau_prior _shape’ = tau.prior.shape,

17 ‘tau_prior_rate’ = tau.prior.rate),

18 inits = list(’beta’= as.vector(beta.hat),’ tau’=1),

119 n.chains=1,

120 n.adapt=0

121 )
122 start.time <— Sys.time ()
123 update (jagsfit , 500000) # Obtain first 100,000 (burnin draws)
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5 MOMC. out <— coda.samples(jagsfit ,

126 var = c¢(”beta”, "sigma”),

127 n.iter = 500000, # Obtain the main 100,000 draws
128 thin = 1)

129 print (Sys.time() — start.time)

31 print (paste (7 ##H##H##HHHHHFHHHAHAHHHAAFHAHHHARH#E 7))
32 print (paste ("#### This is iteration: 7, 1, 7 ####7))
print (paste (7 ##H###HHHHHHFHHHAHFHHHAAFHAHHHA#H#HE 7))

37 # write .csv(x = MCMC,
38 # file = paste(”LinearRegression _NBAData”,1,” _iterationJAGS _2016—07—20.csv”,

1

1

1

1

135 print (summary (MCMC. out))

1

1

1

139 # sep=""))

Listing B.1: Linear Regression Work Flow R code

B.2 Julia

I # Pkg.add(” Distributions ™)

> # Pkg.add(”DataFrames”™)

3 using Distributions , DataFrames
4+ srand (1234)

6 function GibbsLM(iterations , burnin, nthin, Response, ModelMatrixX, beta_prior_mean ,
beta_prior_-covarmat , tau_prior_-shape , tau_prior_-rate , Betalnitial , Taulnitial)

7 n = convert(Float64 , size(ModelMatrixX , 1)) # Number of rows/sample size

8 m = size (ModelMatrixX, 2) # Number of columns/parameters for model

9 Beta = fill (0.0, iterations , m)

10 Tau = fill (0.0, iterations , 1)

1 tempbeta = fill (0.0, 1, m)

12 tempbeta = Betalnitial ’

13 temptau = Taulnitial

14 sigma = fill (0.0, iterations)
15 BetaHat = fill (0.0 ,m)

16 Rate = 0.0

17 V_inv = fill (0.0, m , m)

18 eta = fill (0.0, m)

19 CholV = fill (0.0, m, m)

20 tXX = ModelMatrixX ’« ModelMatrixX

21 tXy = ModelMatrixX’ * Response

2 BetaHat = inv (tXX) * transpose (ModelMatrixX) x Response
23 SSE = (norm(Response — (ModelMatrixX * BetaHat)))"2

24 post_shape = tau_prior_-shape + (n / 2.0)

% for i in 1:burnin

27 Rate = norm((tau_prior_rate + ((SSE + (tempbeta — BetaHat’) % tXX * transpose ((tempbeta —
BetaHat’))) / 2 )))
28 temptau = rand (Gamma(post_shape, (1.0 / Rate) ) )
29 V_inv = (temptau) * tXX + inv(beta_prior_covarmat)
30 V = inv(V_.inv)
31 normals = rand(Normal(0,1), m)
32 eta = (temptau * tXy) + (inv(beta_prior_covarmat) x beta_prior_-mean)
CholV= transpose (chol(V)) # Lower Cholosky Decomposition
34 tempbeta = transpose ((V x eta) + (CholV * normals))
35 end

37 for i in l:iterations

38 for j in l:nthin

39 Rate = norm((tau_prior_rate + ((SSE + (tempbeta — BetaHat’) % tXX * transpose ((tempbeta —
BetaHat’))) / 2 )))

40 temptau = rand (Gamma( tau_prior_shape + (n / 2.0), (1.0 / Rate) ) )

41 V_inv = (temptau) * tXX + inv(beta_prior_covarmat)

) V = inv(V_.inv)

43 normals = rand(Normal (0,1), m)

44 eta = (temptau * tXy) + (inv(beta_prior_covarmat) % beta_prior_mean)

45 CholV= transpose (chol(V)) # Lower Cholosky Decomposition

46 tempbeta = transpose ((V % eta) + (CholV * normals))

47 end
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60

Beta[i, :] = tempbeta’

Tau[i] = temptau

sigmal[i] = (1.0 / sqrt(Tau[i]))
end

return [Beta Tau sigmal]
end

s Y = readtable (”nbamatrixY .csv”)

X = readtable ("nbamatrixX.csv”)

DatX = convert(Array{Float64 ,2}, X)[:
DatY = convert(Array{Float64 .2}, Y)[:

> prior_mean = [0.3116; 0.0766]

prior_covarmat = eye(2)*100
prior_shape = 0.001
prior_rate = 0.001

iterations = 2
for 1 in 1:iterations
@time dataoutput = GibbsLM (500000,
prior_shape , prior_rate , [1;1],

, 2:end]
, 2:end]

500000,

1.0)

describe (convert (DataFrame, dataoutput))

# writedlm (string (" LinearRegression”,1,”.txt”),dataoutput)
3 end

1, DatY, DatX,

Listing B.2: Julia Code
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Appendix C

Linear Mixed Models

C.1 Improper Prior — Normal Random Effects

C.1.1 Source code

HHHH A AR H AR AR AR H
### Source File ###

s HERHAHHAHAHHAHAHHAH

5 HHEFHAHHHHAHAHHAHAHAHHAHAHAS

######## R Function #######
HHHHHHHHHH B H AR RS

GibbslmeImproper<— function(iterations , burnin, nthin = 1,

Response , ModelMatrixX , ModelMatrixZ ,
tau_prior _shape = c(0, —1/2),
tau_prior _rate = ¢(0,0), start.theta){

N <— length (Response)

p <— ncol(ModelMatrixX)

q <— ncol(ModelMatrixZ)

W <— cbind (ModelMatrixX , ModelMatrixZ)

a_pos <— c( tau_prior_shape[l] + N / 2.0, tau_prior_shape[2] + q / 2.0)

XX <— t(ModelMatrixX) %*% ModelMatrixX
tXZ <— t(ModelMatrixX) %+% ModelMatrixZ
tZX <— t(ModelMatrixZ) %% ModelMatrixX
tZ7Z <— t(ModelMatrixZ) %+% ModelMatrixZ
tXy <— t(ModelMatrixX) %+% Response
tZy <— t(ModelMatrixZ) %+% Response

thetas <— matrix (0, nrow = iterations , ncol = {p+q})
lambdas <— matrix (0, nrow = iterations , ncol = 2)
temp_thetas <— start.theta

temp -lambdas <— ¢ (0,0)

I.q <— diag(q)

eta <— rep(0, p + q)

V_inv <— matrix(0 , nrow = p + q, ncol = p + q)

for(j in 1:burnin){
diff <— Response — W %+% temp_thetas
temp _lambdas[1] <— rgamma(l, shape = a_pos[l], rate = tau_prior_rate[l] + t(diff) %% diff
/ 2.0)
diffu <— temp_thetas[{p+1}:{p+q}]
temp _lambdas [2] <— rgamma(l, shape = a_pos[2], rate = tau_prior_rate[2] + t(diffu) %%
diffu / 2.0)

V_oinv[1l:p, 1:p] <— temp_lambdas[1] * tXX

V_inv[1l:p, {p+1}:{p+q}] <— temp_lambdas[1] = tXZ

V_inv [{p+1}:{p+q}, 1:p] <— temp_lambdas[1] = tZX

Voinv [{p+1}:{p+q}, {p+1}:{p+q}] <~ temp_lambdas[1] * tZZ + temp-_lambdas[2] * [.q
V <— chol2inv (chol(V_inv))

eta[l:p] <— temp_lambdas[1] * tXy

eta[{p+1}:{p+q}] <— temp_lambdas[1] = tZy

temp_thetas <— V %% eta + t(chol(V)) %% rnorm (p+q)
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s}

50 for( i in l:iterations){

51 for(j in 1:nthin){

52 diff <— Response — W %x% temp_thetas

53 temp _lambdas [1] <— rgamma(l, shape = a_pos[l], rate = tau_prior_rate[1l] + t(diff) %%
diff / 2.0)

54 diffu = temp-_thetas[{p+1}:{p+q}]

55 temp _lambdas [2] <— rgamma(l, shape = a_pos[2], rate = tau_prior_rate[2] + t(diffu) %%
diffu / 2.0)

56

57 V_inv[1l:p, 1l:p] <— temp_lambdas[1] x* tXX

58 V_inv[1l:p, {p+1}:{p+q}] <— temp_lambdas[1] = tXZ

50 V_inv [{p+1}:{p+q}, 1:p] <— temp_lambdas[1] = tZX

60 V_oinv[{p+1}:{p+q}. {p+1}:{p+q}] <— temp_lambdas[1] = tZZ + temp_lambdas[2] * I.q

61 V <— chol2inv (chol(V_inv))

62 eta[l:p] <— temp_lambdas[1] * tXy

63 eta[{p+1}:{p+q}] <— temp_lambdas[1] * tZy

64 temp _thetas <— V %% eta + t(chol(V)) %% rnorm (p+q)

65 }

66 thetas[i , ] <— temp_thetas

67 lambdas[i , ] <— temp_lambdas

68 }

69 sigmas <— 1 / sqrt(lambdas)

70 thetas <— thetas

71 sigmas <— sigmas
7 return( list( beta = thetas[ , 1l:p], group = thetas[ , {p+1}:{p+q}], sigma = sigmas) )

» Y

75 #HHHHH S R
76 ###H###H## Recpp Function #H######
77 ##H S R R
79 src_eigen _imp<— ’

so using Eigen::Map ;

si using Eigen :: MatrixXd ;
2 using Eigen:: VectorXd ;
83 using Eigen:: Vector2d ;
s4 using Rcpp::as ;

ss typedef Eigen ::Map<Eigen :: MatrixXd> MapMatd ;
37 typedef Eigen::Map<Eigen :: VectorXd> MapVecd ;

g int net_iterations = Rcpp::as<int>(iterations);
9 int burn = Rcpp::as<int >(burnin);
int n_thin = Rcpp::as<int >(nthin);

93 Rcpp :: NumericMatrix Xc(ModelMatrixX)

94 Repp :: NumericMatrix Zc(ModelMatrixZ) ;

95 Rcpp:: NumericVector yc(Response) ;

96

97 const MapMatd X(Rcpp :: as<MapMatd >(Xc))
9¢ const MapMatd Z(Rcpp :: as<MapMatd>(Zc)) ;
9% const MapVecd y (Rcpp :: as<MapVecd>(yc)) ;

o1 int N = X.rows(), p = X.cols(), q = Z.cols() ;

13 Repp :: NumericVector startthetac(starttheta) ;
04 const MapVecd start _theta (Rcpp::as<MapVecd>(startthetac)) ;

106 Repp :: NumericVector ac(tau_prior_shape) ;
107 Repp :: NumericVector be(tau_prior_rate) ;

100 const MapVecd a(Rcpp::as<MapVecd>(ac))
1o const MapVecd b(Rcpp :: as<MapVecd>(bc)) ;
111 VectorXd a_pos = a ;
112 a_pos[0] a[0] + N =
113 a-pos|[1] a[l] + q =

>

0.5
0.5

B

115 const MatrixXd tXX X.transpose ()
16 const MatrixXd tXZ = X.transpose ()
17 const MatrixXd tZX = Z.transpose ()
g const MatrixXd tZZ = Z.transpose ()

* % % %
N X N X
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const VectorXd tXy

X.transpose () * y ;

const VectorXd tZy = Z.transpose() * y ;

MatrixXd  W(N, p+q);
W.leftCols(p) = X ;

24 W.rightCols(q) = Z ;

MatrixXd thetas (net_iterations , p+q) ;

MatrixXd sigmas(net_iterations , 2) ;

VectorXd temp_thetas = start_theta;

VectorXd temp_lambdas(2); temp_lambdas << 0, 0;

const MatrixXd identity _.q = MatrixXd:: Identity (q, q);
const MatrixXd identity -pq = MatrixXd:: Identity (p+q, p+q);

VectorXd eta(p+q)

MatrixXd V_inv(p+q, p+q) ;

MatrixXd V(p+q, p+q);

VectorXd diff =y — W % temp_thetas ;

RNGScope scp;

Rcpp:: Function rnorm (”rnorm”)

Rcpp:: Function rgamma(”rgamma”) ;

MapVecd normals = Rcpp::as<MapVecd>(Rcpp:: rnorm(p+q)) ;

}

for(int

3 for(int j = 0; j < burn; j++){

diff =y — W x temp_thetas ;
temp_lambdas[0] = Rcpp::as<double >(Rcpp::rgamma(l, a_pos[0],
1.0 / (b[O0] + 0.5 % diff.squaredNorm()))) ;
temp_lambdas[1] = Rcpp::as<double >(Rcpp::rgamma(l, a_pos[1],
1.0/ (b[1] + 0.5 * temp_thetas.tail(q).squaredNorm()))) ;
V_inv.topLeftCorner(p, p) = temp-lambdas[0] * tXX ;
V_inv.topRightCorner(p, q) = temp_lambdas[0] * tXZ ;
V_inv.bottomLeftCorner(q, p) = temp_-lambdas[0] = tZX ;
V_inv.bottomRightCorner(q, q) = temp_lambdas[0] *x tZZ + temp_lambdas[1] * identity _q ;

V = V_inv.inverse () ;

eta.head(p) = temp-lambdas[0] * tXy ;

eta.tail(q) = temp-lambdas[0] * tZy ;

normals = Rcpp::as<MapVecd>(Rcpp::rnorm(p+q)) ;
temp-_thetas =V % eta + V.11t ().matrixL () * normals ;

i = 0; i < net_iterations; i++){
for(int j = 0; j < n_thin; j++){
diff = y — W % temp_thetas ;
temp_lambdas[0] = Rcpp::as<double >(Rcpp::rgamma(l, a_pos[0],
1.0 / (b[0] + 0.5 % diff.squaredNorm()))) ;
temp_lambdas[1] = Rcpp::as<double >(Rcpp::rgamma(l, a_pos[1],
1.0/ (b[1] + 0.5 * temp_thetas.tail(q).squaredNorm())))
V_inv.topLeftCorner(p, p) = temp_lambdas[0] * tXX ;
V_inv.topRightCorner(p, q) = temp_-lambdas[0] * tXZ ;
V_inv.bottomLeftCorner(q, p) = temp_lambdas[0] * tZX ;
V_inv.bottomRightCorner(q, q) = temp-lambdas[0] * tZZ + temp_lambdas[1] * identity_q ;

V = V_inv.inverse () ;

eta.head(p) = temp_lambdas[0] * tXy ;

eta.tail (q) = temp_-lambdas[0] * tZy ;

normals = Rcpp::as<MapVecd>(Rcpp::rnorm(p+q)) ;
temp_thetas = V % eta + V.11t ().matrixL () * normals ;

}

thetas.row(i) = temp_thetas ;

}

) sigmas.row(i) = 1 / temp_lambdas.array ().sqrt() ;

3 MatrixXd betas = thetas.leftCols(p);

MatrixXd us = thetas.rightCols(q);

return Recpp:: List::create(

Rcpp ::Named(” beta™) = betas,
Rcpp ::Named(” group”) = us,

Rcpp ::Named(”sigma”) = sigmas);
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192 GibbslmeImproperCpp <— cxxfunction(signature (iterations = “int”, nthin = “int”,
,

193 Response = "numeric”,

194 ModelMatrixX = "numeric”,

195 ModelMatrixZ = “numeric”,

196 tau _prior _shape = “numeric”,

197 tau_prior_rate = “numeric”,

198 starttheta = “numeric”),

src_eigen_imp, plugin="RcppEigen”)

