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Abstract

A generalized arithemtic numerical monoid is of the form S = (a,ah+d, ah+2d, ..., ah+
xd) where the ged(a, d) = 1 and a > x. Much is known for the arithmetic numerical monoid,
when h = 1, due to known information for that specific monoid’s length set. Therefore, this
paper will explore various invariants of the generalized arithmetic numerical monoid.

1 Introduction and Preliminaries

Before we introduce a generalized arithmetic numerical monoid and present properties of this
monoid, we must present some basic terms important to understanding numerical monoids in
general.

Definition 1.1 ([8]). A numerical monoid S is a subset of N such that
e 0cS
e ifa,be S, thena+be S
e gcd(S) =1

Definition 1.2 ([8]). A generator or atom n; of a numerical monoid S is an element of S
that can not be written as the sum of elements of S\ {0} and {ng,n1,...,ny} is called the set
of atoms of S.

Definition 1.3 ([2]). Define the set of factorizations of an element s € S to be the set of all
solutions to m = Agng+ Aini+-- -+ Azng for A; € N. We will denote the set of factorizations
of m as (Ao, A1,..., Az).

Definition 1.4 ([2]). Define the length of factorization of s € S to be Ay + Y ;_; A;.

Definition 1.5 ([2]). Define the length set of an element in S, L(s), to be the set of all
lengths of factorization of s. The the length set of a numerical monoid, L(S), is given by
L(S)={L(s)|seS}.

We will now go on to define several important invariants of numerical monoids that will help
us to later understand properties of generalized arithmetic numerical monoids.

Definition 1.6 ([1]). The elasticity of an element s € S, denoted p(s), is given by p(s) =
% where L(s) = max(L(s)) and £(s) = min(L(s)). The elasticity of a numerical monoid,

p(S), is given by p(S) = sup{p(s)|s € S}.

We can define a more specific type of elasticity for numerical monoids, specialized elasticity,
which we will later explore fully for generzlied arithmetic numerical semigroups.



Definition 1.7 ([4]). The specialized elasticity of a numerical monoid S is given by pr(S) =
sup{L(s) | €(s) < k}

Another invariant that we will explore later for generalized arithmetic sequences is delta
sets.

Definition 1.8 ([2]). Let L(s) = {ni,n2,...,n} with n; < nj+1. Define the delta set of an
element s € S as A(s) = {n;jy1 —n; | 1 <i <t—1} and define the delta set of a numerical
monoid S as A(S) = J,cq A(s)

The last invariant that we consider in this paper is omega-primality for arithmetic sequences.
Before we define omega-primality, some other definitions are necessary.

Definition 1.9 ([7]). For s,t € S, we say that s precedes t (s <t)ift —s € S.
Definition 1.10 ([7]). A bullet for s € S is an expression uy + ...+ ux such that
o s=uy+...+ux
e s Rup+...+ux —u; for alli.
Now we can define omega-primality for a numerical monoid.

Definition 1.11 ([7]). Define the omega primality of s € S, w(s), to be the smallest value
of m such that if s < uy + - - -+ u, where k > m, then there exists T C {1,...,k} with |T| <m
such that s <) u;.

2 Generalized Arithmetic Numerical Monoids

Much is known about arithmetic numerical monoids so much of our paper is focused on gen-
eralized arithmetic numerical monoids. However, we do also present some previously unknown
results about arithmetic numerical monoids.

Definition 2.1 ([5]). A generalized arithmetic numerical monoid is a monoid that is
generated by a generalized arithmetic seqeunce, that is a numerical monoid of the form S =
(a,a 4+ d,...,ah + zd), where gcd(a,d) = 1 and a > x. Also, h = 1 yields an arithmetic
numerical monoid.

It is essential that we have gcd(a,d) = 1 as otherwise ged(S) # 1 and S will not be a
numerical monoid. We also require a > = as otherwise {a,ah + d,...,ah + zd} will not be a
minimal generating set.

Throughout the remainder of this paper we may write ng = a and n; = ah+id. Furthermore,
s = (Ao, A1, ..., Az) will represent an element s € S that is the sum of Ay copies of a and A;
copies of ah + id.

3 Specialized Elasticity of Generalized Arithmetic Numerical
Monoids

We will now fully characterize the specialized elasticity of generalized arithmetic numerical
monoids. Let S = (a,a+d,...,ah + zd) with ged(a,d) = 1 and a > . Recall our definition of
specialized elasticity,

pr(S) = sup{L(s) | £(s) <k}



Lemma 3.1 ([4]). pr(S) = sup{L(s) | {(s) < k} = sup{L(s) | {(s) = k}

We will use the definition of specialized elasticity found in Lemma 3.1 for the remainder of
this paper.

Consider an element t that can be written as the sum of k atoms. Assume we have N copies
of a, and (k — N) copies of the remaining atoms. We can then write

t=Na+ (k- ah—i—(Zﬁz)

Suppose the longest factorization of ¢ is given by (Ao, A1, ..., Az). Let ki = Ag+h> ;7 | A; and
ke =37 iA;. We can now write

k—N
tzk‘la—l-/ﬂgd:Na—l-(k'—N)ah—l-(Z&)d. (1)
=1

Looking at equation (1) modulo d yields k&y = N + (kK — N)h + sd for some s € Z. Plugging
this defenition of k; back into equation (2) also yields ky = Zi:lN ; — sa. Note that k; =

L(t)+ (h=1) 35, A =

L(t) =N+ (k— N)h+sd — (h—1) ZA—kh+sd+ (1—nh <N+ZA) (2)

i=1
Lemma 3.2. Suppose a < kx. Then k < a L%""J

Proof. First suppose k < kx — a. Then
kgk‘x—a:a<kx—1> <anJ.
a a
Now consider k > kx — a and suppose k > a ij Then
kx
a<kr = aga{J — a<k.
a

Furthermore,
k>kr—a = a>k(z—1)>k.

Thus k < a < k, a contradiction, so k < a L%ﬂ ]

Lemma 3.3. Suppose a > kx. Then
kh— (h—1) N+iAi <(h—1) . S
i=1 - t
Proof. Recall from above that ky = > 7 | i4; = Zl 1 Bi — sa. Notice

k—N k—N
—N< Zﬂ, = k—N—-sa< Zﬂi—sa.



Hence,

X X
k—N—saSZiAi - kSZiAi+sa+N.
i=1 i=1

But a > kx and Zfz_lN i —sa >0 = s < 0. Thus, we can write

kgiiAi—&—Ngx(i:Ai—i—N)

i=1 =1

i=1 =1
= —k
— kh—(h—1) <N+2Ai>§(h—1) MJMh
=1
O

We can now present our theorem characterizing specialized elasticity for all generalized
arithmetic numerical monoids.

Theorem 3.1. Let S be defined as above. Then

kx :
pk(s):{kh—l—LaJd if a < kx

kh+(h—1)|=£] ifa>ka
Proof. First suppose a < kz. From equation (2), we can write
L(t) < kh + sd.

Note that

k-N
k
ko >0 = Z&Zsa — sa<(k—N)zx<kr = SSL;‘J.
i=1

Hence,

L(t) < kh + VaxJ d

Now let n = at%ﬂ. By Lemma 3.2, k < n < kz, so there exists 1 <i; <z forall 1 <j <k
such that Zle i; = n. Then consider the element

k
(ah +i1d) + ... + (ah + ixd) = kah +nd = a (kh + Zd) _ <kh + UCJ d>

Thus, L(t) > kh + | 22| d and pi(S) = kh + | 22| d.

a

Now suppose a > kx. As before, we have s < 0. Then looking at equation (2) we have

L(t) < kh— (h— 1) <N+§:Ai> < (h—1) V"J + kh
i=1

xT



by Lemma 3.3.
Now consider the element k(ah + d). First suppose = | k. Then

k(ah + d) = m (ah + 2d) + <k - m) ha

X

w0 £ - ) (-2 o[ 2]

Now suppose x t k. Notice we can write kK = njz + ny where 0 < ng < x. Then

k(ah + d) = ni(ah + zd) + (ah + nad) + (k —ny — 1)ha.