HHHHHHHHHHAHHH R R R R R R R B R AR

cat(

> ##t#H# JAGS #i#H#

”»

var
Response [N], Beta[P], MIN[N], u[q], cutoff[q+1],

prior .mean[P], prior.precision[P, P], mu[N],

tau_prior _shape[2], tau_prior_rate[2], tau_-e, tau_-u, tau[N];
model{

# Likelihood specification

for(i in 1:q){

for(k in (cutoff[i]+1):cutoff[i+1]){

Response[k] = dnorm(mul[k], tau[k])

mu[k] <— Beta[l] + Beta[2] * MIN[k] + u[i]

tau[k] <— 1/((1 / tau_-e) + (1 / tau_u))

ul[i] 7 dnorm (0, tau_u)

}

# Prior specification

Beta[] ~ dmnorm(prior.mean[], prior.precision[,])

tau _u ~ dgamma(tau_prior _shape[l], tau_prior_rate[1])
tau_e - dgamma(tau_prior_shape[2], tau_prior_rate[2])
sigma_e <— sqrt(l / tau_e)
sigma_u <— sqrt(l / tau_u)
}75’
file="LMM_nba.jags”)
Listing C.1: Linear Mixed Model with Improper Priors R Source Code

burnin

2

int

2

GibbslmeImproper input description:
e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.

e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random

effect

e tau_prior_shape: A numeric vector that provides the shape parameter for the prior distribution

of 7, and 7, respectively

e tau_prior_rate: A numeric vector that provides the rate parameter for the prior distribution of 7,

and 7, respectively

e start.theta: A concatenated numeric vector of initial values for MCMC of 8 and u
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GibbslmeImproperCpp input description:

iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

tau_prior_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

tau_prior_rate: A numeric vector that provides the rate parameter for the prior distribution of 7,
and 7, respectively

start.theta: A concatenated numeric vector of initial values for MCMC of 5 and u

C.1.2

getwd ()
setwd ()

R/Rcpp/JAGS Workflow

#call libraires and source

H o o H I H*

library
library
library
library
library
library

install .packages (”nlme”)
install .packages (”Rcpp”)
install . packages (”RcppEigen”™)
install .packages(”coda”)
install.packages(”inline”)
install .packages(”rjags”)

(nlme)
(Repp)
(RcppEigen)
(coda)
(inline)
(rjags)

source (”LinearMixedModel _-Improper _-NBADataSourceCode 2016 —08 —09.R”) #calls the source f

getwd ()
setwd ()

»5 nba <—

read.csv(file="NBA2015Data.csv”, header=TRUE)

# We won’t use attach(nba) in this example

plot (nba$MIN, nba$PTS, xlab="minutes”, ylab="points per game”)

HHHHH AR AR R R R
# Frequentist analysis #
HEHHH AR AR AR R R R R R H

# Let’s model log(PTS) vs MIN; log = natural log
# But now we treat the TEAM variable as a random effect

# Be careful a few players have PTS=0
which (nba$PTS==0)

s # Let’s

look at their data
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66

96

116

s nba[which (nba$PTS==0), |

# Let’s remove some problematic observations from the data set
nba$PTS>0 & nba$GP>5)
nba.r <— nba.r[order(nba.r$TEAM), |

# sort data by team ; this

nba.r=subset (nba

>

is very important for our

nba.r$log .PTS <— log (nba.r$PTS)

dim (nba)

dim(nba.r) # 6 players

have been removed

team.size <— as.numeric(table (nba.r$TEAM))
cutoff <— cumsum(c(0,team.size))

# Consider the following random intercept model
"1 | TEAM, data = nba.r)

log. fit.mixed <— Ime(

summary (log . fit . mixed)
coefficients (log. fit.mixed) # beta_1 + u_j
log. fit.mixed$coeff$random # u_j

intervals (log. fit.mixed)

library (lattice)

log .PTS =~ MIN, random =

xyplot(log .PTS ~ MIN | TEAM, groups=TEAM, type=c("p”,

# Predict PPG for a San Antonio Spurs player that
3 new <— data.frame (MIN=25, TEAM="SAS”)

exp(predict(log. fit.mixed,

newdata=new) )

# Compare old model with the new mixed model

log. fit <— Im(log (PTS)

plot(nba.r$MIN, nba.r$PTS,

~ MIN, data=nba.r)

“home—made” Gibbs sampler.

"r”), data=nba.r)

plays 25 minutes

xlab="minutes”, ylab="points per game”)

original. fit <— function (x){
y.hat <— coef(log. fit)[1] + coef(log.fit)[2] * x
return (exp(y. hat))

}

x <— seq(from=min(nba.r$MIN), to=max(nba.r$MIN), by=0.01) # Create sequence of points
lines (x, original.fit(x),

pred .PTS <— exp(fitted (log. fit.mixed, newdata=new,

col="red”)

points (nba.r$MIN, pred.PTS[ , 2], col="red”, pch=3)

# standardized residuals
plot(log. fit.mixed,
> # box—plots of residuals by TEAM
s plot(log. fit.mixed, TEAM ~

# observed versus

plot(log. fit.mixed,

resid (.))

fitted values by TEAM

HHHHHHHHHH R R R H R R R R R R R

# Bayesian Analysis

Reference Prior #

HHHHHHH R R R R R R R R R

log. fit.mixed <— Ime(

# Make sure that

the data

log .PTS = MIN, random =

are sorted by TEAM

ModelMatrixY <— log (nba.r$PTS)

log. fit.fixed <— Im(log(PTS) =~ MIN, data=nba.r
ModelMatrixX <— model. matrix (log. fit.fixed) # trick to

log .PTS = fitted (.) | TEAM,

versus fitted values by TEAM
resid (., type = "p”) ~ fitted (.) |

abline

level=0:1))

TEAM, abline = 0)

=c(0, 1))

"1 | TEAM, data = nba.r)

)

log. fit.random <— Im(log(PTS) ~ TEAM — 1, data=nba.r)

ModelMatrixZ <— model.matrix (log. fit.random) #

beta.hat <— as.vector(log. fit.mixed$coeff$fixed)
u.hat <— coefficients (log. fit.mixed)[ , 1] — as.vector(log.fit.mixed$coeff$fixed)[1]
start.thetas <— c(beta.hat, u.hat)

prior .mean. beta

rep (0.0,

ncol (ModelMatrixX) )
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prior.cov.beta = diag(ncol(ModelMatrixX)) * 100
tau.prior.rate = 1
tau.prior.shape = 1

beta.hat <— solve (t(ModelMatrixX )%+%ModelMatrixX) %+% t(ModelMatrixX) %+% ModelMatrixY

iterations = 1

### R Code ###
set.seed(999)

for(l in 1 :iterations){

#
#
#
#

start . time<—Sys.time ()

MOMC <— GibbslmeImproper(iterations = 500000,

nthin = 1, burnin = 500000,
start.theta = start.thetas , ModelMatrixX = ModelMatrixX ,
ModelMatrixZ = ModelMatrixZ , Response = ModelMatrixY)

# by default a=c(0, —0.5), b=c(0,0)

print (Sys.time () — start.time)

print (7 #####HHHHHHHE R R R )
print (7 #HHHHH )
print (paste (7 ######H###### This is iteration: 7
print (7#HHHHHHEH )
print (7 ######FHHHHHH )

for(r in names (MOMC)){

print (summary (as.memc(MOMC[[r]])))

}

write.csv(x = MOMC,

>

L, " #### A ) )

file = paste (”LinearMixedModelINBAData_",1,” _iterationR _2016—07—20.csv”,
sep=""))

}

### Rcpp Code ###

set.seed(999)

s for(l in 1 :iterations){

start . time<—Sys.time ()

Sys.time () — start.time

MOMC <— GibbslmeImproperCpp (iterations=500000,

tau_prior _shape =

nthin=1, burnin=500000,
starttheta=start.thetas , ModelMatrixX = ModelMatrixX ,

ModelMatrixZ = ModelMatrixZ, Response = ModelMatrixY ,

c(0, —0.5), tau_prior_rate = c(0,0))

print (7 ######HHHHHHH R )
print (7H#HHHHHHEH )
print (paste (" ######H###### This is iteration: 7
print (7 #HHHHHHH )
print (7 ####H##HA# A R R R )

for(r in names(MOMC) ) {

print (summary (as.memc(MOMC[[r]])))

write.csv(x = MCOMC,

FH o

### JAGS Code ###

>

L, " ####HHHHHHHET ) )

file = paste (”LinearMixedModeINBAData_",1,” _iterationRcpp -2016—07—20.csv”,
sep=""))

prior.cov.beta = diag(ncol(ModelMatrixX)) * 1000000
set.seed(999)
for(l in 1 :iterations){

set.seed(999)
jagsfit <— jags.model(file
data

"LMM_nba . jags”,

list (’Response’ = ModelMatrixY ,
'MIN® = nba.r$MIN,
>cutoff’ = cutoff,

N’ = length (ModelMatrixY) ,
P’ = ncol (ModelMatrixX) ,
'q’ = ncol(ModelMatrixZ) ,

’prior.mean’
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)

5

‘prior.precision’ = solve(prior.cov.beta),
“tau_prior _shape’ = ¢(0.001, 0.001),
‘tau_prior_rate’ = ¢(0.001, 0.001)),
inits = list(’Beta’= as.vector(beta.hat),’tau-e’ = 1, “tau_-u’ = 1,
u’ = u.hat),
n.chains=1,
n.adapt=0

start.time <— Sys.time ()
update (jagsfit , 500000) # Obtain first 100,000 (burnin draws)

MOMC. out <— coda.samples(jagsfit ,

L)

var = c(”Beta”, "u”, ”sigma_e”, “sigma_u”),
n.iter = 500000, # Obtain the main 100,000 draws
thin = 1)

print (Sys.time() — start.time)

H

o o H I H

write.csv(x = as.mcmc(MOMC. out) ,
file = paste (”LinearMixedModeINBAData_multiple ~length_",
1,” _iterationJAGS _2016—-08—03.csv”,sep=""))

print ("H#H#HH#HHHHHHHHHHHHHHHHHHH R R R H R H BRI R R )
print (CH####HHHHHEHHAHHAHHHHRAH SRR AR R AR SRR AR RHHEART)
print (paste ("############ This is iteration: 7, 1, ######H##H###H#H#H))
print CH####HHHHHAHHAHHAHHHHHAHAHHHHHHHHHHHAH A B AR HHHHRART)
print (CH#H##HSFHHHHFHH AR H AR AR R R R

print (summary (MCMC. out)) # Notice the iterations being used

Listing C.2: Linear Mixed Model with Improper Priors R Work Flow

jagsfit input description:
e Response: A numeric vector of observed data for linear model
e MIN: A numeric vector of observed data for the variable MIN for linear model of NBA

e cutoff: A numeric vector of cumulatively summed entries of the number of players in each team of
the NBA 2015 season data used for the random effect

e N: Sample size of the observed values

e P: The number of columns for the model matrix of linear model, i.e. (Number of predictors used for
linear model) + 1

e g: The number of teams considered for the model based on the data set
e prior.mean: A numeric vector for the mean parameter of the normal distribution of g

e prior.precision: A numeric matrix for the covariance matrix parameter of the normal distribu-
tion of 3

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e Beta: A numeric vector of initial values for MCMC for

e tau_e: A numeric value for initializing MCMC for 7,

e tau_u: A numeric value for initializing MCMC for 7,

e u: A numeric vector of initial values for MCMC of u
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1

2

C.1.3 Julia

using Distributions , DataFrames

srand (1234)

function GibbsLMEimproper(iterations ,burnin ,
starttheta)

tau_prior_shape ,
= ModelMatrixX

= Response

= ModelMatrixZ

= tau_prior_shape
tau_prior_rate
= size(X,1) #number of rows of X

= size(X,2) #number of columns of X
size (Z,2) #number of columns of Z
apos = a
apos[1] =
apos[2]
XX = X’
tXz = X’
tZX = 7’
tZ2 = 7°
XY = X’
tZzY = 7’
W= [X Z]

tau_prior_rate ,

oS Zo s N~ X
|

a[l] + N % 0.5
a[2] + q * 0.5

=N XN X

* ¥ ¥ X X ¥

thetas =
sigmas =
temptheta =
temptheta =

fill (0.0,
fill (0.0, iterations ,
fill (1.0, 1,p+q)
starttheta ’

templambda =
identityq = eye(q)
identitypq = eye(p+q)
diff =Y —W % temptheta’

£i11 (0.0,1,2)

sigmas = fill (0.0, iter, 2)
VinvTL = fill (0.0, p, p)
VinvITR = fill (0.0, p, q)
VinvBL = fill (0.0, q, p)
VinvBR = fill (0.0, q, q)
Vinv = fill (0.0, p+q, p+q)
V = fill (0.0, p+q, p+q)
etaheadp = fill (0.0, 1, p)
etatailq = fill (0.0, 1, q)
eta = fill (0.0, 1, p+q)
Vchol = fill (0.0, p+q,p+q)
Vcholup = fill (0.0, p+q,p+q)
stdnormal = fill (0.0, 1, p+q)
Terml = fill (0.0, p+q, 1)
sigma = fill (0.0,1,2)

Term2 = fill (0.0, p+q, 1)
for j in 1:burnin

diff =Y —W % temptheta’
templambda[l] = rand (Gamma(apos[1],
templambda[2] = rand (Gamma(apos[2],
(pra) D) )72 ) ) )

sigma[l] = 1.0/sqrt(templambdal[l])

sigma[2] = 1.0/sqrt(templambda[2])

VinvTL = templambda[l] = tXX

VinvTR = templambda[l] x tXZ

VinvBL = templambda[l] = tZX

VinvBR = (templambda[l] * tZZ) + (templambda[2] x*

Vinv=[VinvTL VinvTR; VinvBL VinvBR]
V = inv(Vinv)

etaheadp = (templambda[l] = tXY)
etatailq = (templambda[l] * tZY)
eta = [etaheadp’ etatailq ']

Vcholup = chol (V)
Vchol = Vcholup’
stdnormal = rand(Normal(0,1), p+q)

nthin, Response, ModelMatrixX, ModelMatrixZ ,

iterations , p + q) #storage for MOMC theta
2) #storage for MOMC sigmas

1.0/ (b[1] + 0.5 % norm(diff)"2 ) ) )
1.0/ (b[2] + 0.5 % norm(transpose (temptheta[(p+1)

identityq)
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70 Terml = (V % eta’)
I Term2 = reshape(Vchol % stdnormal, p+q,l)

72 temptheta = transpose (Terml + Term2)
end

74

75 for i in 1l:iterations

/6 for j in l:nthin

7 diff =Y —W % temptheta’

8 templambda[l] = rand (Gamma(apos[1], 1.0/ (b[1l] + 0.5 % norm(diff)"2 ) ) )

79 templambda[2] = rand (Gamma(apos[2], 1.0/ (b[2] + 0.5 * norm(transpose (temptheta[(p
+D:(p+a) 1) )2 ) ) )

80 sigma[l1] = 1.0/sqrt(templambda[l])

81 sigma[2] = 1.0/sqrt(templambda[2])

82

83 VinvTL = templambda[l] * tXX

84 VinvTR = templambda[l] * tXZ

85 VinvBL = templambda[l] = tZX

86 VinvBR = (templambda[l] * tZZ) + (templambda[2] * identityq)
o

88 Vinv=[VinvTL VinvTR; VinvBL VinvBR]

89 V = inv(Vinv)

) etaheadp = (templambda[l] = tXY)
91 etatailq = (templambda[l] * tZY)
92 eta = [etaheadp’ etatailq ']

94 Vcholup = chol (V)

95 Vchol = Vcholup’

9 stdnormal = rand(Normal(0,1), p+q)
97 Terml = (V % eta’)

08 Term2 = reshape(Vchol * stdnormal, p+q,l)
99 temptheta = transpose (Terml + Term2)

100 end

101 thetas[i,:] = temptheta

102 sigmas[i,:] = sigma

103 end

104 BetaMCMC = thetas[:, 1l:p]
105 UMOMC = thetas[:, (p+1):(p+q)]

10 return [BetaMCMC UMOMC sigmas ]
s end

o Y readtable (" matrixy.csv”)

111 X = readtable (" matrixX .csv”)

12 Z = readtable (" matrixz.csv”)

113 initialtheta = readtable(”initialization.csv”)