ButxszL%’“J:—ng—lzL%J:—L%‘%J—lz—nl—l,so
Lt)y>n+1+(k—-—n1—1)h=(h—1) {_ka + kh
Thus, p(S) = kh+ (h—1) | =£| O

Notice that by the definition of specialized elasticity, p(S) = limg_ 00 #. Also take note

of the following theorem:

Proposition 3.1 ([3]). Let M = (a1, ...,a:) be a numerical monoid where a1 < ag < -+ < a;

is a minimal set of generators of M. Then p(M) = -

it __ ahtxd
By Proposition 3.1, p(S5) = **%¢.

To see that our findings for specialized elasticity correspond to the known value of the

generalized elasticity, consider limy_, . 2 k,gs). Notice that for large values of k we have a < kx

and pi(S) = kh + L%J d. Notice that
kh+ | k2| d
i P6S) oy BRG] 7, ahdad
a

k—o0 k—o0 k k—o0 a

so our results are consistent with previous findindings. This can be visualized in Figure 1.

_\\\\\“.

LT

Figure 1: Plot of @ versus k given in blue
and p(S) versus k given in red for for S =
(101, 308, 313, 323, 328).



4 Delta Sets of Generalized Arithmetic Numerical Monoids

Lemma 4.1. Let S = (a,ah+d,ah+2d,...,ah+xd). Let a > z, ged(a,d) = 1. Suppose N is
an integer that can be factorized multiple ways. The difference between the lengths of any such
factorizations is a multiple of ged(h — 1,d).

Proof. Suppose that

ado+Y (ah+id)A; = aBy+ (ah+id)B;
=1 i=1

< a(A() — B()) + i(ah + ld)(Az — Bl) =0
=1

< CL(AO — BO) -+ i[a + a(h — 1) + Zd](Al — Bl) =0
=1

— a;(Ai — B)) + ;[a(h —1) +id)(A; — By) =0

Let g = ged(d, h — 1). Taking both sides mod g, we get that a )7 ((A4; — B;) =0 mod g.
But since a, d are coprime, and d is divisible by g, a must also not share any prime factors with
g. Thus dividing both sides by a gives us the desired ) 7 ,(4; — B;) =0 mod g. O

Lemma 4.2. Let S = (a+1,a+2,...,a+x) with x > 1 and n be a nonnegative integer. n € S
if and only if there exists a nonnegative integer j such that j(a+1) <n < jla+ z).

Proof. Reverse direction is intuitive. The generators are all consecutive, so we can shimmy our
way up from j(a + 1) to j(a + =) using j atoms in each of our factorizations. For the forward
direction, we let j be the number of atoms in one of our decompositions of n. O

Corollary 4.1. As a corollary of lemma 2, n ¢ S = (a+1,a+2,...,a+x) if and only if there
is a nonnegative integer j such that j(a+x) <n < (j+1)(a+1).

Lemma 4.3. If z,y are positive reals with y < 1, then for any positive integer k' < [x], there

is an integer m with 0 < m < [Z] =1 such that [x —my]| = K.

Proof. First note that for any positive reals x1, zo with zo < 1, we have [z1 —x2| > [21 — 1] =
[1]—1 = [z1]—[z1—22] < 1. Let f(m) = [z—my]. Note that between successive values of
m (i.e. mtom+1), f(m)—f(m+1) = [x—my]—[z—(m+1)y| = [(z—my)|-[(z—my)—y] < 1.
Thus, between successive values of m, f(m) cannot jump by more than 1. Note that if we take
' = [2] =1, f(m') = [z — ([£] — 1)y] < [z — (£ — 1)y] = [z Zy+y] = [y] < 1. Thus,
increasing m from 0 to [£]—1, f(m) must traverse through all integers from 1 to [ ]. Therefore,

there is an integer m where 0 <m < [7] — 1 such that &' = [z —my]. O
Lemma 4.4. Let m < %5 be a nonnegative integer and S = (an+1,an+2,...,an+x), where

n > 1,a > x. The smallest positive integer k such that ka+m(an+1) € S is n[%} + 1.



Proof. This is similar to the previous proof. Let ka +m(an+1) = > (an+1i)B;. First write
k = cn + r, where 1 < r <n. Note that if k is divisible by n, r = n.

x x
a(cn—i—r)+(an+1)m:Z(an—i—i)Bi > (an—i—l)ZBi
i=1 i=1
a(en + 1) a(nc+n) an(c+1)
= ZBI_7+m§7+m§7+m<c+l+m
an+1 an +1

T

== Z B; < ¢+ m (note that inequality is strict because
i=1

an +1
xr x
= a(en+71)+ (an+1)m = Z(an—i—i)Bi < (an—i—x)ZBi < (an+x)(c+m)
i=1 i=1
<~ acn+ ar +anm+m < acn + anm + xc+ xm
<c <<= c>]

x T -I

ar—n;(m—l)1+rzn[a—mia:—l)

ar —m(x — 1) ar —m(x — 1)

= k=cn+r>nf 1+1

Note that the above inequality is true since r > 1. It is necessary for the argument in the
ceiling to be nonnegative to make this conclusion, which is the case when m < 5.

We will now use the intuitive lemma (Lemma 2) to implicitly show that if £ = n(%} +
1 then ka + m(an + 1) € S. As in lemma 2, let j = n[%T™] + 1. We wish to show that
jlan +1) < ak +m(an + 1) < j(an + x). After some simplifying of the middle side of the
inequality,

ak +m(an+1) = a(n[w

= (nf

14 1)+ m(an + 1)

azm—%w—i-l)a—i-(an—i-l)m

a+m a+m

= (nf | —nm+1)a+ (an+ 1)m = na| l+a+m
We first show the higher bound.
a+m a+m a+m

nal 1—|—a+m§(71(an+x) — a+m<]| 1z

But note that a + m = “Tm:c < (‘”Tmhﬁ, which proves the upper bound inequality.
Now we show the lower bound.

a+m a—+m a—+m
[ T(an+1) < nal l+a+m < |

1 <a+m
x x

Note that [a*;}m] < (erTm + 1, so it suffices to show that ‘”Tm +1<a+m <= a+tm+z<
za+m) <= 1< (x—1)(a+m —1). But this latter inequality is clearly true since
a > x > 2, thus proving the lower bound. Therefore, the intuitive lemma allows us to conclude
that ka + m(a+1) € S.

O

Lemma 4.5. Let S = (an+ 1,an + 2,. cm+$> where x > 2. Let 1 <n/ <n. The smallest
k>0 such thatak—i—(an%—x)[mw € Sisn'.



Proof. We utilize lemma 2 and its corollary. Let ny = [%}‘”‘l

We let j =n; + 1 as in lemma 2. Thus we want to show that

(simplify the cloggy terms).

(an+1)(ny +1) <an' + (an + z)n; < (an + x)(ng + 1)
= an+n+1<an’+zn; <an+azn; +zx

The upper bound is immediately true by a comparison of terms since n’ < n. For the lower
bound, we have

an+mny+1<an +an <= an—an’ +1 < (x —1)ng
an—+1—an’

—an'+1< (z -1
an —an'+1 < (x —1)f "

| (this is true by the ceiling bound)

Now we have to show that for any positive ng with ng < n’, ang + (an + ) [%‘1“”/1 ZS.
We apply the corollary to lemma 2, with j = n;. We wish to prove that (an + z)n; <
ang + (an + x)n; < (an + 1)(n1 + 1). The lower bound is definitely true by a comparison of
terms since ang > 0. For the upper bound, we have

ang + (an+ z)n; < (an+1)(n1 + 1)
< angt+anni +zny <anni +an—+n;+1
< ang+an <an+ni+1 < ang+ (x —1)ny <an+1

an+1—an’

— ang+ (x —1)[ | <an+1

r—1
Again, bounding the ceiling function by %}an, + 1, it suffices to show that

an+1—an’

ang + (x — 1)( +1)<an—+1

rz—1
— ang+an+1l—an’+z—-1<an+1
< ang—an'+r—-1<0 < z—1<a(n’ —ng)

But note that since ng < n’, n’ —ng > 1. Thus a(n’ —ng) > a > = — 1 since we know that
a > x, thus proving the lemma.
L]

Lemma 4.6. S = (an + 1l,an +2,...,an + ), and x > 2. If m > %5, then the smallest k
such that ak + (an + 1)m € S is at most 1.

Proof. 1t is enough to show that if £ = 1, then ak+ (an+1)m € S. We again apply the intuitive
lemma with 57 = m. Then we want (an + 1)m < a(1) + (an + 1)m < (an + z)m. The lower
bound for sure holds. For the upper bound to hold, we need a + (an + 1)m < (an + x)m <=
a<(an+x—an—1)m = (x—1)m <= % < m, which is true by assumption, as desired. [

Lemma 4.7. Let S = (an+ 1,an+2,...,an + x). Suppose that B; > 0 for some j > 1. The
smallest k such that ak + % ;_,(an+1)B; € S is at most n.

Proof. It is enough to show that k = n will make ak + Y ;_,(an +4)B; € S. Suppose we have
Bj; > 0. Then we want an+(an+j)B; +Zg;11(an+i)Bi+Z‘f:j+1(cm+i)Bi =>7 ,(an+i)A; for
some nonnegative A;’s. But note that an+(an+j)B; = (an+1)+(an+j—1)+(an+75)(B;j—1).
Then welet Ay = B1+1, A;_1 =Bj_1+1, Aj = B; — 1, and A; = B; for all the other indices.
Note that A; > 0 since B; > 1. O



Theorem 4.1. Let S = (a,ah+d,ah+2d,...,ah+zd). Leta > x, gcda,d =1, and h = nd+1.
Then A(S) ={d,2d,...,nd} J{(n +1)d, 2n + 1)d,...,(n[ %] + 1)d}.

Proof. Suppose that we have an arbitrary N that can be factorized in multiple ways. We have

N =aAp+ [a(nd+ 1) + d|A1 + [a(nd + 1) + 2d]As + ... + [a(nd + 1) + zd] A,
=aBy + [a(nd+ 1) +d|By + [a(nd + 1) + 2d]Ba + ... + [a(nd + 1) + zd] B,

where A;’s and B;’s are the coefficients of their corresponding atoms.

and that A9 + A1 + ... + A, = L, which corresponds to the length of the factorization.
Suppose that the other factorization is longer. We have that ged(h — 1,nd) = ged(d, nd) = d,
so by lemma 1 above, By + By + ...+ B, = L + kd for some positive integer k.

More compactly, these equations can be written as

N =ado+ Y (a(nd+1)+id)A; = aBy+ > (a(nd+ 1) + id)B;

i=1 i=1

iAi:L, iBiszd
=0

=0

Now if this k is the smallest positive integer such that there exists no factorizations of NV of
length L + k'd for k' < k, then this implies that kd € A(S).

Let us keep manipulating these equations. Note that by subtracting two equations, we have
S o(Bi— A;) = (L + kd) — L = kd. The two factorizations of N tells us that

a(By — Ao) + Y _[a(nd + 1) + id)(B; — A;) = 0
i=1

a(By — Ag) + Z a(B; — A;) + Z[(an +14)d](B; — A;) = 0 (extract out a from the second summation)
i=1 i=1

Z a(B; — A;) + Z[(an +1i)d|(B; — A;) = 0 (combine first term with first summation)
i=0 i=1

akd + i[(an +14)d](B; — A;) = 0 (since i(Bl — A;) = kd)

i=1 i=0

ak + Z(an +14)(B; — A;) = 0 (divide out d)
i=1

ak + Z(an +1i)B; = Z(an +1i)A; (add our A;’s to both sides)
i=1 i=1

Recall that if k is the smallest positive integer such that L + kd is the length of the next
longest factorization after a length of L, then kd € A(S). Therefore, in order to show that
k'd € A(S), we will pick our B;’s (By,Bs,...,B;) (each B; nonnegative) such that the

equation
X

ak’ + Z(an +1i)B; = Z(an +1i)A; (3)

=1 =1



admits a nonnegative x-tuple integer solution (A, As,..., A;), and that this £’ is
the smallest positive integer that does so.

We have now shown a way to reinterpret the problem. Despite the heavy algebra, the
advantage of this interpretation is that we do not have to carry the d term around. In fact, our
next arguments are independent of d. Equation 1 strongly resembles the form of the lemmas
above, which will be exploited. In fact, our lemmas will show precisely how to choose our B;’s.

First, we will show how to attain {n + 1,2n + 1,...,n[2] + 1}. Note that these values

are of the form nu + 1 for some positive integer v < [2]. First, for such a u, choose our

m < [%5] —1 < %5 such that [%1 = u. This is possible by lemma 3, where our x is
lemma 3 is interchanged with ¢ and our y is interchanged with l’x;l If we choose By = m, By =
B3 =...= B, =0, then by lemma 4, the smallest positive k such that ka+ >_7 ;(an+1)B; =

ka+m(an+1) =37 ;(an+ 1)A; is solvable in A;’s is n(%} +1=nu+1.

Now we show how to attain {1,2,...,n}. Let’s suppose we want to attain some arbitrary
n' <n. Nowweset By = By=...=B,_1 =0and B, = a";%] Now we consider the

minimal k such that ka + Y 7 ,(an + i)B; = ka + (an + x) (%‘fml} =>7 (an +i)A; is
solvable in A;’s. But by lemma 5, the smallest & > 0 that admits a solution is n’, as desired.

We’re almost done! Now as an essential step, we need to see what additional k£ can possibly
arise from some arbitrary z-tuple (B1, B, ..., B;). Suppose that we have B; > 0 for some j > 2.
Now consider the equation ak + >"7_(an +i)B; = >_;_,(an + i)A;. But by lemma 7, k = n
already admits a solution! Thus the smallest possible k that can yield a solution in this case is
at most n, which does not add anything new to our A set. We can thus restrict our analysis to
By being arbitrary and By = B3 = ... = B, = 0. We have ak + (an + 1)B; = > 7 (an + i) A;.
But for By < %, lemma 4 immediately gives us all & € {n + 1,2n +1,...,n[2] +1}. If
By > ﬁ, lemma 6 already tells us that k < 1, and we’ve shown k = 1 admits a solution of
A;’s in lemma 5.

Lastly, since we found a new way to interpret the problem, we need to go back to our old
ways. Recall that we had d, Ay, By involved.

N =ady+ (a(nd+1)+id)A; = aBo+ Y (a(nd + 1) + id) B;

i=1 i=1
x x
> Ai=L, Y Bi=L+kd
i=0 i=0
The structure of the proof involved choosing our By, Bs, ..., B, to obtain a specific k. This

predetermines the values Ay, As, ..., Ay (determined by ka+> "7 | Bi(an+id) =Y 7 | Aj(an+
id), with (A1, Ag,..., A;) the solution corresponding to the value of k).