114 DatX = convert(Array{Float64 ,2}, X)[:,2:end]

s DatY = convert (Array{Float64,2}, Y)[:,2:end]

16 DatZ = convert(Array{Float64 ,2}, Z)[:,2:end]

17 thetastart = convert(Array{Float64 ,2}, initialtheta)

0 iterations = 10

o1 for(l in l:iterations)

122 @time dataoutput = GibbsLMEimproper(500000, 500000, 1, DatY, DatX, DatZ, [0 —0.5], [0 O],
thetastart)

123 describe (convert (DataFrame , dataoutput))

124 writedlm (string (”LinearRegression_NBAData_",1,”. txt”), dataoutput )

125 end

Listing C.3: Linear Mixed Model Julia code

GibbsLMEimproper input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.

e Response: A numeric vector of observed data for linear model
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e ModelMatrixX: A numeric matrix of predictors for linear model

e ModelMatrixZz: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

e tau_prior_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

e tau_prior_rate: A numeric vector that provides the rate parameter for the prior distribution of 7,
and 7, respectively

e starttheta: A concatenated numeric vector of initial values for MCMC of 3 and u

C.2 Proper Prior — Normal Random Effects

C.2.1 Source code

1 # Source Code for IMM with proper priors and normal random effects

s H#HHH

4+ ### R Function ###

s ##HHHH R

6

7 GibbsLMM = function (iterations , burnin, nthin, Response, ModelMatrixX, ModelMatrixZ ,
8 prior _mean_beta, prior_cov_beta, prior_gamma_shape,
9 prior _gamma_rate , start_theta){

10

1 X <— ModelMatrixX

12 y <— Response

13 Z <— ModelMatrixZ

14 Sigma_beta <— prior_cov_beta

15 Sigma_beta _inv <— solve(prior_cov_beta)

16 mu_beta <— prior _mean_beta

17 a <— prior _gamma_shape # Shape for e and u

18 b <— prior_gamma_rate # Rate for e and u

21 N <— length(y) # sample size

2 p <— ncol(X) # number of columns of X

23 q <— ncol(Z) # number of columns of Z

2 W <— cbind (X, Z)

25 apos = c(a[l] + N = 0.5, a[2] + q = 0.5)
2 XX <— t(X) %%
27 tXZ <— t(X) %%
28 tZX <— t(Z) %%
29 tZZ <— t(Z) %%
30 tXy <— t(X) %%
31 tZy <— t(Z) %+%

<< N XN X

thetas <— matrix (NA, nrow = iterations , ncol = {p+q})
34 lambdas <— matrix (NA, nrow = iterations , ncol = 2)
35 temp_thetas = start_theta # (beta, u)
36 temp -lambdas = c(0,0) #(lambda_e, lambda_u)
37 eta = rep(0, q)
38 V_inv = matrix(NA , nrow = p + q, ncol = p + q)
39 D_eta = diag(q)
10 for (j in 1 : burnin){

41 test = y— (W %% temp_thetas)

42 Fnorm = norm(x = test, type="F")

4 temp _lambdas [1] = rgamma(l, apos[1], b[1] + (Fnorm~2) x 0.5)

44 SecondFnorm = norm(x = D_eta %% temp-_thetas [(p+1):(p+q)], type = "F”)"2

45 temp _lambdas [2] = rgamma(l, apos[2], b[2] + SecondFnorm#0.5)

17 V_inv[l:p, l:p] <— temp_lambdas[l] % tXX + Sigma_beta _inv

48 Voinv[1l:p, {p+1}:{p+q}] <— temp_lambdas[l] * tXZ
19 V_inv[{p+1}:{p+q}, 1l:p] <— temp_lambdas[1] = tZX
50 V_inv [{p+1}:{p+q}, {p+1}:{p+q}] <~ temp_lambdas[1] * tZZ + temp_lambdas[2] * D_eta
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52 V <— chol2inv (chol(V_inv))

54 NextTerml <— temp_lambdas[1] * tXy + Sigma_beta_inv %+% mu_beta

55 NextTerm2 <— temp_lambdas[1] * tZy

56

57 zeta <— c(NextTerml, NextTerm2)

58

59 Vchol <— t(chol(V)) # cholesky decomposition

60 temp _thetas <— V %% zeta + Vchol %*% rnorm (p+q)

61

e }

I

64 for(i in 1 : iterations){

65 for (j in 1 : nthin){

66 test= y— (W %«% temp_thetas)

67 Fnorm = norm(x = test, type="F")

68 temp _lambdas[1] = rgamma(l, a[l] + N * 0.5, b[1] + (Fnorm"2) x 0.5)
9 SecondFnorm = norm(x = D_eta %% temp_thetas [(p+1):(p+q)], type = "F’)"2

70 temp _lambdas [2] = rgamma(l, a[2] + q * 0.5, b[2] + SecondFnorm=*0.5)

7 V_inv[l:p, l:p] <~ temp_lambdas[1] * tXX + Sigma_beta_inv

7 V_oinv[1l:p, {p+1}:{p+q}] <— temp_lambdas[1] = tXZ

7 V_inv[{p+1}:{p+q}, l:p] <— temp_lambdas[1l] * tZX

75 V_inv [{p+1}:{p+q}, {p+1}:{p+q}] <~ temp_lambdas[1] * tZZ + temp_lambdas[2] * D_eta

7 V <— chol2inv (chol(V_inv))

79 NextTerml <— temp_lambdas[1] * tXy + Sigma_beta_inv %+% mu_beta
80 NextTerm2 <— temp_lambdas[1] * tZy

81

82 zeta <— c(NextTerml, NextTerm2)

83

84 Vchol <— t(chol(V)) # cholesky decomposition

85 temp _thetas <— V %% zeta + Vchol %*% rnorm (p+q)
86 }

87 thetas[i , ] <— temp_thetas

88 lambdas[i , ] <— temp_lambdas

89 }

91 sigmas <— 1 / sqrt(lambdas)

93 return( list( beta = thetas[, 1:p], group = thetas[, {p+1}: {p+q}], sigma = sigmas) )
94 }

96 HHHHHHHHHHAHHHHHHHHHH
97 ### Rcpp Function ###
o8 HHHH#HHHHHHHHHHHHHHHH

s

100 src_eigen _imp<—

102 using Eigen :: Map ;

03 using Eigen :: MatrixXd ;
4 using Eigen :: VectorXd ;
s using Eigen :: Vector2d ;
06 using Rcpp :: as ;

s typedef Eigen :: Map<Eigen :: MatrixXd> MapMatd ;
109 typedef Eigen :: Map<Eigen :: VectorXd> MapVecd ;

i int MCMCiter = Rcpp::as<int >(iterations);
112 int burnin = Recpp :: as<int >(Burnin);

113 int n_thin = Rcpp :: as<int >(nthin);

114

115 Repp :: NumericMatrix Xc(ModelMatrixX) ;
16 Repp :: NumericMatrix Zc(ModelMatrixZ) ;

117 Repp :: NumericMatrix Sigma_betac (prior_cov_beta) ;
ns Repp :: NumericVector yc(Response) ;
19 Repp :: NumericVector mu_betac (prior _mean_beta) ;

120

21 const MapMatd X(Rcpp :: as<MapMatd>(Xc))

122 const MapMatd Z(Rcpp :: as<MapMatd>(Zc)) ;

123 const MapMatd Sigma_beta(Rcpp :: as<MapMatd>(Sigma_betac)) ;
124 const MapVecd y(Repp :: as<MapVecd>(yc)) ;
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> const MapVecd

const MapVecd mu_beta (Recpp

as<MapVecd>(mu_betac))

const MatrixXd Sigma_beta_inv = Sigma_beta.inverse ()

int N =y.rows(), p = X.cols(), q = Z.cols() ;

Rcpp :: NumericVector startthetac(starttheta) ;

Rcpp :: NumericVector ac(prior_gamma_shape) ;
Rcpp :: NumericVector bc(prior _gamma_rate) ;

const MapVecd a(Rcpp::as<MapVecd>(ac))
const MapVecd b(Rcpp::as<MapVecd>(bc))

const MatrixXd tXX =
const MatrixXd tXZ =
const MatrixXd tZX =
const MatrixXd tZZ =
const VectorXd tXy =
const VectorXd tZy =

.transpose ()
.transpose ()
.transpose ()
.transpose ()
.transpose ()
.transpose ()

N X N N X X

* ¥ ¥ X ¥ *

MatrixXd thetas (MCMCiter, p+q) ;

. MatrixXd sigmas (MCMCiter, 2) ;

thetas.col(0) = start_theta ;
VectorXd temp-thetas = start_theta ;

<< N XN X

B

B

VectorXd temp_lambdas(2); temp_lambdas << 0, 0 ;

VectorXd zeta(p+q) ;
MatrixXd T_lambda(p.p) ;
MatrixXd V_inv(p+q, p+q) ;
MatrixXd V(p+q, p+q) ;

const MatrixXd identity N = MatrixXd
const MatrixXd identity _q MatrixXd
MatrixXd test(N,1) ;

MatrixXd W(N, p+q) ;
W.leftCols(p) = X ;
W.rightCols(q) = Z ;

double FNorm ;
double SecondFNorm ;

RNGScope scp ;
Rcpp :: Function rnorm(”rnorm”) ;
Rcpp :: Function rgamma(”’rgamma”) ;

> Repp :: Function fnorm(” frobenius.norm”)

Identity (N,N)
Identity (q,q)

B

MapVecd normals = Rcpp::as<MapVecd>(Rcpp:: rnorm (p+q))

for(int j = 0:; j < burnin; j++){
test =y — (W % temp_thetas) ;
FNorm = Rcpp

temp _-lambdas[0] = Rcpp

as<double >(fnorm (test))

as<double >(Rcpp
al[0] + N % 0.5 , 1.0 / (b[0] + pow(FNorm |,

B

rgamma (1,

start _theta (Rcpp:: as<MapVecd>(startthetac))

B

>

B

SecondFNorm = temp_thetas.tail(q).transpose () * temp-thetas.tail (q)

temp_lambdas[1] = Rcpp

V_inv.topLeftCorner(p, p) =temp-lambdas[0] % tXX + Sigma_beta_inv

as<double >(Rcpp
a[l] + q = 0.5 , 1.0 / ( b[1]

V_inv.topRightCorner(p, q) = temp_lambdas[0] * tXZ ;

V_inv.bottomLeftCorner(q, p) = temp-lambdas[0] * tZX ;
V_inv.bottomRightCorner(q, q) = temp_lambdas[0] * tZZ + temp_lambdas[1] =*

V = V_inv.inverse () ;

zeta.head(p) = temp_lambdas[0] * tXy + Sigma_beta_inv * mu_beta

zeta . tail (q) = temp_lambdas[0] * tZy

>
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rgamma (1,
+ SecondFNorm x 0.5 ) ) )

5

2.0 ) * 0.5 ) ) )

identity _q

5



219

221
222

223

246
247
248
249

250

normals =

Repp :: as<MapVecd>(Rcpp : : rnorm (p+q) )

temp-thetas =V % zeta + V.11t ().matrixL () * normals ;

}

for(int i = 0; i < MCMCiter; i++){
for(int j = 0:; j < n_thin; j++){
test =y — (W x temp_thetas) ;

FNorm = Rcpp as<double >(fnorm(tes

temp _-lambdas[0] = Rcpp

al[0] + N % 0.5 ,

SecondFNorm =

temp_-lambdas[1] = Rcpp as<double >(Rcpp
1.0 / ( b[1] +

V_inv.topLeftCorner(p, p)

V_inv.topRightCorner(p, q) =

V_inv.bottomLeftCorner(q, p) = temp_

V_inv.bottomRightCorner(q, q) =

V = V_inv.inverse () ;

zeta . head (p)
zeta . tail (q)

temp -lambdas [0] x tXy
= temp_lambdas[0] * tZy

normals =

as<double >(Rcpp

temp_thetas . tail (q).transpose () * temp_thetas.

t))

rgamma (1,
1.0 / (b[0] + pow(FNorm ,

rgamma (1,
SecondFNorm * 0.5 ) ) ) ;

=temp _lambdas [0] * tXX + Sigma_beta_inv
temp -lambdas [0] = tXZ ;

lambdas [0] x* tZX ;

+ Sigma_beta_inv % mu_beta ;

s

Rcpp :: as<MapVecd>(Rcpp :: rnorm (p+q) ) ;

temp_thetas =V % zeta + V.11t ().matrixL () * normals ;

}

thetas .row(i) =
sigmas.row (i) =

}

temp_thetas ;

MatrixXd ©betas = thetas.leftCols(p)
MatrixXd us = thetas.rightCols(q);

return Rcpp:: List::create(
Rcpp::Named(” beta™) = betas,

245 Repp ::Named (” group”) = us,

Rcpp ::Named(”sigma”) = sigmas);

GibbsLMMcpp = cxxfunction(signature (

src_eigen -

HHEHHHHHA RS
#### JAGS Code ###

3 HHHHHEHHR R

”»

cat(
var
Response [N],
prior.mean[P],
tau _prior _shape[2],

Beta[P], MIN[N], u[q],
prior.precision [P, P], mu[N],
tau _prior _rate [2],

1 / temp_lambdas.array ().sqrt() ;

>

2

iterations = ”int”, Burnin =
Response = “numeric”,
ModelMatrixX = “numeric”,
ModelMatrixZ = ”numeric”,
prior _mean_beta = “numeric”,
prior _cov_beta = “numeric”,
prior _gamma_shape = “numeric”,
prior _gamma_rate = “numeric”,
starttheta = “numeric”),

imp, plugin="RcppEigen”)

cutoff[q+1],

tau_e, tau_u, tau[N];

102

tail (q)

a[l] + q * 0.5

>

temp _lambdas [0] * tZZ + temp_lambdas[1] =*

int

nthin =

2.0 ) * 0.5 ) ) ) ;

identity _q

2

int

5



model{

#

Likelihood specification

for(i in 1:q){

for(k in (cutoff[i]+1):cutoff[i+1]){
Response[k] = dnorm(mul[k], taul[k])

mu[k] <— Beta[l] + Beta[2] x MIN[k] + u[i]
tau[k] <— 1/((1 / tau_e) + (1 / tau_u))

ul[i] 7 dnorm (0, tau_u)

}

# Prior specification

Beta[] ~ dmnorm(prior.mean[], prior.precision[,])
tau_u ~ dgamma(tau_prior_shape[l], tau_prior_rate[1])
tau_e ~ dgamma(tau_prior_shape[2], tau_prior_rate[2])

sigma_e <— sqrt(l / tau_e)
sigma_u <— sqrt(l / tau_u)
S

file="LMM_nba.jags”)

Listing C.4: Linear Mixed Model with Normally Distributed Random effects R Source Code

GibbsLMM input description:

iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector that provides the mean parameter for the prior distribution of

B

prior_cov_beta: A numeric matrix that provides the covariance matrix for the prior distribution

of 8

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T. and 7, respectively

start_theta: A concatenated numeric vector of initial values for MCMC of 3 and u

GibbsLMMcpp input description:

iterations: Netlength of MCMC chain for main sample

Burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model
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ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector that provides the mean parameter for the prior distribution of

B

prior_cov_beta: A numeric matrix that provides the covariance matrix for the prior distribution

of 5

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7, and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T, and T, respectively

starttheta: A concatenated numeric vector of initial values for MCMC of 3 and u

C.2.2

getwd ()
setwd ()

#call 1
insta
insta
insta

insta

H o o H o H*

library
library
library
library
library
library
library

source (

s getwd ()
s setwd ()

nba <—

R/Rcpp/JAGS Workflow

ibraires and source
11.packages (”nlme”)
11.packages (”Recpp”)
11.packages (”RcppEigen™)

install .packages(”coda”)

11 .packages(”inline ™)

install .packages(”rjags”)

(nlme)
(Repp)
(RcppEigen)
(coda)
(inline)
(rjags)
(matrixcalc)

”LinearMixedModel _-NBASource _2016—08—-09.R”) #calls the source f

read.csv(file="NBA2015Data.csv”, header=TRUE)