Now using our equations as laid out above, we can manipulate them to obtain By = L +
kd—>7 | Bi= Ao+ kd+ > ; (Ai — B;). Now we choose a nonnegative Ay large enough such
that By = Ao + kd + >_;_,(A; — B;) > 0. This well-defines N in terms of the generators and
By, By, ..., B, as given in the equation above.

Thus, after exhausting all possibilities for (B, Ba, ..., Bg),

A(S) = {d,2d,...,nd} | J{(n+1)d, (20 + 1)d, ... (n[gw +1)d}

10



5 Omega Primality of ja for Arithmetic Numerical Monoids of
Embedding Dimension 3

We will now consider omega primality for all multiples of a for an arithmetic numerical monoid
of embedding dimension three. Suppose j > 1 € N and S = (a,a + d, a + 2d).

The following two propositions will be very useful in the following sections regarding omega-
primality.

Proposition 5.1 ([6, Theorem 3.1]). Let n = ga + id where ¢,i € N and 0 <i < a—1. Then
n € S if and only if {ﬂ <gq.

Proposition 5.2 ([7]). w(s) = max{k|ni + -+ ny a bullet for s}

Lemma 5.1. Let m = [%[aﬁdﬂ Then (0,0,m) is a bullet for ja.

Proof. We need to find the smallest positive integer m such that (a + 2d)m — ja € S. Thus we
have aAo+ (a+d)By+ (a+2d)Cy = (a+2d)m — ja. First note that if in such a representation,
Cp > 1, then (a + 2d)m is not a bullet to begin with, as we can delete out Cy copies of a + 2d
on both sides. Thus, we can assume Cy = 0 so we have

aAo+ (a+d)By = (a+2d)m — ja = (m — j) + 2md

Now we take both sides of the above equation mod d, giving us a(Ay + By) = a(m — j)
modd <= Ap+By=m—j modd <= Ag+ By = m — j + kd, where k is an integer.
Plugging this back in we get

a(m — j + kd) + Bod = a(m — j) + 2md
By =2m — ak
Ag=k(a+d)—m—j

Since we know By > 0, we have m > “Q—k Since Ay > 0, we have m < k(a + d) — j. Thus
we have §k <m < k(a+d)—j = gk <k(a+d) —j < 0< %—!—kd—j — j <
k(§+d) <= k> % — k> [ai]Zd . (Note that in our chain of inequalities, we’ve shown
k > 0 and hence all the upcoming inequalities do not receive a change in direction)

&
But then we know that m > % <= m > [2k] = m > (51 35all-

Now that we’ve showed a tight bound, we need to show the equality can be achieved (i.e.

that we can actually make Ag, By > 0). We will let k& = [aiédl and m = [§k]|. Clearly, By =

2m — ak = 2[%k] — ak is nonnegative. Now we have Ay = k(a+d) —m—j = k(a+d) — [%] — .
But note that [“2—]"1 = %—I—r, where r € {0,1/2}. Then Ag = k(a+d—5)—j = k:hfd—j—r =

2j 2 . 2j(a+2d . 1 1 .
[aéd} “‘5 d_j—r> QJ((;Jer)) —j—r = —r > —5. Thus we have Ay > —3, but since our

expression for Ay is known to be an integer, it must be at least 0. Thus, we’ve shown our
lemma.

O]

Lemma 5.2. Let S = (a,a+d,a+2d). Suppose that j is a positive integer that can be written
as (a+d)ro +r1 where 1 <1y <a+d. Then (0,m,0) is a bullet for ja, where

. {auidw ifr >
<

2j —(a+2d)| 5] ifm

(SIS TS
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Proof. We need to see when aAg + (a + 2d)Cy = (a + d)m — ja = a(m — j) + md admits a
nonnegative solution Ay, Cy (we assumed By = 0 for same reasons as last proof) As usual, we
have Ay + Cyp = m — j + kd, so a bit of computation shows that

m — ak

a
CO - 2 A() - k(§

m
He ™
+)+2 J

Cp tells us that m = ak + 2k, for some nonnegative integer k1. Thus Ag = ka+m +kd—j=

abtabt2k1 4 fod — j = ak+kd+ ki —j > 0. Thus we have k(a+d) > j—k <= k: > e
j—k
k = Pa—i—d1 —‘ :

Now we have m = ak+2k; > a P k1 7 1+2k1. Now let us try to minimize the expression on the
RHS. Write j = ro(a+d)+r; where 1 <7y < a+d. Then we have m > a[m(aﬁj)%w +2k; =
a(rog + [r(lljrfﬂ) + 2k1.

We need to minimize the expression a[™—7* ’“1 + 2kp in order to minimize m by choosing
an optimal k1 > 0. We analyze the components of this sum. The left-hand term is a from
k1 = 0 to 1 — 1 while the right-hand term increases with ki, so clearly k € {1,2,...,7 — 1}
cannot possibly minimize the sum. Now for k; = r; to a + d, the LH term is zero (note that
1 <71 < a+ d) while the RH term increases, so therefore k; € {r; +1,r1 +2,...,a + d} also
does not minimize the sum.

Now suppose that more generally, k1 = ka(a + d) + k3, where 0 < k3 < a+d — 1. Our sum
is thus equal to a[%] +2(ko(a+d) +ks) = a(—ko + [%]) + 2koa + 2kod + 2k3 =

ka(a + 2d) + af "i22 +Z3] + 2k3. This sum is minimized when ko = 0, but we’ve shown above that

a2 k3] + 2k3 cannot be minimal for k3 € {1,2,...,m1 — 1} U{r1 + 1,71 +2,...,a + d}.

Thus our problem boils down to a comparison of ks = 0 with k3 = r1. When plugging these
values in, their respective expressions are al 5] = a and 2r;. The latter expression (when
ks = ry) is smaller when r; < 2 5, and the former expression is larger when r; > §. Thus, for

our expression m = ak + 2k; (recall that k > [j kl}) so we have m > Pa_fﬂ + 2k1). When

k1 = 0 (whenever ry > g), we have m > (a%rd} When k1 = 71 (whenever 1 < r; < §), we

have m > P ”} + 2r1. But note that since 1 < r; < §, 71 is the remainder when dividing
jbya+d, sor =j— (a—l—d)[aﬂﬂ Thus we have m = ak + 2r > a[L; g+ 2 =

o[ ZU IV o (at d)[ 1) = al st ] +20 — (a+d)[ 25]) = 2/ — (a+2d)| 23],

after some simplification.

Now we need to show that our bound for m (which is a piecewise function of j) is tight. We
will do so by explicitly constructing Ag, Cy. As above, we let Cyp = ki, which is nonnegative
(recall it’s either 0 or 7). Now let Ag = k(a+d)+ k1 — j, where m is defined piecewise as above,
and k1 is given above. Then let k = P kl} Also take note that j — k; = ro(a+d)+r1 — k1 >
ry — k1 > 0, so again, no change of dlrectlons invoked in our inequalities. This implies that
Ag = [E=M(a+ d) + ky — 7 > 0, as desired, thus proving our lemma.

a+d
O
Lemma 5.3. Let S = (a,a +d,a+ 2d). Then (j,0,0) is a bullet for ja.
Proof. Don’t think too hard on this. It’s right in front of your eyes. O

Definition 5.1. A pure bullet is a bullet (Ao, A1, A2) such that only one component is nonzero.

Lemma 5.4. Suppose a even and j # 5. Let s be the sum of any j + § atoms. Then ja=s.

12



Proof. Note we can write s = (j + §)a + Nd. Then s — ja = (§)a + Nd. Then we can write
N=gqga+rfor0<r <aandqg>0and

s —ja= (%+qd>a+rd
But [5] < % + ¢d so by Proposition 5.1, s — ja € S and ja=s.
O

Lemma 5.5. Suppose a even and j # §. Let s be the sum of any j + “2;2 atoms. Then ja=<s
unless s is of the form (j + “—52) a+ (a—1)d.

Proof. Say we have s = aA + (a + d)B + (a + 2d)C = a(A+ B + C) + d(B + 2C) where
A+B+C=j+5—-1. Nows—ja=a(j+5—1)—ja+ (B+20)d=a(5—1)+ (B+20)d.
Now let B 4+ 2C = qia + g2 where ¢1 > 0,0 < g2 < a — 1. We use this substitution and get
that s — ja = a(§ — 1+ q1d) + g2d. Now in order for s — ja € S, by the membership criterion,
this is equivalent to stating that 2(§ — 1+ qid) > @2 <= a — 2+ q1d > q2. We know that
the LHS is at least a — 2, and the RHS is at most a — 1. The only way the inequality fails is if
¢1=0,2=a—1,givingus s=a(A+B+C)+dla—-1)=a(j+§—1)+(a—1)d O

Proposition 5.3. Suppose a even and j # §. w(ja) < j+ “Td

Proof. By Lemma 5.4, it is clear that w(ja) < j+ §. For sake of contradiction, suppose s is the
sum of j + § atoms.

Suppose our bullet is (A4, B, C) so that we have A4+B+C = j+ 5. To prove this supposition
false, we need to show that we can somehow remove an element from the bullet and still remain
in S.

Description of Process: For a factorization (Ag, By, Cp), we will need to check whether
m = aAp+ (a+d)Bo+ (a+2d)Cy — ja = a(Ao+ Bo+ Co — j) + d(By + 2Cp) € S. First write
By+2Cy = q1a+qo where g1 > 0,0 < g < a—1. Then m = a(Ag+Bop+Cop—j+qi1d)+dga. Then
by membership criterion, this is equivalent to checking whether g2 < 2(Ag+ By + Co — j + ¢1d).

Now take our bullet (A, B,C) and remove an element from it (so you're left with either
(A-1,B,C),(A,B—1,C),(A,B,C —1)). By membership criterion, we need to see when gy <
2(A+B+C—1—j+qd) = 2(5—1+qd). We know that g2 < a—1. If ¢ < a—1, then the RHS
strictly dominates the LHS. Also, if ¢1 > 0, then we’d have g2 < a—1<2(5—-1+d) = a—2+d,
which clearly, RHS bounds the LHS from above. Thus ¢; > 0 or g3 < a — 1 will show that we
can remove an element from the bullet and still remain in S. Thus, we can further assume that
g1 =0and gg =a—1.

Suppose that two of the bullet components are nonzero.

1. Case 1: A, B > 0. We either need to show that (A—1,B,C) or (A,B—1,C) isin S. For
the first factorization, we’d have to see whether (A—14+B+C—j)a+(B+2C)d € S, so we
want to show that go < 2(A—1+ B+ C+ qid— j) (refer to description of process above).
We want to show that a—1 < 2(j+§—-1-3j) = a—2. Wehave A—1+B+C—j = §—1 and
B +2C = a—1 (recall last sentence of previous paragraph). Now consider (A, B — 1,C).
We have A+ B+C—~1—j=5—1and B—1+2C = a— 1. This implies both B + 2C
and B +2C — 1 are a — 1, which clearly is false.

2. Case2: A,C > 0. Here, the only way a(A—14+B+C—ja)+d(B+2C) cannot be a member
of Sisif B42C =a—1, and the only way a(A+B+C —1—ja)+d(B+2(C—-1)) ¢S
isif B4+2(C—1) = B+2C—2=a—1. But since a > 3, both of these constraints cannot
be met.
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3. Case 3: B,C > 0. Let us interchange B — B — 1. Again, the only way a(A+ B — 1+
C—ja)+d(B—14+2C)¢ Sisif B—1+4+2C =a— 1. Now we interchange C' — C — 1.
a(A+B+C—-1—ja)+d(B+2(C—1)) ¢ Sif B+2C —2=a—1. These two conditions
cannot be simultaneously satisfied.

Now suppose that we have a pure bullet of length § + j. Clearly, it can’t be (4, B,C) =
(5 +4,0,0) since (4,0,0) is already a bullet for ja. Suppose it is (A, B,C) = (0,0, § + 7). Well,
we again need to have A+ B+C—~1= 5+j—1and B+2C -2 =a—1. Pluggingin A = B =0,
these equations simplify to C—1 = §+j—1 and 2(C' —1) = a—1. The first equation requires us
to have 2(C'— 1) = a+2j — 2. The second equation tells us that a+2j—2=a—-1 <= 2j =1,
which can’t be satisfied, hence a contradiction.

Now for our final case, we have (A4, B,C) = (0, 5 +4,0). We need to have A+ B+C = § +j
and B—1+4+2C =a—-1 <= B+2C =a. Since A=C =0, we have B=5+j=ua. If
J # §, then there cannot be a pure bullet in the middle component. But if j = §, then by
lemma above, it is a bullet of length 3. O

Theorem 5.1. For a odd, w(ja) = j + %5*.
Proof. Let a be odd.

. . +1 .
First suppose j < “3=. Consider the element

t:(2j1)(a+d)+<a;1j> (a+2d):a<j+a;1+d>.

Then t — ja = (‘12;1 + d) a € S and ja=t.
Now consider

= (2j —2)(a+d) + <a;1 —j) (a+2d) = <j+a;3)a+(a—1)d.

Then t' — ja = (5%)a + (a — 1)d. But [%}] > %2 so by Proposition 5.1 t' — ja ¢ S and
ja Rt

Also consider

a+1

t”—(2j—1)(a—|—d)+< —j—1> (a+2d) = <j+az_3>a+(a—2)d.

Then t"—ja = (%52 )a+(a—2)d. But [%52] > %53 so by Proposition 5.1 t —ja ¢ S and ja At".
Thus ¢ is a bullet for ja
atl
2

Now suppose j > . Consider the element

5= <j—a;1>a+(a—1)(a+d): <a;1+j>a+(a—1)d.

Then s — ja = (%1) a+(a—1)d. But {%1] = “T_l so by Proposition 5.1, s — ja € S and s=<ja.
Now consider

s = (j—a;1—1>a+(a—1)(a+d)— <a;3—i—j>a+(a—1)d.

14



Then s’ — ja = (%52) a+ (a — 1)d. But (“—glw > 253 50 by Proposition 5.1 s’ — ja ¢ S and
ja Rs'.
Also consider

I . oa—1 a—3

"= i- = )a+(a—2)(a+d):< 5 +j)a+(a—2)d.

Then s” — ja = (%52) a+ (a — 2)d. But [%52] > %2 so by Proposition 5.1 s” — ja ¢ S and
ja Rs".

Thus s is a bullet for ja.

Theorem 5.2. For a even and j # §, w(ja) = j + %2

Proof. Let a be even.

First suppose j < 5. Consider the element

t:(2j—2)(a+d)+(g—j—|—1> (a+2d) = (a22+j+d>a.

Then t — ja = (‘12;2 + d) a € S and ja=t.
Now consider

t’:(2j—3)(a+d)+(g—j+1> (a+2d) = <a;4+j>a+(a—1)d.

Then t' — ja = (%4) a+ (a—1)d. But [“T_l] > ‘12;4 so by Proposition 5.1 ' — ja € S and
ja Rt
Also consider

t”:(2j—2)(a—|—d)+(g—j> (a+2d) = (“2_4+j>a+(a—2)d.

Then t”"—ja = (“T74) a+(a—2)d. But [“772] > a—g‘l so by Proposition 5.1 t"—ja ¢ S and ja &t”.
Thus t is a bullet for ja.