# We won’t use attach(nba) in this example

plot (nba$MIN, nba$PTS, xlab="minutes”, ylab="points per game”)

#EHHHHHHHH R R
# Frequentist analysis #
HEHHHHHHHH R

# Let’s
# But n

model log (PTS) vs MIN; log = natural log
ow we treat the TEAM variable as a random effect

s # Be careful a few players have PTS=0

which (nba$PTS==0)

# Let’s

look at their data

s nba[which (nba$PTS==0), ]
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# Let’s remove some problematic observations from

nba.r=subset(nba, nba$PTS>0 & nba$GP>5)

nba.r <— nba.r[order(nba.r$TEAM), |

3 # sort data by

team ; this is very important

nba.r$log .PTS <— log(nba.r$PTS)

dim (nba)
dim(nba.r)

# Consider the following random intercept

log. fit.mixed <— lme( log.PTS ~ MIN,

> summary (log. fit . mixed)

random =

coefficients (log. fit.mixed) # beta_1 + u_j
log. fit.mixed$coeff$random # u_j
intervals (log. fit.mixed)

team.size <— as.numeric(table (nba.r$TEAM))
cutoff <— cumsum(c(0,team.size))

##H SRR HH AR
# Bayesian Analysis Reference Prior
HAHAHHAHAHHAHFHBHHHABHHHAHAHHAHHHBHHHAH

log.fit .mixed <— lme( log.PTS =~ MIN, random =

# Make sure that the data are sorted

log. fit.fixed <— Im(log (PTS)

7 ModelMatrixY <— log(nba.r$PTS)

#

by TEAM

model

“1

“1

~ MIN, data=nba.r)

the data set

for our “home—made” Gibbs sampler.

| TEAM, data = nba.r)

| TEAM, data = nba.r)

ModelMatrixX <— model. matrix (log. fit.fixed) # trick to get the X matrix

log. fit .random

<— Im(log (PTS) ~ TEAM — 1,
3 ModelMatrixZ <— model. matrix (log. fit.random) #

data=nba.r)

trick to get Z matrix

beta.hat <— as.vector(log.fit.mixed$coeff$fixed)

u.hat <— coefficients (log.fit.mixed)[ , 1] — as.vector(log.fit.mixed$Scoeff$fixed)[1]

start.thetas <— c(beta.hat, u.hat)

prior .mean.beta = rep (0.0, ncol(ModelMatrixX))
prior.cov.beta = diag(ncol(ModelMatrixX)) * 100

tau.prior.rate

beta.hat <— solve (t(ModelMatrixX )%+%ModelMatrixX) %*% t(ModelMatrixX) %+% ModelMatrixY

iterations = 5

### R Code ###
set.seed(999)

=1

> tau.prior.shape = 1

for(l in 1 :iterations){
start . time<—Sys.time ()
MOMC <— GibbsLMM (iterations = 500000, burnin
Response = ModelMatrixY , ModelMatrixX = ModelMatrixX ,

ModelMatrixZ = ModelMatrixZ ,

prior _cov_beta =
prior _gamma_shape
prior _gamma_rate

print(Sys.time() — start.time)

500000, nthin = 1,

prior _mean_beta = beta.hat,

prior .cov.beta,
, 0.001),
0.001), start_theta = start.thetas)

= ¢(0.001
= ¢(0.001,

print (7 ##### R )
print (7 #HHHHHHH R )
print (paste (7 ######H###### This is
print (7 #HHHHH# )
print (7 ####H#HH#H R R )

for(r in names(MMC)){
print (summary (as.memc(MOMC[[r]])))

oM F

write.csv(x = MCMC,
file = paste (”LinearMixedModelINBAData_",1,” _iterationR _2016—07—20.csv”,

sep=""))

iteration :

”»
>
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2 ### Rcpp Code ###

125

% set.seed(999)

for(l in 1 :iterations){

28 start . time<—Sys.time ()

129 MOMC <— GibbsLMMcpp(iterations = 500000, Burnin = 500000, nthin = 1,
130 Response = ModelMatrixY ,

)
3

131 ModelMatrixX = ModelMatrixX ,

132 ModelMatrixZ = ModelMatrixZ ,

133 prior _mean_beta = beta.hat,

134 prior _cov_beta = prior.cov.beta,

135 prior _gamma_shape = ¢(0.001,0.001),
136 prior _gamma_rate = c(0.001, 0.001),
137 starttheta = start.thetas)

138 print (Sys.time () — start.time)

140 print (7 ######HHHHHHH S R )
141 print (7 ####HHHHHHHHHHHHHHHHHHHHHHH SRR R R )
142 print (paste (" ############ This is iteration: 7, 1,7 ####H#H#H##H#H#HAT))
143 print (7 ####HAHHHHHHHHHHHHHHHHHH R R R
144 print (" ###AHHHHHHHH AR B R R R R AR R R AR RHRAR)

146 for(r in names(MQMC) ) {
147 print (summary (as.memc(MOMC[[r]])))

write.csv(x = MOMC,
file = paste (”LinearMixedModelINBAData_",1,” _iterationRcpp -2016—07—20.csv”,
sep=""))

=
H oH H

155 ### JAGS Code ###

157 set.seed(999)
iss for(l in 1 :iterations){
159 jagsfit <— jags.model(file = "LMM_nba.jags”,

160 data = list(’Response’ = ModelMatrixY ,

161 "MIN’ = nba.r$MIN,

162 cutoff’ = cutoff ,

163 N’ = length (ModelMatrixY) ,

164 P’ = ncol(ModelMatrixX) ,

165 'q’ = ncol(ModelMatrixZ) ,

166 ’prior.mean’ = as.vector(prior.mean.beta),
167 ’prior.precision’ = solve(prior.cov.beta),
168 “tau_prior _shape’ = ¢(0.001, 0.001),

169 “tau_prior_rate’ = ¢(0.001, 0.001)),

170 inits = list(’Beta’= as.vector(beta.hat),’tau_e’ = 1, “tau_u’ =
171 u’ = u.hat),

172 n.chains=1,

173 n.adapt=0

174 )

175 start.time <— Sys.time ()
177 update (jagsfit , 500000) # Obtain first 100,000 (burnin draws)

179 MOMC. out <— coda.samples(jagsfit ,

180 var = c(”Beta”, "u”, 7sigma_e”, "sigma_u”),

181 n.iter = 500000, # Obtain the main 100,000 draws
182 thin = 1)

183 print(Sys.time() — start.time )

184 print (Sys.time() — start.time)

186 print (7 ####HHEHHHH S R R )
187 print (7 ####H#HH#H R R )
188 print (paste (" ############ This is iteration: 7, 1,7 ##HH##H##H##H#HT))
189 print (7 ######HHHHHHHHHHH R )
190 print (7 ###HSFHHHHHH A A A R R )

192 print (summary (MCMC. out)) # Notice the iterations being used

193 # write.csv(x = MCMC,

194 # file = paste(”LinearMixedModeINBAData_",1,” _iterationJAGS _2016—07—20.csv”,
195 # sep=""))
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196

Listing C.5: Linear Mixed Model with Normally Distributed Random effects R Work Flow

jagsfit input description:

Response: A numeric vector of observed data for linear model
MIN: A numeric vector of observed data for the predictor variable MIN for linear model of NBA

cutoff: A numeric vector of cumulatively summed entries of the number of players in each team of
the NBA 2015 season data used for the random effect

N: Sample size of the observed values

P: The number of columns for the model matrix of linear model, i.e. (Number of predictors used for
linear model) + 1

q: The number of teams considered for the model based on the data set
prior.mean: A numeric vector for the mean parameter of the normal distribution of 3

prior.precision: A numeric matrix for the covariance matrix parameter of the normal distribu-
tion of 8

tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
-

tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7

Beta: A numeric vector of initial values for MCMC for 3
tau_e: A numeric value for initializing MCMC for 7,
tau_u: A numeric value for initializing MCMC for 7,

u: A numeric vector of initial values for MCMC of u

C.23

Julia

1 using Distributions , DataFrames

> srand (

function GibbsLMM(iterations , burnin, nthin, Response, ModelMatrixX, ModelMatrixZ,
prior-mean_beta , prior_-cov_beta , prior-gamma_shape, prior_-gamma_.rate, start_theta)

X =
7 =
y =

1234)

ModelMatrixX
ModelMatrixZ
Response

Sigma_beta = prior_cov_beta
Sigma_beta_inv = inv(Sigma_beta)
mu_beta = prior_mean_beta

Qo ZE o

XX
tXZ
tZX
tZZ
tXy
tZy

thet

prior_gamma_shape
prior_gamma_rate
(X Z]

= length(y)
= size (X, 2)
= size(Z, 2)

=X’
= X’
=7
7’
X’
7’

* K X X X X
<< N XN X

as = fill (0.0, iterations , p+q)
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lambdas = fill (0.0, iterations , 2)
sigmas = fill (0.0, iterations , 2)
temp_thetas = start_theta
temp_-lambdas = fill (0.0, 1, 2)
temp_sigmas = fill (0.0, 1, 2)

eta

= fill (0.0, q)

postrate_e = 0.0

postshape_e = 0.0

V_.inv = fill (0.0, p+q, p+q)
D_eta = diagm(fill (1.0,q))
postshape_e = a[l] + N % 0.5
postshape_u = a[2] + q * 0.5

for

end

for

i in 1:burnin
postrate_e = b[l] + (vecnorm(y — W * temp_thetas)”"2)/2

postrate_u = b[2] + (vecnorm(D_eta * temp-thetas[(p+1):end])"2)/2

temp_lambdas[1] = rand (Gamma(postshape_e, 1.0/ postrate_e))
temp_lambdas [2] = rand (Gamma(postshape_u, 1.0/postrate_u))
temp-sigmas[1] = 1.0/sqrt(temp_lambdas[1])
temp-sigmas[2] = 1.0/sqrt(temp-lambdas[2])

topleft = temp_-lambdas[1] * tXX + Sigma_beta_inv

topright = temp_lambdas[1] x tXZ

botleft = temp-lambdas[1] * tZX

botright = temp_lambdas[l] % tZZ + temp_lambdas[2] % D_eta

V_inv = [topleft topright; botleft botright]
V = inv(V._.inv)

terml = (temp_lambdas[1l] * tXy) + (Sigma_beta_inv * mu_beta)

term2 = temp-lambdas[1] x tZy
zeta = [terml; term?2]

Vchol=transpose (chol (V))
temp-thetas = (V x* zeta) + (Vchol * rand(Normal(0,1),p+q))

i in l:iterations

for nth in nthin

postrate_e = b[1] + (vecnorm(y — W *x temp_thetas)"2)/2

postrate_u = b[2] + (vecnorm(D_eta"0.5 * temp-_thetas[(p+1):end])"2)/2

temp_lambdas[1] = rand (Gamma(postshape_e, 1.0/ postrate_e))
temp_-lambdas [2] = rand (Gamma(postshape_-u, 1.0/postrate_u))
temp_sigmas[1] = 1.0/sqrt(temp_lambdas[1])
temp-sigmas [2] 1.0/sqrt(temp-lambdas[2])

topleft = temp_lambdas[1] * tXX + Sigma_beta_inv

topright = temp_lambdas[1] x tXZ

botleft = temp_-lambdas[1] * tZX

botright = temp_-lambdas[l] * tZZ + temp-lambdas[2] x D_eta

V_.inv = [topleft topright; botleft botright]
V = inv(V._.inv)

terml = (temp_lambdas[l] % tXy) + (Sigma_beta_inv * mu_beta)

term2 = temp-lambdas[1] * tZy
zeta = [terml; term2]

Vchol=transpose (chol(V))
temp_thetas = (V x zeta) + (Vchol % rand(Normal(0,1),p+q))

end

end

thetas[i,:] = temp_thetas’
lambdas[i, :] = temp-lambdas
sigmas[i, :] = temp-sigmas

return [thetas sigmas]

end

# Create .csv files from R and import into Julia
Y = readtable (" nbadaty.csv”) # Response variable
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s X = readtable (" nbadatx.csv”)

9w Z = readtable (" nbadatz.csv”)

o initialtheta = readtable(”nbadatinit.csv”) # list of starting values
01 DatX = convert (Array{Float64 ,2}, X)[:,2:end]

12 DatY = convert (Array{Float64 ,2}, Y)[:,2:end]

03 DatZ = convert (Array{Float64 ,2}, Z)[:,2:end]

04+ thetastart = convert(Array{Float64 ,2}, initialtheta)[:,2]

s iterations = 5

o for 1 in 1l:iterations

110 @time dataoutput = GibbsLMM (500000, 500000, 1, DatY, DatX, DatZ, [0
eye(2) = 100, [0.001, 0.001], [0.001,0.001], thetastart)

11 describe (convert(DataFrame, dataoutput))

12 # writedlm (string ("LME_normal—effects_",1,”.txt”),dataoutput)

113 end

for chain

.26872485; 0.07814486],

Listing C.6: Julia Code

GibbsLMM input description:

iterations: Netlength of MCMC chain for main sample

Burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector for the mean parameter of the normal distribution of 3

prior_cov_beta: A numeric matrix for the covariance matrix parameter of the normal distribution

of 8

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T, and T, respectively

start_theta: A concatenated numeric vector of initial values for MCMC of 8 and u

C.24 MATLAB

function [thetas , sigmas] = GibbsLMM(iterations , burnin, nthin, Response, ModelMatrixX,
ModelMatrixZ , prior-mean_beta, prior_-cov_beta, prior_gamma_shape, prior_-gamma-_rate ,
start_theta)

» X = ModelMatrixX ;

1+ Z = ModelMatrixZ;

s 'y = Response;

6 Sigma_beta = prior_cov_beta;
Sigma_beta_inv = inv(Sigma_beta);

¢ mu_beta = prior_mean_beta;

9 a = prior-gamma_shape;

10 b = prior_.gamma._rate;

n W= [X, Z];

2 N length (y);

3 p = size(X, 2);
q size(Z, 2);
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6 XX = X' % X;

7 tXZ = X x Z;

s tZX = 7Z° x X;

v tZZ = 7Z° * Z;

0 tXy = X' o y;

0 tZy =720 x y;

23 thetas = repmat(0.0, iterations , p+q);
24 lambdas = repmat (0.0, iterations , 2);
»5 sigmas = repmat (0.0, iterations , 2);

% temp_thetas = start_theta;

27 temp-lambdas = repmat(0.0,1,2);
s temp-sigmas = repmat(0.0,1,2);
» eta = repmat(0.0, q,1);
postrate_e = 0.0 ;

postshape_e = 0.0;

V_inv = repmat (0.0, p+q,p+q);
D_eta = eye(q);

postshape_e = a(l) + N % 0.5;
v postshape_u = a(2) + q * 0.5;
37 for i = 1:burnin
38 postrate_e = b(1l) + (norm(y — W % temp_thetas)"2)/2;

39 postrate_u = b(2) + (norm(D_eta”0.5 * temp-thetas ((p+1):end))"2)/2;

4
4 temp_lambdas (1) =gamrnd(postshape_e , 1/postrate_e ,1);
) temp_lambdas (2) = gamrnd(postshape_u, 1.0/postrate_u);
|

3 temp_sigmas (1) = 1.0/sqrt(temp-lambdas(1));
44 temp-sigmas (2) = 1.0/sqrt(temp-lambdas(2));
s
46 topleft = temp_-lambdas (1) * tXX + Sigma_beta_inv;
| topright = temp_lambdas (1) * tXZ;
48 botleft = temp_-lambdas (1) * tZX;
9 botright = temp_lambdas (1) % tZZ + temp_lambdas(2) % D_eta;
50
51 V_inv = [topleft, topright; botleft, botright];
52 V = inv(V_.inv);
54 terml = (temp_lambdas(l) x tXy) + (Sigma_beta_inv * mu_beta);
55 term2 = temp-lambdas (1) x tZy;
56 zeta = [terml; term2];
58 Vchol=transpose (chol(V));
59 temp-_-thetas = (V x* zeta) + (Vchol * normrnd(0,1,p+q,1) );
60 end
o for i = l:iterations
62 for nth = 1:nthin
63 postrate_e = b(1l) + (norm(y — W % temp_thetas)"2)/2;
64 postrate_u = b(2) + (norm(D_eta”0.5 * temp-thetas ((p+1):end))"2)/2;
65
66 temp_lambdas (1) =gamrnd(postshape_e , 1/postrate_e ,1);
67 temp_-lambdas (2) = gamrnd(postshape_u, 1.0/postrate_u);
68 temp_sigmas (1) = 1.0/sqrt(temp_lambdas(1));

69 temp-sigmas (2) = 1.0/sqrt(temp-lambdas(2));

71 topleft = temp_lambdas (1) * tXX + Sigma_beta_inv;
topright = temp_lambdas (1) x tXZ;
73 botleft = temp_-lambdas (1) * tZX;
74 botright = temp_-lambdas (1) x tZZ + temp-lambdas(2) = D_eta;

76 V_.inv = [topleft, topright; botleft, botright];
) V = inv(V_.inv);

9 terml = (temp_lambdas(l) * tXy) + (Sigma_beta_inv * mu_beta);

80 term2 = temp-lambdas (1) * tZy;

81 zeta = [terml; term2];

82

83 Vchol=transpose (chol(V));

84 temp_thetas = (V % zeta) + (Vchol % normrnd(0,1,p+q,1) );
85 end

86 thetas(i,:) = temp_thetas ’;

87 lambdas (i, :) = temp-lambdas;

88 sigmas (i, :) = temp._sigmas;
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s end

90

91 end

Listing C.7: MATLAB code

GibbsLMM input description:

iterations: Net length of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector for the mean parameter of the normal distribution of 3

prior_cov_beta: A numeric matrix for the covariance matrix parameter of the normal distribution

of 8

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T and T, respectively

start_theta: A concatenated numeric vector of initial values for MCMC of 8 and u

CJ3
C3.1

Proper Priors — t-Distributed Random Effects

Source code

o HHHHHHHHAHHHAHHHAH
3 ### R Function ###
| HEHH R R

6 GibbsLMMt = function (iterations , burnin, nthin, Response, ModelMatrixX, ModelMatrixZ ,

X <
y <=
7 <—

prior _mean_beta, prior_cov_beta, prior_gamma-shape,
prior gamma_rate , df, start_theta){

ModelMatrixX
Response
ModelMatrixZ

Sigma_beta <— prior _cov_beta
Sigma_beta_inv <— solve(prior_cov_beta)
mu_beta <— prior _mean_beta

a <—
b <—

N <
p <
q <=
W <—

prior _gamma_shape # Shape for e and u
prior _gamma_rate # Rate for e and u

length (y) # sample size

ncol (X) # number of columns of X
ncol (Z) # number of columns of Z
cbind (X, Z)

XX <— t(X) %% X
XZ <— t(X) %% Z
tZX <— t(Z) %% X
(ZZ <— ((Z) %% Z
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tXy <— t(X) %% y
tZy <— t(Z) %% y

thetas <— matrix (NA, nrow = iterations ,
lambdas <— matrix (NA, nrow = iterations ,
temp_thetas = start_theta # (beta, u)

temp _lambdas = c(0,0) #(lambda_e, lambda_u)

eta = rep

V_inv = matrix (NA , nrow = p + q, ncol =

0, q)

D_eta = diag(q)

for (j in

1 : burnin){

test = y— (W %+% temp _thetas)

Fnorm =

norm(x = test, type="F")

ncol = {p+q})
ncol = 2)

p+q)

temp _lambdas[1] = rgamma(l, a[l] + N % 0.5, b[1] + (Fnorm"2) x 0.5)

SecondFnorm = norm(x = D_eta %% temp -

thetas [(p+1):(p+q) ], type = "F”)"2

temp _lambdas [2] = rgamma(l, a[2] + q * 0.5, b[2] + SecondFnorm=*0.5)
for(l in 1:q){

eta[l

}

] = sqrt(rgamma(l, (df+1)x 0.5,

(df+temp _lambdas[2]«temp _thetas [p+1]°2)%0.5))

T_lambda = temp_lambdas[l] * tXX + Sigma_beta_inv
T_lambda _inv = chol2inv (chol (T_lambda)

)

M_lambda = diag(N) — temp-_lambdas[1] * X %% T_lambda_inv %% t(X)

D_eta =

diag(eta)

Q_lambda_eta = temp_lambdas[1l] * t(Z) %+% M_lambda %+% Z + temp_lambdas[2] % D_eta

V_inv[1
V_inv|[1

V_inv [{p+1}:{p+q}, {p+1}:{p+q}] <—

V <~ ch

:p, l:p] <— T_lambda

:p, {p+1}:{p+q}] <~ temp_lambdas[1] * tXZ
V_inv[{p+1}:{p+q}, 1l:p] <— temp_lambdas[1] = tZX

ol2inv (chol(V_inv))

temp_lambdas[1] % tZZ + temp-lambdas[2] * D_eta

NextTerml <— temp_lambdas[1] = tXy + Sigma_beta_inv %+% mu_beta
NextTerm2 <— temp_lambdas[1] * tZy

zeta <—

c¢(NextTerml, NextTerm2)

Vchol <— t(chol(V)) # cholesky decomposition
temp_thetas <— V %% zeta + Vchol %+% rnorm (p+q)

}

for(i in

for (j
test=
Fnorm
temp -

temp _
for (1

eta
}

1 : iterations){

in 1 : nthin){

y— (W %% temp_thetas)

= norm(x = test, type="F")

lambdas[1] = rgamma(l, a[l] + N %« 0.5, b[1] + (Fnorm~2) % 0.5)
SecondFnorm = norm(x = D_eta %% temp_thetas [(p+1):(p+q)], type = "F’)"2
lambdas [2] = rgamma(l, a[2] + q * 0.5, b[2] + SecondFnorm=*0.5)

in 1:q){

[1] = sqrt(rgamma(l, (df+1)x 0.5, (df+temp_lambdas[2]*temp_thetas[p+1]°2)%0.5))

T_lambda = temp_lambdas[1] * tXX + Sigma_beta _inv

T_lambda_inv =

M_lambda = diag(N) — temp_lambdas[1]

D_eta

= diag(eta)

chol2inv (chol (T_-lambda))

* X %% T _lambda _inv %% t(X)

Q_lambda_eta = temp_lambdas[1l] * t(Z) %+% M_lambda %+% Z + temp_lambdas[2] % D_eta

V_inv
V_inv
V_inv
V_inv

V <

[1:p, 1l:p] <— T_-lambda

[I:p, {p+1}:{p+q}] <— temp_lambdas[1] * tXZ
[{p+1}:{p+q}, 1:p] <— temp_lambdas[1] =* tZX

({p+1}:{p+q}, {p+1}:{p+q}l <

chol2inv (chol(V_inv))

temp_lambdas[1] * tZZ + temp-lambdas[2] % D_eta
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}

NextTerml <— temp_lambdas[1] * tXy + Sigma_beta_inv %% mu_beta
NextTerm2 <— temp_lambdas[1l] * tZy

zeta <— c(NextTerml, NextTerm2)

Vchol <— t(chol(V)) # cholesky decomposition
temp_thetas <— V %% zeta + Vchol %% rnorm (p+q)

thetas[i , ] <— temp_thetas
lambdas[i , ] <— temp_lambdas

}

sigmas <— 1 / sqrt(lambdas)

return( list( beta = thetas[, l:p], group = thetas[, {p+1}: {p+q}], sigma

}

HHHHHHHAH R AR AR

> ### Rcpp Function ###

HHHHHHHAH R AR

src_eigen _imp<—

using
using
using
using
using

’

Eigen :: Map ;
Eigen :: MatrixXd ;

Eigen :: VectorXd ;
Eigen :: Vector2d ;
Repp :: as

3 typedef Eigen :: Map<Eigen :: MatrixXd> MapMatd ;

typedef Eigen :: Map<Eigen:: VectorXd> MapVecd ;

int MCMCiter = Rcpp::as<int >(iterations);
int burnin = Rcpp :: as<int >(Burnin);

int n_

thin = Rcpp :: as<int>(nthin);

int df = Rcpp :: as<int >(DF);

Rcpp

> Rcpp

Rcpp
Repp

5 Repp

const
const
const
const
const

const
int N

Rcpp
const

) Repp
i1 Repp

Repp

const
const

const
const
const
const
const
const

NumericMatrix Xc(ModelMatrixX) ;
NumericMatrix Zc(ModelMatrixZ) ;
NumericMatrix Sigma_betac (prior_cov_beta) ;
NumericVector yc(Response) ;

NumericVector mu_betac (prior —_mean_beta) ;

MapMatd X(Rcpp :: as<MapMatd>(Xc)) ;

MapMatd Z(Rcpp :: as<MapMatd>(Zc)) ;

MapMatd Sigma_beta (Rcpp :: as<MapMatd>(Sigma_betac)) ;
MapVecd y(Rcpp :: as<MapVecd>(yc))

MapVecd mu_beta (Rcpp :: as<MapVecd>(mu_betac)) ;

MatrixXd Sigma_beta_inv = Sigma_beta.inverse () ;
=y.rows(), p = X.cols(), q = Z.cols() ;

NumericVector startthetac (starttheta) ;
MapVecd start _theta (Rcpp::as<MapVecd>(startthetac)) ;

NumericVector ac(prior_gamma-shape) ;
NumericVector bc(prior_gamma_rate) ;

NumericMatrix D_Eta(q,q) ;

MapVecd a(Rcpp::as<MapVecd>(ac)) ;
MapVecd b(Rcpp::as<MapVecd>(bc)) ;

MatrixXd tXX =
MatrixXd tXZ
MatrixXd tZX
MatrixXd tZZ
VectorXd tXy
VectorXd tZy =

.transpose ()
.transpose ()
.transpose ()
.transpose ()
.transpose ()
.transpose ()

11
£ X %X X * %

<< N M N M
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175 MatrixXd thetas (MCMCiter, p+q) ;

176 MatrixXd sigmas (MCMCiter, 2) ;

177 thetas.col(0) = start_theta ;

178 VectorXd temp_thetas = start_theta ;

179 VectorXd temp_lambdas(2); temp_lambdas << 0, 0 ;

151 VectorXd zeta(p+q) ;

1s2 MatrixXd T-lambda(p,p) ;

133 MatrixXd T_lambda_inv (p,p);

184 MatrixXd M_lambda (N,N) ;

155 MatrixXd Q_lambda_eta(q.,q) ;

186 MatrixXd V_inv (p+q, p+q) ;

137 MatrixXd V(p+q, p+q) ;

158 const MatrixXd identity N = MatrixXd :: Identity (N,N) ;
19 MatrixXd test(N,1) ;

191 MatrixXd W(N, p+q) ;
192 W. leftCols (p) = X ;
193 W.rightCols(q) = Z ;

19s double FNorm ;
196 double SecondFNorm ;

197 MatrixXd D_eta = Rcpp :: as<MapMatd>(D_Eta);

199 RNGScope scp ;

20 Repp :: Function rnorm(”rnorm”) ;

201 Repp :: Function rgamma(”rgamma™) ;

20 Repp :: Function fnorm(” frobenius.norm”) ;

203

204 MapVecd normals = Rcpp::as<MapVecd>(Rcpp:: rnorm(p+q)) ;
205

06 for(int j = 0; j < burnin; j++){

207

08 test =y — (W x temp_thetas) ;
210 FNorm = Rcpp :: as<double >(fnorm(test)) ;

20 temp-lambdas [0] = Rcpp :: as<double >(Rcpp :: rgamma(l, a[0] + N
) =

[ 0.5
213 1.0 / (b[0] + pow(FNorm , 2.0 5)

g3 ’
0. ) )

215 SecondFNorm = temp_thetas.tail (q).transpose () = D_eta * temp_thetas.tail(q) ;

217 temp-lambdas[1] = Rcpp :: as<double >(Rcpp :: rgamma(l, a[l] + q * 0.5 |,
218 1.0 / ( b[1] + SecondFNorm * 0.5 ) ) ) ;
219

20 T_lambda = temp_lambdas[0] * tXX + Sigma_beta_inv ;
222 T_lambda_inv = T_lambda.inverse () ;
24 M_lambda = identity N — temp_lambdas[0] % X % T_lambda_inv % X.transpose () ;

26 for (int k = 0; k < q; k++) {

»7 D_Eta(k,k) = sqrt(Rcpp :: as<double>(Rcpp :: rgamma(l , (df + 1) %= 0.5 ,

28 1.0 / ((df + temp-lambdas[1l] % pow(temp_thetas[p + k], 2.0 ) ) % 0.5 )))) ;
29 }

31 D_eta = Repp :: as<MapMatd>(D_Eta) ;
32 Q_-lambda_eta = temp_lambdas[0] % Z.transpose () * M_lambda * Z + temp_lambdas[1] * D_eta ;

234 V_inv.topLeftCorner(p, p) = T_-lambda ;

235 V_inv.topRightCorner(p, q) = temp_lambdas[0] * tXZ ;

236 V_inv.bottomLeftCorner(q, p) = temp-_lambdas[0] * tZX ;

237 V_oinv . bottomRightCorner(q, q) = temp-lambdas[0] * tZZ + temp-lambdas[l] * D_eta ;
28 V.= V_inv.inverse () ;

40 zeta.head(p) = temp-lambdas[0] * tXy + Sigma_beta_inv % mu_beta ;
241 zeta.tail (q) = temp_lambdas[0] * tZy ;

243 normals = Rcpp::as<MapVecd>(Rcpp::rnorm(p+q)) ;
s temp_thetas = V % zeta + V.11t ().matrixL () % normals ;

246

47}
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248
249

25

251

252

256

275
276
77
278

279

12
=2

28

282
283
284
285
286

28

3

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311

316

for(int i = 0; i < MCMCiter; i++){
for(int j = 0; j < n-thin; j++){
test =y — (W x temp_thetas) ;
FNorm = Rcpp :: as<double >(fnorm(test)) ;
temp_lambdas[0] = Rcpp :: as<double >(Rcpp :: rgamma(l, a[0] + N % 0.5 ,
1.0 / (b[0] + pow(FNorm , 2.0 ) * 0.5 ) ) ) ;
SecondFNorm = temp_thetas.tail(q).transpose() * D_eta * temp_thetas.tail(q) ;

temp _lambdas[1] = Rcpp :: as<double >(Rcpp :: rgamma(l, a[l] +

T_lambda
T_lambda
M_lambda

for (int
D_Eta (k,

}
D_eta =
Q_-lambda

V_inv. to
V_inv. to

q * 0.5 ,
1.0 / ( b[1] + SecondFNorm * 0.5 ) ) ) ;
= temp-lambdas[0] x tXX + Sigma_beta_inv ;

_inv = T_lambda.inverse () ;

= identity N — temp_lambdas[0] % X % T_lambda_inv * X.transpose () ;

k =0; k < q; k++) {
k) = sqrt(Rcpp :: as<double >(Rcpp :: rgamma(l , (df + 1) * 0.5 ,

1.0 / ((df + temp_lambdas[1l] % pow(temp_thetas[p + k], 2.0 ) ) x 0.5 ))))

Rcpp :: as<MapMatd>(D_Eta) ;

_eta = temp_lambdas[1] % Z.transpose () = M_lambda % Z + temp_lambdas[1] * D_eta

pLeftCorner(p, p) = T_-lambda ;
pRightCorner(p, q) = temp-_lambdas[0] x tXZ ;

V_inv.bottomLeftCorner(q, p) = temp_lambdas[0] * tZX ;
V_inv.bottomRightCorner(q, q) = temp_lambdas[0] * tZZ + temp_lambdas[1] * D_eta