Now suppose j > §. Consider the element

s:(j—%—i-l)a—i—(a—Q)(a—i-d): <a;2+j)a+(a—2)d

Then s — ja = (“7_2) a+ (a—2)d. But [“7_21 = “T_Z so by Proposition 5.1 s —ja € S and ja=s.
Now consider
—4
= (Dt @20 = ("5 15 ot -2
Then s’ — ja = (a—;l) a—+ (a —2)d. But (“—;2] > %4 so by Proposition 5.1 s — ja € S and
ja Rs'.
Also consider

a—4
2

s”:(j—;+1)a+(a—3)(a+d):( —|—j>a~|—(a—3)d

15



Then s” — ja = (“2;4) a+ (a —3)d. But [“Tfﬂ > %4 so by Proposition 5.1 s” — ja ¢ S and
ja Rs".

Thus s is a bullet for ja.

Definition 5.2. Define 5(n) to be the set of all bullets of n.

2

Lemma 5.6. Let a be even then {(0,2i,§ — i) 'i%:O U{(t,a —2i 0) C B(%).

Proof. Let n € Z 5 0 < n < §. Then we claim that (0,2n,§ —n) € (2) so we want to

show that & < 2n(a 4+ d) + (& —n)(a+2d), £ £ (2n —1)(a+d) + (& — n)(a + 2d), and% £
2n(a +d) + (f—n—l)( + 2d).

Now

a a? a? a?
2n(a+d)+(§—n)(a+2d)—5 = 2na+2nd+5+ad—an—2nd—?
= a(n+d)
€ S

Suppose “7 = (2n—1)(a+d)+(§—n)(a+2d). Then (2n—1)(a+d)+(%—n)(a—|—2d}—% es.
This implies

a2

a(Ag + Ay + Ap) + d(Ay +245) = (2n—1)(a+d) + (g —n)(a+2d) - 5

= an+ad—a—d.

It follows that

a(Ao+ A1+ A3) = an — a(mod d)
— Ag+ A1+ Ay = n—l(modd)
— Ag+A1+Ay = n—1+kdforsomekcZ

Substituting Ag+ A1+ As = n—1+kd, it is clear that A1 +2A4s = a—1—ak. Since A1+245 > 0,
we see that £ < 0.

Now,

a—1 a—1—ak
2 2

Ay
—+ A
2+ 2

Ao+ A1 + As
= n—1+kd

n—1
S
2

I IA

IN

IN A
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Thus we have 25 < %2 a contradiction. Thus ‘12—2 2 @2n—1)(a+d)+ (§ —n)(a+2d).

Suppose % = 2n(a+d)+ (§ —n—1)(a+ 2d). Note that in order for this condition to be

true, n is forced to be at most § — 1. Now 2n(a+d) + (§ —n —1)(a + 2d) — % €S
Hence

a2

a(Ag + A+ As) + d(Ar + Ay) = 2n(a+d)+(g—n—1)(a+2d)—5

= an—a— 2d-+ ad.

Taking both sides modulo d yields
(I(AO + A + AQ) an — CL(HlOd d)
— Ao+ A1+ A n — 1(mod d) sincegecd(a,d) =1
— Ag+A1+As = n—1+kd for some k € Z.

This implies

akd + d(A1 +245) = ad—2d
— A1 +24 = a—ak—-2

Since A1 +2A5 > 0 and a > 2, we have k£ < 0.

a—2 a—ak—2
<
2 - 2
A
= 5t
< Ag+ Az + Aj
= n—1+kd
< n-1
a
< —=2
- 2

2

All that is left to show is that {(i,a — 2i,0) ?:1 - 5(“2—2)

Let n € Z>1<n < §. Consider (n,a —2n,0). We want to show that % < na+ (a—2n)(a+
2

d),% £ (n—1)a+ (a—2n)(a+d), and%ﬁna—(a—Qn—l)(a—i—d).

Now,
a? a?
na—i—(a—?n)(a—i—d)—? = ?—na+ad—2nd
- a(% —n) +2d(g —n)
= (a+2d)(g —n)
e S
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Suppose ‘12—2 <= (n—1)a+ (a—2n)(a+d). Then (n —1)a+ (a — 2n)(a+d) — % €Ss.

Using a similar argument as above we see that Ao+ A1+ Ao = § —n—1+kd, A; + 245 =
a—2n — ak where k € Z and k < 0.

a a—2n — ak
2 - 2

Ay

—+ A

y T
Ag+ Al + Ay

g—n—l—i-kd

IN

a

Thus § —n 5—-—n—1+kd = 0 < kd— 1 a contradiction as k& < 0. Therefore,
2

<
2 A (n—1)a+ (a—2n)(a+d).

Lastly, suppose “2—2 < na—(a—2n—1)(a+d). Then na—(a—2n—1)(a+d)—% € S. Then going
through the same argument we find that Ag+A1+As = §—n—1+kd, A1 +2A42 = a—2n—1—ak,
where k € Z and k < 0.

It follows that 4 —n— 3 < % —n—1, a contradiction. Therefore, % £ na—(a—2n—1)(a+d)

n
and so we have {(i,a — 2i,0)}”;, C B(%). O

~

Definition 5.3. Let A = (A1, As,...,A;) and B = (B1,Bs,...,B;), and A # B Then we say
A majorizes B if Vi<i<zAi > DB;.

Lemma 5.7. Let A and B be as above. Suppose B € 3(n). If A majorizes B, then A ¢ S(n).
Proof. Trivial, and very easy to see. O

Theorem 5.3. Let a € S be even. Then w(%) = a.

Proof. Recall {(0,2i, % —)}2 o U{(i,a—2i,0)}2, C (). Now (0,a,0) € B(2) so w(L) > a.
Let (A,B,C) € B(%) Then note if B = a, then A = C = 0 for if not then (A, B, C') majorizes
(0,a,0). So suppose B < a, is even, then B < a — 2. Then B = 2j or B = a — 2j for some
1<j<g—1 Nowif B=2jthen C < g —j. This gives B+ 2C < a. If B = a — 2j, then
A < j which implies 24 + B < a. It follows that A + B + C < a, and so we have w(%z) < a.

So w(%) = a when B is even. Now suppose B is odd, then B < a — 1. Now realize since B
is odd, it can be written as B = 2k + 1 where 1 < k < §. Now notice C' < § — k for if not
then (A, B,C) majorizes (0,2k,5 — k). Thus C < § — k — 1, implying 2C + B < a. Likewise
2A + B < a. After adding our two equations we get A + B + C' < a. Therefore w(%) =a O

Lemma 5.8. Let S be as above, a > 3 be odd and k > 2. Whenever Ag+ A1+ Ay > {%W +k—1,
then ak =< a(Ao + A + Ag) + d(A1 + 2A2)

Proof. Realize by the division algorithm, Ay + 242 = q1a+ g2 where ¢y > 0and 0 < ¢ < a— 1.
Let t = a(A() + A1 + Ay — k) -+ d(Al + 2A2)
Now

t = G(A0+A1+A2+q1d—k)+q2d.
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Then
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]+k—1+q1d—k)
< 2(Ao+ AL+ Ay + qud — k).

Therefore t € S by the membership criterion. Hence ak < a(Ag + A1 + A2) + d(A; + 245). O

6 Omega Primality of Generators of Arithmetic Numerical Monoids

Let S = (a,a+d,...a+ xd) be an arithmetic numerical monoid. We will find the omega pri-
mality for all generators of S, w(a + id) for 0 <i < z.

Before we begin, it is interesting to note that omega-primality is a measurement of how far
an element is from being prime. To see this, first consider the natural numbers. In N, alb if
there exists some ¢ € Z such that ac = b and « € N is prime if whenever z|ab, then z|a or x|b.
Now consider our numerical monoid S. In S, a=b if there exists some ¢ € S such that a +c =5
and if x=ny + ng, x is prime if t=<n; or x=ny. Elements with higher w values are further away
from prime.

It is also worth noting that by this definition no element of a numerical monoid will be prime,
so min(w) = 2.
6.1 w(a)
_ [a=2
let k= [22] +1
Lemma 6.1. Let s € S be the sum of any k + 1 atoms. Then a=s.

Proof. Note that we can write
s=(k+1a+ Mdfor0< M <k+1.

Hence
s—a=ka-+ Md.

We can write M = qa + r with 0 < r < a. Thus
s—a=(k+qgd)a+rd
Clearly [ﬂ < (“Tflw < k+qd, thus by Theorem 0.1 we have that s—a € S and we are done. []

Lemma 6.2. Let s be the sum of any k atoms of S. Then a=s unless the following happens:
a =2 mod x and s is of the form ka + (a — 1)d.

Proof. Note that we can write

s=ka+ Mdfor 0 < M <k.
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Hence
s—a=(k—1)a+ Md.

As above, write M = ga 4+ r with 0 < r < a. Thus
s—a=(k—-1+qd)a+rd

Clearly when r < a — 2, [ﬂ < k—-—1+4¢qdsos—a € S by Theorem 0.1. Hence assume
r=a—1 Write a —2 =ux +v with 0 < v < 2. Then k¥ — 1 = u when a = 2 (mod x) and
k—1=u+1 otherwise. Note that [2] =[] =u+1,s0if a # 2 (mod z), then s—a € S by
Theorem 0.1. Hence s —a ¢ S only when a =2 (mod z) and ¢ = 0 (if ¢ is positive then clearly
s—a € S). Hence, s —a ¢ S is only possible when a = 2 (mod z) and M = a — 1, meaning

s=ka+ (a—1)d. O

Definition 6.1. Call the numerical semigroup S = (a,a+d,...,a+ xd) sporadic if both of the
following hold: a =2 (mod z) and a =1 (mod k).
Lemma 6.3. Suppose S is not sporadic. Then w(a) < k.

Proof. Let S be not sporadic and let s = A; + ... + Agy1. If @ Z 2 (mod x) then a=<s — A; for
any A; by Lemma 1.2 and we obtain w(a) < k. Hence, assume that a = 2 (mod z) (meaning
a# 1 (mod k) as S is not sporadic). Without loss of generality, remove Ay,1, yielding

t=A1+ ..+ A

By Lemma 1.2, we know that a=¢ unless ¢t = ka + (a — 1)d, so suppose t is of this form. First
suppose that there exists some A; # Ayy1 and consider the element ¢’ =t + Ap1 — A;. This
can be written as

t'=ka+ (a—1+ jgy1 — ji)d = ka+ Nd

Note that as A; # Ai+1 we have that jry1 — 7 #0s0 0 < N <2a—2and N # a— 1. But
then by Lemma 1.2, we have that a=<t'.
Now suppose that there does not exist any A; # Agy1. Then we can write

t=ka+ kjdfor 0 <j <.
But a Z1 (mod k) = kj # a — 1, thus by Lemma 1.2, we have that a=t. O

Theorem 6.1. Let S = (a,a+d,...,a + xd), then we have:

wla)=k+1 if S is sporadic
w(a) =k otherwise

Proof. First assume that S is sporadic. By Lemma 1.1 it is clear that w(a) < k + 1. We have
that “772 €Z and j = “—;1 € Z, yielding

ooa—1 a—1 a—1
= g =T
J k a2 41 a—2+xz)’

so clearly j < z. Hence, a+ jd is an atom. Note that by Lemma 1.1 we have a=(k+1)(a+ jd).
But we also know that a ~<k(a + jd) = ka + (a — 1)d by Lemma 1.2, so (k+ 1)(a + jd) is a
bullet for a.

Now assume that S is not sporadic. First suppose a # 2 (mod z). By Lemma 1.2 it is clear
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that w(a) < k. Let j = H—:ﬂ and notice that j = %ijﬂ < [z], so clearly 1 < j < x.

Consider
s=[la-1)— (k=10 - Dl(a+jd) +[(k=1)j — (a=2)](a+ (j — 1)d).

(a—1)—(k—1)(j—1) > (a—1)—(k—1)($=2-1) > O and (k—1)j—(a—2) > (k—1)%=2—(a—2) =0
so0 s is the sum of k atoms. By Lemma 1.2 we have that a<s. Now consider s’ = s — (a + jd).
We can write

ss=k-1Da+(a—2)d = s —a=(k—-2)a+ (a—2)d

But k—2 = [=2] -1 < (“T_Q], so by Theorem 0.1 s —a € S and a /<s’. Also consider
s=s—(a+ (j—1)d). We can write

| &

s"=k-1Da+(a—1)d = " —a=(k—2)a+ (a—1)d

But k —2 = [=2] — 1 < [21], so by Theorem 0.1 s —a ¢ S and a /<s”. Thus s is a bullet
of a.

Now suppose a = 2 (mod x). Notice this means that a # 1 (mod k) as S is not sporadic.
Consider t = k(a+ zd) = ka+ kxzd. But kx =a—2+2x > a— 1, so by Lemma 1.2 we have that
a=t. Now consider t’ = t—(a+xzd) = (k—1)a+ (k—1)zd. But then t' —a = (k—2)a+ (k—1)xd.
But {@—‘ =k—1<k—2,s0 by Theorem 0.1 ¢ —a ¢ S and a /<t'. Thus ¢ is a bullet of
a. O

6.2 w(a+id)

Let t = [%2] +d + 1.

Lemma 6.4. Let s be the sum of any t + 1 atoms of S. Then (a + id)=s.

Proof. Note we can write s = (¢t + 1)a + Md. Then s — (a + id) = ta + (M —i)d.
Suppose M — i > 0. Then we can write (M —i) = Aa+ 7 for 0 <r <a—1 and

-2
s—(a+id) = <d+ [ax-‘ +1+Ad>a+7‘d

Now, [Z] <d+ [“2] + 1+ Ad and s — (a + id) € S by the membership criteria.

xT

Next suppose M —i < 0. Then s — (a +id) = ([=2] +1)a+ (a + M —i)d. We can write
(a+M—i)=rfor0<r<a-—1and

s—(a—i—id):([a;f‘—i—l)a—l—rd

Now, [£] < [%2] +1 and s — (a + id) € S by the membership criteria. O

T

Lemma 6.5. Let s be the sum of any t atoms of S. Then (a + id)=<s unless the following
happens: a =2 mod x and s is of the form ta + Nd where N —i = —1

Proof. Let s be the sum of ¢ atoms, i.e, s = ta + Nd.Then
ta+ Nd— (a+1id) =a(t—1)+ d(N —1)
First suppose IV > i. Notice we can write N —¢ = qa + r where 0 < r < a and ¢ > 0. Then

a(t—1)+d(N —1)=a(t — 1+ qd) + dr.
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which is clearly in S by membership criterion. Now suppose N < ¢. Notice we can write
a(t—1)4+d(N —i) =a(t—1—d)+d(N — i+ a). Then we can write N — i + a = r where
0<7r<a-—1. Then

T

a(t—1—d)+d(N—i+a)=a(t—1—d)+dr= [G_Q—‘a—krd

first of all if @ # 2 (mod x), then [ﬂ < {“772} The only way this element fails to be in S is if
“7_2 € Z and r = a — 1, which precisely says N —i = —1. O

Theorem 6.2. Let S = (a,a+d,...,a+ xd), then we have:

wla+id)=t+1 ifa=2 (modzx)andi=1 (mod t)
w(la+id) =t otherwise

Proof. First suppose a = 2 (mod z) and ¢ = 1 (mod t). By Lemma 2.1 it is clear that
wla+id) < t+1. Let m = % € Z. Noticel <i<z — 0<m <z s0a+md
is an atom. Consider s = (¢ + 1)(a + md). Notice a + id<s by Lemma 2.1. Now consider
s=s—(a+md)=ta+ (i—1)d. But (i—1) —i = —1 so by Lemma 3.2, a +id A<s’. Thus s is

a bullet for a + id and w(a +id) =t + 1.