V = V_inv.inverse () ;

zeta . hea
zeta . tai

d(p) = temp_lambdas[0] * tXy + Sigma_beta_inv % mu_beta ;
1(q) = temp_-lambdas[0] * tZy ;

normals = Rcpp::as<MapVecd>(Rcpp::rnorm(p+q)) ;
temp_thetas = V % zeta + V.1It ().matrixL () * normals ;
}

thetas .row(i) = temp-_thetas ;

sigmas.row(i) = 1 / temp_lambdas.array ().sqrt() ;

}

Matrix Xd
Matrix Xd

betas = thetas.leftCols(p);
us = thetas.rightCols(q);

return Rcpp:: List::create(

Rcpp ::Named(” beta™) = betas,
Rcpp :: Named(” group”) = us,

Rcpp ::Named(”sigma”) = sigmas);

GibbsLMMtcpp = cxxfunction(signature (iterations = "int”, Burnin = “int

#HHHHHHH

2 ”»

nthin
Response = "numeric”,
ModelMatrixX = “numeric”,
ModelMatrixZ = “numeric”,
prior _mean_beta = “numeric”,
prior _cov_beta = “numeric”,
prior _gamma_shape = “numeric”,
prior _gamma_rate = “numeric”, DF =
starttheta = “numeric”),
src_eigen_imp, plugin="RcppEigen™)

» 2

int”,

HAHHHHAHHHH
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var
Response [N], Beta[P], MIN[N], u[q], cutoff[q+1],

prior .mean[P], prior.precision[P, P], mu[N],

tau_prior_shape[2], tau_prior_rate[2], tau_e, tau_u, tau[N], df;
model {

# Likelihood specification

for(i in 1:q){
for(k in (cutoff[i]+1):cutoff[i+1]){
Response[k] ~ dnorm(mu[k], tau[k])

mu[k] <— Beta[l] + Beta[2] * MIN[k] + u[i]

tau[k] <— 1/((1 / tau-e) + (1 / tau_-u))

ul[i] 7 dt(0, tau_u, df)

# Prior specification

Beta[] ~ dmnorm( prior.mean[], prior.precision/[,])

tau_u ~ dgamma(tau _prior_shape[l], tau_prior_rate[1])
tau_e ~ dgamma(tau_prior_shape[2], tau_prior_rate[2])
sigma_e <— sqrt(l / tau_e)

sigma_u <— sqrt(l / tau_u)

b

file="LMM_nba.jags”)

Listing C.8: Linear Mixed Model with t-Distributed Random effects R Source Code

GibbsLMMt input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e ModelMatrixZz: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

e prior_mean_beta: A numeric vector that provides the mean parameter for the prior distribution of

B

e prior_cov_beta: A numeric matrix that provides the covariance matrix for the prior distribution

of 8

e prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

e prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T, and 7, respectively

e df: A numeric value for the degrees of freedom for the distribution of u

e start_theta: A concatenated numeric vector of initial values for MCMC of /3 and u

GibbsLMMtcpp input description:
e iterations: Netlength of MCMC chain for main sample

e Burnin: Number of draws for MCMC chain to initialize before main sample
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nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model
ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector that provides the mean parameter for the prior distribution of

B

prior_cov_beta: A numeric matrix that provides the covariance matrix for the prior distribution

of 8

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7, and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T, and T, respectively

DF': A numeric value for the degrees of freedom for the distribution of u

start_theta: A concatenated numeric vector of initial values for MCMC of 8 and u

C3.2

R/Rcpp/JAGS Workflow

getwd ()
setwd ()

s #call

HH o oH o H

libraires and source

install .packages (”nlme”)
install . packages (”Rcpp”)
install . packages (”RcppEigen”)
install .packages(”coda”)
install . packages(”inline”)
install .packaegs (” matrixcalc™)
install .packages(”rjags”)

library (nlme)
library (Rcpp)
library (RcppEigen)
library (coda)
library (inline)
library (matrixcalc)
library (rjags)

source ("LinearMixedModel _t—effects _.NBAsource _-2016—08—09.R”)

getwd ()
setwd ()

nba <— read.csv(file="NBA2015Data.csv”, header=TRUE)

HHHHHHH R AR AR R R R R

#

Frequentist analysis #

HHHFH R R R R R R

# Let’

s model log(PTS) vs MIN; log = natural log

# But now we treat the TEAM variable as a random effect

# Be careful a few players have PTS=0
which (nba$PTS==0)
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2 # Let’s look at their data
4 nba[which (nba$PTS==0), ]

v nba.r <— subset(nba, GP>5 & PTS>0)

s nba.r <— nba.r[order(nba.r$TEAM), ]

s # sort data by team ; this is very important for our “home—made” Gibbs sampler.
2 nba.r$log .PTS <— log(nba.r$PTS)

s0 team.size <— as.numeric(table (nba.r$TEAM))

si cutoff <— cumsum(c(0,team.size))

s+ log. fit.mixed <— lme(log.PTS ~ MIN, random = ~1 | TEAM, data = nba.r)

s # Make sure that the data are sorted by TEAM
57 ModelMatrixY <— log(nba.r$PTS)

s9 log.fit.fixed <— Im(log(PTS) ~ MIN, data=nba.r)

o0 ModelMatrixX <— model. matrix (log. fit.fixed) # trick to get the ModelMatrixX matrix
61

62 log. fit.random <— Im(log (PTS) =~ TEAM — 1, data=nba.r)

3 ModelMatrixZ <— model. matrix (log. fit.random) # trick to get ModelMatrixZ matrix

64

6s beta.hat <— as.vector(log.fit.mixed$coeff$fixed)

66 u.hat <— coefficients (log.fit.mixed)[ , 1] — as.vector(log. fit.mixed$coeff$fixed)[1]
67 start.thetas <— c(beta.hat, u.hat)

6 prior.mean.beta = rep(0.0, ncol(ModelMatrixX))
70 prior.cov.beta = diag(ncol(ModelMatrixX)) = 100
71 tau.prior.rate = 1
72 tau.prior.shape = 1

72 beta.hat <— solve (t(ModelMatrixX )%+%ModelMatrixX) %*% t(ModelMatrixX) %+% ModelMatrixY

75 iterations = 1

so ### R Code ###
s set.seed(999)

s3 for(l in 1 :iterations){
84 start.time<—Sys.time ()
85 output = GibbsLMMt(iterations = 500000, burnin = 500000, nthin = 1,

86 ModelMatrixX = ModelMatrixX , ModelMatrixZ = ModelMatrixZ ,

87 Response = ModelMatrixY , prior_mean_beta = beta.hat,

88 prior _cov_beta = diag(ncol(ModelMatrixX))=100,

89 prior _gamma_shape = c¢(0.001, 0.001), prior_gamma_rate = c¢(0.001,0.001),
90 df = 100, start_theta = start.thetas)

91 Sys.time () — start.time

93 print (7 #####HHHHHH A )
94 print (7 ####HHHHHHHH A A SRR R R R AR A
95 print (paste (V############ This is iteration: 7, 1,7 ##H###H#H#H#HH#HART))
96 print (7 #####HEHHHHH A S SR R R R AR )
97 print (7 ######HHH#H A )

99 for(r in names(output)){
100 print (summary (as.memc(output[[r]])))

101
}
102 write.csv(x = MCMC,
103 file = paste ("LME_.T—Effects NBAData_",1,” _iterationR _2016—07—29.csv”,
104 sep=""))
105 }

07 ### Rcpp Code ###

o set.seed(999)

m for(l in 1 :iterations){
12 start.time<—Sys.time ()

13 output = GibbsLMMitcpp(iterations = 500000, nthin = 1, Burnin = 500000, DF = 100,
114 starttheta = start.thetas , ModelMatrixX = ModelMatrixX ,
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134}

ModelMatrixZ = ModelMatrixZ, Response = ModelMatrixY ,
prior _mean_beta = beta.hat,
prior _cov_beta = diag(ncol(ModelMatrixX)) * 100,
prior _gamma_rate = ¢(0.001, 0.001),
prior _gamma_shape = ¢(0.001,0.001) )

Sys.time () — start.time

print (" ###AHHHHHHHHAHHHHBHHHAHHHHHHHHAHHHH BRI B RARAR)
print (7 ######HHHHHHH S )
print (paste (7 ############ This is iteration: 7, 1,7 ####H#HH##H#H#H#HAT))
print (7 ######HHHHHHH SRR )
print (7 ####HHHHHHHHHHHHHHHHHHHBHHHHHHH AR R H B R R R

for(r in names(output)){
print (summary (as.memc(output[[r]])))

write.csv(x = MCMC,

FH o

sep=""))

136 ### JAGS Code ###

35 set.seed(999)
o for(l in 1 :iterations){

set.seed(999)
jagsfit <— jags.model(file = "LMM_nba.jags”,

data = list(’Response’ = ModelMatrixY ,
"MIN® = nba.r$MIN,
cutoff’ = cutoff ,
N’ = length (ModelMatrixY) ,
P’ = ncol(ModelMatrixX) ,
'q’ = ncol(ModelMatrixZ) ,
prior.mean’ = as.vector(prior.mean.beta),
‘prior.precision’ = solve(prior.cov.beta),
*df’ = 100,
>tau_prior _shape’ = ¢(0.001, 0.001),
“tau_prior_rate’ = ¢(0.001, 0.001)),
inits = list(’Beta’= as.vector(beta.hat),’tau_e’ = 1,

u’ = u.hat),
n.chains=1,
n.adapt=0

start.time <— Sys.time ()
update (jagsfit , 500000) # Obtain first 100,000 (burnin draws)

MOMC. out <— coda.samples(jagsfit ,

var = c(”Beta”, "u”, 7sigma_e”, "sigma_u”),
n.iter = 500000, # Obtain the main 100,000 draws
thin = 1)

print (Sys.time() — start.time)

# write.csv(x = as.mcmc(MOMC. out) ,

# file = paste (”LinearMixedModeINBAData_multiple _length _",1

# ,”_iterationJAGS _2016—08—03.csv”,sep=""))

print (7 ####HAHHHAHHHHHHAHHHHHHHHHH R R H R )
print (" ###F#HHHHHHHHHHHH B R R R AR R AR R AR
print (paste (7 ############ This is iteration: 7, 1,7 ###HHHH####H#HHE))
print (" ###AFHHHHHHHAHHHHHHHHAHHHHHHH AR R R R HHRAR)
print (7 ######HHH#HHH )

print (summary (MCMC. out)) # Notice the iterations being used

file = paste ("LME_T—Effects _NBAData_",1,” _iteration _Rcpp-2016—07—29.csv”,

Listing C.9: Linear Mixed Model with t-Distributed Random effects R Work Flow
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jagsfit input description:

e Response: A numeric vector of observed data for linear model
e MIN: A numeric vector of observed data for the variable MIN for linear model of NBA

e cutoff: A numeric vector of cumulatively summed entries of the number of players in each team of
the NBA 2015 season data used for the random effect

e N: Sample size of the observed values

e P: The number of columns for the model matrix of linear model, i.e. (Number of predictors used for
linear model) + 1

e g: The number of teams considered for the model based on the data set
e prior.mean: A numeric vector for the mean parameter of the normal distribution of g

e prior.precision: A numeric matrix for the covariance matrix parameter of the normal distribu-
tion of (3

e tau_prior_shape: A numeric value that provides the shape parameter for the prior distribution of
T

e tau_prior_rate: A numeric value that provides the rate parameter for the prior distribution of 7
e df: A numeric value for the degrees of freedom for the distribution of u

e Beta: A numeric vector of initial values for MCMC for

e tau_e: A numeric value for initializing MCMC for 7,

e tau_u: A numeric value for initializing MCMC for 7,

e u: A numeric vector of initial values for MCMC of

C.3.3 Julia

1 using Distributions , DataFrames
> srand
; function GibbsLMMT (iterations , burnin, nthin, Response, ModelMatrixX , ModelMatrixZ ,

prior_mean_beta , prior_-cov_beta , prior_-gamma_shape, prior_-gamma-.rate, df, start_theta)

X =
z
y =

(1234)

ModelMatrixX
ModelMatrixZ
Response

Sigma_beta = prior_cov_beta

Sig

ma_beta_inv = inv(Sigma_beta)

mu_beta = prior_mean_beta

QT ZEoe

tXX
tXZ
tZX
tZZ
tXy
tZy

ite
the

prior_gamma_shape
prior_gamma_rate
[X 7]

= length(y)

size (X, 2)

= size(Z, 2)

X’
X’
7’
7’
X’
=7

Il
LR R

<< N XN X

r = iterations
tas = fill (0.0, iter, p+q)

lambdas = fill (0.0, iter, 2)
sigmas = fill (0.0, iter, 2)
temp-thetas = start_theta
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temp_-lambdas = fill (0.0, 1, 2)

temp_sigmas = fill (0.0, 1, 2)

eta = fill (0.0, q)

postrate_e = 0.0

postshape_e = 0.0

V_.inv = fill (0.0, p+q, p+q)

D_eta = diagm(fill (1.0,q))

for i in 1:burnin
postrate_e = b[1] + (vecnorm(y — W *x temp_thetas)"2)/2
postshape_e = a[l] + N = 0.5
postrate_u = b[2] + (vecnorm(D_eta”"0.5 % temp_thetas[(p+1):end])"2)/2
postshape_u = a[2] + q * 0.5

temp_lambdas[1] = rand (Gamma(postshape_e, 1.0/ postrate_e))
temp_-lambdas [2] = rand (Gamma( postshape_-u, 1.0/postrate_u))
temp_sigmas[1] = 1.0/sqrt(temp_lambdas[1])
temp-sigmas[2] = 1.0/sqrt(temp_-lambdas[2])

for(l in 1:q)
etarate = (df + temp-lambdas[2] % (temp-thetas[p+1])~"2 )/2
eta[l] = rand (Gamma((df + 1.0) / 2, 1.0/etarate) )

end

T_lambda = temp-_-lambdas[1] * tXX + Sigma_beta_inv

T_lambda_inv = inv(T_lambda)

M_lambda = eye(N) — (temp-lambdas[1] * X % T_lambda_inv * X’)

D_eta = diagm(eta)

Q_-lambda_eta = (temp_lambdas[l] % Z’ * M_lambda * Z) + temp_-lambdas[2] * D_eta

topleft = T_lambda

topright = temp-lambdas[1] x tXZ

botleft = temp_lambdas[1] * tZX

botright = temp_-lambdas[1] * tZZ + temp-lambdas[2] * D_eta

V_.inv = [topleft topright; botleft botright]
V = inv(V._.inv)

terml = (temp-lambdas[1l] % tXy) + (Sigma_beta_inv * mu_beta)
term2 = temp_lambdas[l] x tZy
zeta = [terml; term2]

Vchol=transpose (chol (V))
temp_thetas = (V % zeta) + (Vchol * rand(Normal(0,1) ,p+q))

end

for i in l:iter
for nth in nthin
postrate_e = b[1] + (vecnorm(y — W % temp-_thetas)"2)/2
postshape_e = a[l] + N % 0.5
postrate_u = b[2] + (vecnorm(D_eta”"0.5 * temp-_thetas[(p+1):end])"2)/2
postshape_u = a[2] + q * 0.5

temp_lambdas[1] = rand (Gamma(postshape_e, 1.0/ postrate_e))
temp_lambdas [2] rand (Gamma( postshape_u, 1.0/postrate_u))
temp-sigmas[1] 1.0/sqrt(temp_-lambdas[1])
temp_sigmas[2] = 1.0/sqrt(temp_lambdas[2])

for(l in 1:q)
etarate = (df + temp_lambdas[2] % (temp_thetas[p+1])"2 )/2
eta[l] = rand (Gamma((df + 1.0) / 2, 1.0/etarate) )

end

T_lambda = temp_lambdas[l] * tXX + Sigma_beta_inv

T_lambda_inv = inv(T_lambda)

M_lambda = eye(N) — (temp-lambdas[1] % X % T_-lambda_inv x X’)

D_eta = diagm(eta)

Q_-lambda_eta = (temp-lambdas[1] * Z’ % M_lambda *x Z) + temp-lambdas[2] * D_eta

topleft = T_lambda

topright = temp_lambdas[1l] x tXZ

botleft = temp-lambdas[1] = tZX

botright = temp_lambdas[l] % tZZ + temp_lambdas[2] % D_eta
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> Y
3 X

V_inv = [topleft topright; botleft botright]
V = inv(V._.inv)

terml = (temp-lambdas[1] * tXy) + (Sigma_beta_inv * mu_beta)
term2 = temp-lambdas[1l] x tZy
zeta = [terml; term2]

Vchol=transpose (chol (V))
temp-thetas = (V x* zeta) + (Vchol * rand(Normal(0,1),p+q))
end
thetas[i,:] = temp-_thetas’
lambdas[i, :] = temp-lambdas
sigmas[i, :] = temp_sigmas
end

return [thetas sigmas]

end
= readtable (" nbadaty.csv”)
= readtable (" nbadatx.csv”)

Z = readtable (" nbadatz.csv”)

initialtheta = readtable(”nbadatinit.csv”)

DatX = convert(Array{Float64 ,2}, X)[:,2:end]

DatY = convert(Array{Float64 ,2}, Y)[:,2:end]

DatZ = convert(Array{Float64 ,2}, Z)[:,2:end]

thetastart = convert(Array{Float64 ,2}, initialtheta)[:,2]

iterations = 2

» for 1 in 1l:iterations

@time dataoutput = GibbsLMMT (500000, 500000, 1, DatY, DatX, DatZ, [0.26872485; 0.07814486],
eye(2) = 100, [1.0, 1.0], [1.0,1.0], 100, thetastart)
describe (convert (DataFrame, dataoutput))
# writedlm (string ("LME_t—effects_",1,”.txt”),dataoutput)
end

Listing C.10: Julia code

GibbsLMMT input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e ModelMatrixZz: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

e prior_mean_beta: A numeric vector for the mean parameter of the normal distribution of 3

e prior_cov_beta: A numeric matrix for the covariance matrix parameter of the normal distribution

of 8

e prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

e prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T. and 7, respectively

e df: A numeric value for the degrees of freedom for the distribution of u

e start_theta: A concatenated numeric vector of initial values for MCMC of /3 and u
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C.3.4 MATLAB

function [thetas, sigmas] = GibbsLMMt_effects(iterations , burnin, nthin, Response,
prior_mean_beta , prior_cov_beta , prior_gamma_shape,
prior_gamma._rate , df, start_theta)

ModelMatrixX , ModelMatrixZ ,

3 X = ModelMatrixX ;

Z = ModelMatrixZ;

sy = Response;

v >
3 = g o B

temp_lambdas = repmat(0.0,1,2);
temp_sigmas = repmat(0.0,1,2);
eta = repmat(0.0, q,1);
postrate_e = 0.0 ;

postshape_e = 0.0;

; V_.inv = repmat (0.0, p+q,p+q);

D_eta = eye(q);
postshape_e a(l) + N %
postshape_u = a(2) + q *
for i = l:burnin

0.
0.

2) s
2);

, Sigma_beta = prior_cov_beta;
Sigma_beta_inv = inv(Sigma_beta);
mu_beta = prior-mean_beta;

a = prior_gamma-_shape;

b = prior_gamma_rate ;

W= [X, Z];

N = length(y);

p = size(X, 2);

q = size(Z, 2);

tXX = X’ x X;

tXZ = X* * Z;

tZX =7 * X,

tZ2 =7 * Z;

tXy = X' *x y;

tZy =72’ x y;

thetas = repmat(0.0, iterations , p+q);
lambdas = repmat (0.0, iterations ,
sigmas = repmat (0.0, iterations ,
temp-thetas = start_theta;

SE
5.

B

postrate_e = b(1l) + (norm(y — W % temp_thetas)"2)/2;
postrate_u = b(2) + (norm(D_eta”0.5 * temp-thetas ((p+1):end))"2)/2;

temp_lambdas (1) =gamrnd(postshape_e ,

temp_lambdas (2) = gamrnd(postshape_u,

I/postrate_e ,1);
1.0/ postrate_u);

temp_sigmas (1) = 1.0/sqrt(temp_lambdas(1));
temp-sigmas (2) = 1.0/sqrt(temp_-lambdas(2));

for I=1:q

etarate = (df + temp-lmabdas(2) * temp-thetas(p+1)~2)*0.5

eta(l) = gamrnd ((df+1)=0.5,

end

1/etarate)

T_lambda = temp_lambdas(l) x tXX + Sigma_beta_inv;
T_lambda_inv = inv(T_lambda);
M_lambda = eye(N) — (temp-lambdas(1l) *= X %= T_lambda_inv * X’);
Q_lambda_eta = (temp_-lambdas(1l) * Z’

topleft = T_lambda;

topright = temp_-lambdas (1) x tXZ;
botleft = temp_lambdas (1) * tZX;
botright = temp_lambdas (1) * tZZ + temp_lambdas(2) * D_eta;

V_.inv = [topleft, topright;

V = inv(V.inv);

botleft ,

* M_lambda * Z) + temp_lambdas(2) * D_eta;

botright];

terml = (temp-lambdas(l) * tXy) + (Sigma_beta_inv * mu_beta);
term2 = temp_lambdas(l) x tZy;

zeta = [terml; term2];

Vchol=transpose (chol(V));
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end
for

end

end

temp-thetas = (V * zeta) + (Vchol * normrnd(0,1,p+q,1) );

i = l:iterations
for nth = 1:nthin

postrate_e = b(1l) + (norm(y — W * temp-_thetas)"2)/2;
postrate_u = b(2) + (norm(D_eta”0.5 * temp-thetas ((p+1):end))"2)/2;

temp_-lambdas (1) =gamrnd(postshape_-e, 1/postrate_e ,1);
temp_lambdas (2) = gamrnd(postshape_u, 1.0/postrate_u);
temp-sigmas (1) = 1.0/sqrt(temp_-lambdas(1));
temp._sigmas (2) = 1.0/sqrt(temp_lambdas(2));

T_lambda = temp-lambdas (1) * tXX + Sigma_beta_inv;
T_lambda_inv = inv(T_lambda);
M_lambda = eye(N) — (temp-lambdas(l) = X % T_lambda_inv * X’);

Q_lambda_eta = (temp-lambdas(l) % Z’ % M_lambda *x Z) + temp_lambdas(2) * D_eta;

topleft = T_lambda;

topright = temp_lambdas (1) x tXZ;

botleft = temp-lambdas (1) * tZX;

botright = temp_lambdas (1) % tZZ + temp_lambdas(2) * D_eta;

V_inv = [topleft, topright; botleft, botright];

V = inv(V._.inv);

terml = (temp-lambdas(1l) * tXy) + (Sigma_beta_inv * mu_beta);
term2 = temp-lambdas(l) x tZy;
zeta = [terml; term2];

Vchol=transpose (chol(V));

temp-thetas = (V * zeta) + (Vchol * normrnd(0,1,p+q,1) );

end

thetas(i,:) = temp-_thetas ’;
lambdas (i, :) = temp-lambdas;
sigmas (i, :) = temp._sigmas;

Listing C.11: MATLAB Code

GibbsLMMt_effects input description:

iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample

nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

ModelMatrixZ: A sparse matrix filled with 0’s and 1’s that associates each observation to a random
effect

prior_mean_beta: A numeric vector for the mean parameter of the normal distribution of 3

prior_cov_beta: A numeric matrix for the covariance matrix parameter of the normal distribution

of 8

prior_gamma_shape: A numeric vector that provides the shape parameter for the prior distribution
of 7. and 7, respectively

prior_gamma_rate: A numeric vector that provides the rate parameter for the prior distribution of
T and T, respectively
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e df: A numeric value for the degrees of freedom for the distribution of u

e start_theta: A concatenated numeric vector of initial values for MCMC of 8 and u
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Appendix D

Probit Regression—-Improper Prior

D.1 AC algorithm
D.1.1 R/Rcpp/JAGS Workflow

HAHHHHH AR R R R R AR R
### Probit DA Regression Workflow ###

s HERHAHHHHAHAHAHHAHAH RS H AR HAHAHAAH

library (msm)
library (Rcpp)
library (RcppEigen)
library (inline)
library (truncnorm)
library (coda)
library (rjags)

source (”ProbitRegressionDA _Source _2016—08 —09.R”)
HEHHHHHHHHHRAA
### Pima datset ###
HEH A AR

set.seed(999)

mydata<—read . table ("cleanPIMA . txt”, header=TRUE)

# Logistic Regression (Frequentist analysis)

fit.glucose <— glm( test ~ glucose, family=binomial(link="probit”), data = mydata)
# Summary of fit

; summary ( fit. glucose)

Y = mydata$test[—c(76, 183, 343, 350, 503)]
Ydat = as.numeric(Y == ”positive”)

Y = Ydat

X = model. matrix (fit.glucose)

XX = t(X)%+%X

txxinv = solve (tXX)

netiterations = 10000

n = length (Y)

p = ncol(X)

BetaMCMC = matrix (NA, nrow = netiterations , ncol = p)

5 BetaMCMC[1, ] = c(1,1)

z = matrix (NA, n,1)
iteration = 10

HAHFHHHHHHHHHH R R R R AR R R R
#### Running the Gibbs Sampler ###

o HHEHAHAHAHHHHAHAHHHHAHAH RS HAH AR

s #Running in R

set.seed(999)
for(l in 1:iteration){

start = Sys.time ()
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50 BetaMCMC = GibbsProbit(ModelMatrixX = X, Response =Y,

51 betainitial = c¢(1,1), iterations = 100,
52 burnin = 100, nthin = 1)

54 Sys.time ()—start

55 print(paste (”This is iteration: 7, 1))

56 print(paste (”This is iteration: 7, 1))

57 print (paste (”This is iteration: ”, 1))

58 print(paste (”This is iteration: 7, 1))

59

60 print (summary (as . memc(BetaMCMC) ) )
6  # write.csv(x = MOMC, file = paste (" ProbitRegressionDA _",1,” _iterationR _2016—07—20.csv”,sep
=77))

66 #Rcpp
7 set.seed(999)

o for(l in 1l:iteration){

70 start=Sys.time ()

71 dat=GibbsProbitcpp (100, 100, 1, Y, as.matrix(X), rep(0,ncol(X)))
72 Sys.time ()—start

73 print (paste (”This is iteration: 7, 1))

74 print (paste (”This is iteration: 7, 1))

75 print(paste (”This is iteration: 7, 1))

76 print(paste (”This is iteration: 7, 1))

77

78 print (summary (as.mcmc(dat)))

79 # write.csv(x = MOMC, file = paste (”ProbitRegressionDA_",
80 # 1,” _iterationRcpp -2016—07—20.csv”,sep=""))
81

g2 }

83

s+ #JAGS

ss # Numbers do not match
s6 set.seed(999)
¢7 for(l in l:iteration){

88

89 jagsfit <— jags.model(file = "ProbitRegressionIlmproper.jags”,
90 data = list(’Response’ =Y,

91 >ModelMatrixX’ = X,

92 N’ = length(Y),

93 P’ = ncol(X),

04 ‘var’ = 100000000),

95 inits = list(’beta’= rep(0, ncol(X))),
9% n.chains=1,

97 n.adapt=0

98 )

99 start.time <— Sys.time ()
100 update (jagsfit , 100) # Obtain first 100,000 (burnin draws)
0 MOMC. out <— coda.samples(jagsfit ,

102 var = c(”beta”),

103 n.iter = 1000000, # Obtain the main 100,000 draws
104 thin = 1)

105 Sys.time () — start.time

106

107 print(paste (”This is iteration: ”, 1))

108 print (paste (”This is iteration: ”, 1))
109 print(paste (”This is iteration: 7, 1))
110 print (paste (”This is iteration: 7, 1))
12 print (summary (MOMC. out)) # Notice the iterations being used

13 # write.csv(x = MCMC, file = paste(”ProbitRegressionDA _",1
114 # ,7 _iterationJAGS -2016—07—20.csv”,sep=""))

Listing D.1: AC Algorithm R Work Flow

D.1.2 Julia Code
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1

14

59
60

61

using Distributions , DataFrames

n = size (ModelMatrixX , 1) #rows

p = size (ModelMatrixX, 2) #columns

BetaMCMC = fill (0.0, iterations , p) #Store MOMC
TempBetaMCMC = startbeta

z = fill (0.0, n, 1)

txx = transpose (ModelMatrixX) * ModelMatrixX

txxinverse = inv(txx)

V = transpose (chol(txxinverse)) #Cholesky Decomposition

for i in l:burn_in
for j in l:n
center = ModelMatrixX[j, :] * TempBetaMCMC

if (Response[j] == 0)
z[j] = rand(Truncated (Normal(center[1], 1), —Inf, 0.0))
end
if (Response[j] == 1)
z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))
end
end #end of generating z’s
BetaHat = txxinverse x transpose (ModelMatrixX) * z
TempBetaMCMC = BetaHat + (V % rand (Normal() ,p))

end

for i in 1l:iterations
for k in l:nthin
for j in l:n
center = ModelMatrixX[j, :] * TempBetaMCMC

if (Response[j] == 0)
z[j] = rand(Truncated (Normal(center[1], 1), —Inf, 0.0))
end
if (Response[j] == 1)
z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))
end

end #end of generating z’s

BetaHat = txxinverse * transpose (ModelMatrixX) * z
TempBetaMCMC = BetaHat + (V % rand(Normal() ,p))
end #end of thinning
BetaMCMC[i ,:] = transpose (TempBetaMCMC)
end #end of burn+ iterations for loop

return BetaMCMC

end #end of function

= readtable (" PIMAmatrixY.csv”)
= readtable (”PIMAmatrixX.csv”)

DatX = convert(Array{Float64 .2}, X)[:, 2:end]
DatY = convert(Array{Float64 ,2}, Y)[:, 2:end]
. gbbeta = fill (0.0, size(DatX, 2), 1)

iterations = 10

for(l in 1:iterations)

@time dataoutput = DAProbitModel (500000, 500000, 1, DatY, DatX, gbbeta, )
describe (convert (DataFrame , dataoutput))
#writedlm (string (” ProbitRegression . DA_PIMA_",1,”.txt”), dataoutput )

end

Listing D.2: Julia Code

D.1.3 MATLAB code

function [BetaMCMC] = ProbitDA (iterations , burnin, nthin, ModelMatrixX, Response,

n = length (Response);
X = ModelMatrixX;
y = Response;

p = size(X,2);
BetaMCMC = repmat (0.0, iterations , p);
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function DAProbitModel(iterations , burn_.in, nthin, Response, ModelMatrixX, startbeta)

startbeta)



tempbeta = startbeta;

z = repmat (0.0, n,1);

znew = repmat(0.0, n, 1);
XX = X’ x X;

txxinv = inv (tXX);

V = transpose (chol(txxinv));

for i = 1:burnin
for j = 1:n
center = X(j,:) * tempbeta;
pd = makedist( Normal’, center, 1);
if(y(j) == 0)
z(j) = random(truncate (pd,—inf ,0));

end
if(y(j) == 1)
z(j) = random(truncate (pd,0, inf));
end
end
betahat = txxinv *x X’ % z;
tempbeta = betahat + (V % normrnd(0,1,p,1));
end
for i = l:iterations
for nth= 1:nthin
for j = 1:n
center = X(j,:) * tempbeta;
pd = makedist( Normal’, center, 1);
if(y(j) == 0)
z(j) = random(truncate (pd,—inf ,0));
end
if(y(j) == 1
z(j) = random(truncate (pd,0, inf));
end
end
betahat = txxinv *x X' % z;
tempbeta = betahat + (V % normrnd(0,1,p,1));
end
BetaMCMC(i ,:) = tempbeta;
end

52 end

Listing D.3: MATLAB

D.2 PX-DA Algorithm

D.2.1 Source code

> HEHHHBHH AR AR R R R
s H#H#HHHH#AA#HE R Code ######H#H###H##H

HHHHHH R R R R R R R R

GibbsProbitHaar = function(iterations , burnin, nthin, Response, ModelMatrixX, betainitial){

X <— ModelMatrixX

Y <~ Response

XX <— t(X) %% X

txxinv <— solve (tXX)

n <— length(Y)

p <— ncol(X)

V <— t(chol(txxinv))
BetaMCMC <— matrix (NA, nrow = iterations , ncol = p)
tempbeta <— betainitial

z <— matrix (NA, n,l)

znew <— matrix (NA, n,1)
zPrime <— matrix (NA, n,l)

for(k in 1:burnin){
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}

fo

re

}

for(j in l:n){
center <— t(X[j,]) %+% tempbeta
i (Y[j1 == 0){

z[j] <— rtruncnorm(l, a = —Inf, b = 0, mean = center, sd = 1)

if (Y[j] == 1){
z[j] <— rtruncnorm(l, a = 0, b = Inf, mean = center, sd = 1)
}
}
for(j in 1:n){
znew|[j] <— (z[j] — (X[j,]) %% txxinv %% t(X) %% z)"2
}

Summation <— sum(znew )
GSquared <— rgamma(l, (n/2), (1/2) * Summation)
zPrime <— sqrt(GSquared) * z

betahat <— txxinv %«% t(X) %% zPrime
tempbeta <— betahat + V %+% rnorm (p)

r(i in l:iterations){
for(k in 1:nthin){
for(j in 1l:n){
center <— t(X[j,]) %+% tempbeta
iFYEjT == 0){
z[j] <— rtruncnorm(l, a = —Inf, b = 0, mean = center, sd =

}
if(Y[j] == D{
z[j] <— rtruncnorm (1, a
}
}
for(j in 1:n){
znew|[j] <— (z[j] — (X[j,]) %% txxinv %% t(X) %% z)"2

0, b = Inf, mean = center, sd =

Summation <— sum(znew)
GSquared <— rgamma(1l, (n/2), (1/2) * Summation)
zPrime <— sqrt(GSquared) * z

betahat <— txxinv %% t(X) %+% zPrime
tempbeta <— betahat + V %+% rnorm (p)

BetaMCMC[i,] <— tempbeta

turn (BetaMCMC)

7 HAHHHHAHAHAHHAHAHAHHHHAHAHHAHAHAHH

#####HHH##E Repp Code ##H###H##HH#H
HHHHHHHHHH AR AR A HH AR R RS H

>

Sre<—

using Eigen :: Map;
using Eigen :: MatrixXd;
using Eigen :: VectorXd;
using Eigen :: Vector2d;

using Rcpp :: as;

type
type

int
int
int
Repp

Rcpp
Repp

def Eigen :: Map<Eigen :: MatrixXd> MapMatd;
def Eigen:: Map<Eigen :: VectorXd> MapVecd;

MCMCiter = Rcpp :: as<int>(iterations);
burnin = Rcpp :: as<int >(Burnin);
n_thin = Rcpp :: as<int>(nthin);

NumericMatrix Xc(ModelMatrixX) ;
NumericVector Yc(Response) ;
NumericVector Betalnitialc (Betalnitial);

const MapMatd X(Rcpp :: as<MapMatd>(Xc));
const MapVecd Y(Rcpp :: as<MapVecd>(Yc));
const MapVecd Betainitial (Repp :: as<MapVecd>(Betalnitialc));
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94

96
97
98
99
100
101
102
103
104

105

int
int

n
p =

X.rows () ;
X.cols ();

const
const

Matrix Xd
Matrix Xd
VectorXd
VectorXd
VectorXd
VectorXd

betaMCMC (MCMCiter ,
V(p.p):
tempbeta
Z(n);
betahat(p);
normals(p);

p);

= Betainitial;

MatrixXd tXX = X.transpose () * X;

MatrixXd tXXinverse tXX.inverse () ;

0.0;

double center
double tnormmean
10s double numerator
10 double denominator
10 double temp 0.0;
double Znew 0.0;
112 double sum 0.0;
113 double gsquared
114

115 V. = tXXinverse. 11t (). matrixL () ;

116

106
.7978846;
0;

0.0;

107 // mean of standard normal truncated mean on (0,Inf)

Il oo~

111

0.0;

117 RNGScope scp;

118

Function
Function
Function
Function

Function

rtnorm (7 rtnorm”) ;
rnorm (" rnorm”) ;
dnorm (”dnorm”) ;
pnorm (" pnorm”) ;
print (" print”);

Rcpp
Repp
Rcpp
Repp
3 Repp

5 for(int k = k < burnin; k++){
for(int j 0; j < n; j+H){
center = X.row(j) * tempbeta;

0;

if (Y[j]
Z[j]
131 }

if (Y[j]
Z[j]

0.0){
as<double >(rtnorm (1,

center , 1, R_Neglnf, 0));

= 1.0){
as<double >(rtnorm (1, center ,1,0, R_PosInf));

134
135 }
136 }

for(int m = 0; m < n; m++){
Znew = pow ((Z[m] — (X.row(m) * tXXinverse =
sum sum + Znew;

X.transpose () * Z)) , 2);

141 }
gsquared as<double >(Rcpp

Z = sqrt(gsquared) *x Z;

rgamma(l, (n / 2.0), 1.0 / (0.5 *xsum)));

144 betahat = tXXinverse * X.transpose () * Z;

145

146 normals = Rcpp as<MapVecd>(Rcpp rnorm (p) ) ;
147 tempbeta = betahat + V % normals;

148 sum = 0.0;

149 }

150

51 for(int i = 0; i < MCMCiter; i++){

152 for(int k = 0; k < n_thin; k++){

153 for(int j = 0; j < n; j++){

154

155 center = X.row(j) * tempbeta;

156

157 if (Y[j] == 0.0){

158 Z[j] = as<double >(rtnorm (1, center, 1, R_Neglnf, 0));
159 }

160

161 if (Y[j] == 1.0){

162 Z[j] = as<double >(rtnorm (l,center ,1, 0, R_PosInf));
163 }

164 }

for(int m = 0; m < n; m++){
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)

Znew = pow ((Z[m] — (X.row(m) * tXXinverse * X.transpose() * Z)) , 2);
sum = sum + Znew;

}

gsquared = as<double >(Rcpp :: rgamma(l, (n / 2.0), 1.0 / (0.5 xsum)));

Z = sqrt(gsquared) * Z;

betahat = tXXinverse * X.transpose () x Z;

normals = Rcpp :: as<MapVecd>(Rcpp :: rnorm(p));

tempbeta = betahat + V % normals;

sum = 0.0;

betaMCMC .row (i) = tempbeta.transpose () ;

}
return Rcpp :: DataFrame :: create (Rcpp :: Named(”Beta”) = betaMCMC) ;
» GibbsProbitHaarcpp = cxxfunction(signature(iterations = “int”,

Burnin = ”int”, nthin = 7int”,
Response = "numeric”,
ModelMatrixX = "numeric”,
Betalnitial = "numeric”), src,

plugin="RcppEigen”)
Listing D.4: PX-DA Algorithm Source Code

GibbsProbitHaar input description:

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e betainitial: A numeric vector of initial values for MCMC of 3

GibbsProbitHaarcpp input description:

e iterations: Netlength of MCMC chain for main sample

burnin: Number of draws for MCMC chain to initialize before main sample
e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.

e Response: A numeric vector of observed data for linear model

ModelMatrixX: A numeric matrix of predictors for linear model

e Betainitial: A numeric vector of initial values for MCMC of 3

D.2.2 R/Rcpp/JAGS Workflow

#set directory

getwd ()

3 setwd ()
getwd ()

s setwd ()

#call libraires and source
library (msm)

library (Rcpp)

library (RcppEigen)
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2 library (coda)

13 library (inline)

4 library (rjags)

15 library (truncnorm)

17 set.seed(999)

18 mydata<—read.table (”cleanPIMA . txt”, header=TRUE)
v # Logistic Regression (Frequentist analysis)

20 fit.glucose <— glm( test ~ glucose, family=binomial(link="probit”), data = mydata)
21 # Summary of fit

2 summary ( fit.glucose)

23 Y = mydata$test[—c(76, 183, 343, 350, 503)]

24 Ydat = as.numeric(Y == ”positive”)

5 Y = Ydat

26 X = model. matrix (fit.glucose)

27 XX =t (X)%x%X

% txxinv = solve (tXX)

» iterations = 10000

0 n = length (Y)

3 p = ncol(X)

33 iteration = 4

30 HEHHHHHHAHIH AR H R R
v ##HAHH#HAHAAE R Code #H#H###HH#H#HH#H#H
38 HHHHHHHH R R R R R

i1 set.seed(999)

2 for (1 in l:iteration){

4 start = Sys.time ()

4 Beta = GibbsProbitHaar (ModelMatrixX = X, Response =Y,

45 betainitial = c¢(1,1), iterations = 100,
46 burnin = 100, nthin = 1)

4 Sys.time ()—start

so print (paste (" #######H#HA#H S HAHEHARHAE 7))

print (paste (”"This is iteration: , 1))
s> print (paste (7 #####H###H##HAHHHHHHHHAHAHAHAS 7))

w

s+ print (summary(Beta))

s6 #write.csv(x = MCMC, file = paste (”ProbitRegressionPXDA _”,1,” _iterationR -2016—07—20.csv”,sep
=7"))
57}

60 HEHHHHH AR BRI R
o #H#######H##E Repp Code ###HH#H####H###H
62 HHHHHHH R R R

6t set.seed(999)

os for (1 in l:iteration) {

66 start = Sys.time ()

67 dat = GibbsProbitHaarcpp (100, 100, 1, Y, X, rep(0,ncol(X)))
68 Sys.time ()—start

69

0 print (paste (V#####HEHHHAHHHHHHHHHHBHBEHE 7))

print (paste (”This is iteration: 7, 1))

7 print (paste (7 #####HHHH#H#HAHHHHHHHHAHAHARAS 7))

<

74 print (summary (as.mcmc(dat)))

76 # write.csv(x = MCMC,

7 # file = paste (”ProbitRegressionPXDA _” 1

78 # ,”_iterationRcpp -2016—07—20.csv”,sep=""))
79

80 }

Listing D.5: PX-DA Algorithm Work Flow
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D.2.3 Julia Code

using Distributions , DataFrames

function PXDAProbitModel(iterations , burn_-in, nthin, Response, ModelMatrixX, startbeta)

n = size (ModelMatrixX, 1) #rows

p = size(ModelMatrixX, 2) #columns

BetaMCMC = fill (0.0, iterations , p) #Store MOMC
TempBetaMCMC = startbeta

z = fill (0.0, n, 1)

znew = fill (0.0, n, 1)

txx = transpose (ModelMatrixX) * MatrixX

txxinverse = inv(txx)

V = transpose (chol(txxinverse)) #Cholesky Decomposition

for i in 1l:burn-in
for j in 1:n
center = ModelMatrixX[j, :] * TempBetaMCMC
if (Response[j] == 0)

z[j] = rand(Truncated (Normal(center[1], 1), —Inf, 0.0))
end
if (Response[j] == 1)

z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))

end
end #end of generating z’s
for m in 1:n

znew [m] = ((z[m] — (ModelMatrixX[m,:] * txxinverse * transpose(ModelMatrixX) * z))[1])

"2
end
Summation = sum(znew)
GSquare = rand (Gamma((n/2.0) , (1/((1.0/2.0) * Summation
zPrime = sqrt(GSquare) * z
BetaHat = txxinverse x transpose (ModelMatrixX) * zPrime
TempBetaMCMC = BetaHat + (V % rand(Normal() ,p))
end

for i in 1l:iterations
for k in 1:(nthin)
for j in 1:n
center = ModelMatrixX[j, :] * TempBetaMCMC
if (Response[j] == 0)
z[j] = rand(Truncated (Normal(center[1], 1), —Inf,
end
if (Response[j] == 1)

))))

0.0))

z[j] = rand(Truncated (Normal(center[1], 1), 0.0, Inf))

end
end #end of generating z’s
for m in 1:n

znew [m] = ((z[m] — (ModelMatrixX[m,:] * txxinverse * transpose(ModelMatrixX) * z))[1])

)
end
Summation = sum(znew)
GSquare = rand (Gamma((n/2.0) , (1/((1.0/2.0) * Summation))))
zPrime = sqrt(GSquare) * z
BetaHat = txxinverse x transpose(ModelMatrixX) * zPrime

TempBetaMCMC = BetaHat + (V % rand(Normal() ,p))
end #end of thinning
BetaMCMC[i, :] = transpose (TempBetaMCMC)
end #end of burn+ iterations for loop

return BetaMCMC[ burn_in:end, :]

end #end of function

Y = readtable ("PIMAmatrixY .csv”)

3 X = readtable ("PIMAmatrixX.csv”)

DatX = convert(Array{Float64 .2}, X)[:, 2:end]
s DatY = convert(Array{Float64,2}, Y)[:, 2:end]
, gbbeta = fill (0.0, size(DatX, 2), 1)

iterations = 1
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70 for(l in 1l:iterations)
1 @time dataoutput = PXDAProbitModel (500000, 500000, 1, DatY, DatX, gbbeta)
72 describe (convert(DataFrame , dataoutput))

# writedlm (string (” ProbitRegression. PXDA_PIMA_",1,”.txt”), dataoutput )
74 end

Listing D.6: Julia Code

DAProbitModel input description

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e startbeta: A numeric vector of initial values for MCMC of 3

D.24 MATLAB

i function [BetaMCMC] = ProbitPXDA (iterations , burnin, nthin, ModelMatrixX, Response, startbeta)

2 n = length (Response);
3 X = ModelMatrixX ;
y = Response;

5 p = size(X,2);

6 BetaMCMC = repmat (0.0, iterations , p);
7 var=1

8 tempbeta = startbeta;

10 z = repmat (0.0, n,1);

1 znew = repmat(0.0, n, 1);
12 XX = X' x X;

13 txxinv = inv (tXX);

14 gshape = n/2

15 for i = 1:burnin

16 for j = l:n

17 center = X(j,:) * tempbeta;

18 if(y(j) == 0)

19 z(j) = random(truncate (makedist( Normal’, center, var),—inf ,0));
20 end

if(y(j) == 1

2 z(j) = random(truncate (makedist(’Normal’, center, var),0, inf));
23 end

24 end

26 for m =1:n

2 znew (m) = (z(m) — (X(m,:) *x txxinv *x X’ % z) )"2;

28 end

29 summation = sum(znew) ;

30 gsq = gamrnd (gshape, 1/ (0.5%summation));

31 zprime = sqrt(gsq) * z;

32 betahat = txxinv * X’ % zprime;

V = transpose (chol(txxinv));
tempbeta = betahat + (V % normrnd(0,1,p,1));

35 end

36

38 for i = l:iterations

39 for nth= 1:nthin

40 for j = 1:n

8l center = X(j,:) * tempbeta;

42

3 if(y(j) == 0)

44 z(j) = random(truncate (makedist( Normal’, center, var),—inf ,0));
45 end
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58
59
60
61
62

63

if(y(j) == 1)
z(j) = random(truncate (makedist(’Normal’, center, var),0, inf));
end
end

for m =1l:n
znew (m) = (z(m) — (X(m,:) * txxinv *x X’ % z) )" 2;

end
summation = sum(znew) ;
gsq = gamrnd(gshape, 1/ (0.5%summation));
zprime = sqrt(gsq) * z;
betahat = txxinv * X’ * zprime;
V = transpose (chol(txxinv));
tempbeta = betahat + (V % normrnd(0,1,p,1));

end

BetaMCMC(i ,:) = tempbeta;

end
end

Listing D.7: MATLAB

PXDAProbitModel input description

e iterations: Netlength of MCMC chain for main sample

e burnin: Number of draws for MCMC chain to initialize before main sample

e nthin: Number of draws to consider before storing main sample, i.e. every second; every third; etc.
e Response: A numeric vector of observed data for linear model

e ModelMatrixX: A numeric matrix of predictors for linear model

e startbeta: A numeric vector of initial values for MCMC of
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