Now assume that S does not satisfy the first case. First we show the upper bound. If a # 2
(mod x) then we have that w(a+1id) <t by the above lemma. If a =2 (mod ) (which implies
that ¢ # 1 (mod t)) then we have that if s is the sum of ¢ + 1 atoms:

8:A1+...—|—At+1

We want to show that we can always remove one, A; such that a + id precedes s — A;. Let
p = s — Ayp1. By above work, we know that (a + id)=<p most of the time, and fails when
N —i = —1, hence assume this happens. Choose A; for 1 <i <t such that A; # A¢y1 (this can
be done unless all the atoms are the same). Consider

ﬁ:pfAiJrAtH:ta+Ndf(a+id).

Now, N — i # —1 and therefore, (a + id)=<p. If all the atoms are the same, then p = t(a + jd),
so we have:

p—(a+id)=(t—1)a+ (tj —i)d

this fails to be in S if and only if ¢j —i = —1, but this implies ¢ = 1 (mod ¢) which we said does
not happen. Hence, w(a + id) < t.

To show lower bounds we will exhibit bullets that attain the desired values. If a = 2 (mod z)
and 7 Z 1 (mod t), then we have that (a + id)=<ta by the previous lemma. Also, note that
(a+1id) A(t —1)a since

(t—2—-da+(a—i)d¢ S

by an easy application of the membership criterion.

For the bullet when a = 2 (mod z) consider the following construction: First recall the def-
inition of k from earlier sections (so we have t = k + d). Then write a — 1 = kjx + ko with
0 < k9 < x. Note that we have that ko # 1. First we do the case when ko > 2. Let j = Lﬁil .
Let m, n satisfy the following system of equations:
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m+n=d+k mj+n(i+l)=i—1+j
Solving the system yields

m=(d+k-1)(G+1)—-(i-2) n=i—-1-(d+k—1)j

We claim that N = m(a + jd) + n(a + (j + 1)d) is a bullet for a + id. Like before, we want
to show this decomposition is well-defined (i.e. 0 < j <z —1,m >0,n > 0).

Clearly 7 > 0. Now we also have that j = Ldizilj <i—1<z-1.

Nown=i—1—(d+k—1)j=i—-1—(d+k—1)|z55] >i—1-(d+k—1)755 =0.

Now m = (d+k—1)(j+1)—(i—2) = (d+k—1)(| 755 +1) — (i —2) > (d+k—1) 771 —
(i—2)=1,s0m >0.

We need to show that these actually are bullets. We proved earlier that an upper bound
for w(a + id) is as given in the lemma (so we already know N — (a + id) € S), and now we
have to show that Ny = N — (a + jd) — (a +id) and No = N — (a + (j + 1)d) — (a + id) are
not in S. First, recall our handy dandy system of equations for m and n, which tells us that
m+n—2=d+k—2and jm+(G+1)n—j5—i=—1.

For the first case, Ny = N — (a+jd) — (a+id) = (m+n—2)a+d(jm+ (j+1)n—j—i) =
(d+ k —2)a+d(—-1) = (k—2)a+ d(a — 1), which is in canonical form. Now note that
a—1=z%=l>2([=1] —1) = (k — 2)x, so by membership criterion, Ny & S.

Before we take a step further, first note that a — 1 = kyx + ko, with 2 < ko <2 — 1. We
note that [21] = [ky + %2] = ky + [22] = &y + L.

But we also have that a — 2 = kijx + ko — 1, where 1 < ky — 1 < z — 2. Then we have
[422] =k + [524] = by 4 1, s0 [252] = [42].

x T

For the second case, No = N — (a+ (j + 1)d) — (a +id) = (m +n — 2)a + d(-2) =
(d+k—2)a+d(—2) = (k—2)a+d(a—2). We have k —2 = [2=2] — 1 = [2=2] — 1. So then
we have a — 2 = 222 > 2([22] — 1) = 2([%1] — 1) = (k — 2)x, so by membership criterion,
No ¢ S.

Thus, we’ve constructed an explicit bullet for a + id.

The only remaining case is when a — 1 = kjz (meaning ko = 0). In this case the bullet is
much easier and it is given by (¢,0,...,0). First of all it is clear by our previous lemma that
a + id=ta, and if we have:

(t—1Da—(a+id)=({t—-2—d)a+ (a—i)d

butt —2 —d=[22] -1 < [£2] = {%—‘ < [2=] and by membership criteria we have

x —=

that this elements is not in 9, i.e., (¢,0,...,0) is a bullet for a + id. O

7 Omega Primality of Generators of Generalized Arithmetic
Numerical Monoids

In the section below let S = (a,ah +d,...,ah + xd) where gcd(a,d) = 1,h > 2, and = < a.

23



7.1 w(a)
let k= [¢=2] +1

Definition 7.1. If S = (a,ah + d,ah + 2d,...,ah + xd), define a large atom to be an atom in
the set S — {a}. In other words, it’s of the form ah + bd.

Lemma 7.1. Let s € S be the sum of any k + 1 atoms. Then a=s.

Proof. First note that if s has any atoms equal to a, then clearly, a<s. Thus assume the k£ + 1
atoms are large atoms. Note that we can write

s=(k+1)ah+ Md for 0 < M < (k+ 1)x.

Hence
s—a=((k+1)h—1)a+ Md.

We can write M = qa + r with 0 < r < a. Thus
s—a=((k+1)h—1+qd)a+ rd.

Clearly [Z] < [¢] <k <k+1-1} <k+1-1+ % thus by Theorem 0.1 we have that
s —a € S and we are done. O]

Lemma 7.2. Let s be the sum of any k large atoms of S. Then a=s unless the following
happens: a =2 mod x and s is of the form kah + (a — 1)d.

Proof. Note that we can write
s = kah + Md for 0 < M < kz.

Hence
s—a=(kh—1)a+ Mad.

As above, write M = ga + r with 0 < r < a. Thus
s—a=(kh—1+qd)a+rd

Clearly when r < a — 2, E] <k-1< khh_l < kh*iﬂd so s —a € S by Theorem 0.1. Hence
assume 7 = a — 1. Write a — 2 = uz +v with 0 <wv < z. Then k¥ — 1 = u when a = 2 (mod x)
and k—1 = u+1 otherwise. Note that [Z] =[] =u+1,s0ifa # 2 (mod ), then s—a € S
by Theorem 0.1. Hence s —a ¢ S only when a = 2 (mod z) and g = 0 (if ¢ is positive then
clearly s —a € S). Hence, s —a ¢ S is only possible when a = 2 (mod z) and M = a — 1,

meaning s = kah + (a — 1)d. O

Definition 7.2. Call the numerical semigroup S = {(a,ah+d, ... ,ah+ xd) sporadic if both of
the following hold: a =2 (mod z) and a =1 (mod k).

Lemma 7.3. Suppose S is not sporadic. Then w(a) < k.

Proof. Let S be not sporadic and let s = A; + ... + Ag41. Clearly, we can assume that the A;’s
are all large atoms. If a # 2 (mod z) then a<s — A; for any A; by Lemma 1.2 and we obtain
w(a) < k. Hence, assume that a = 2 (mod x) (meaning a # 1 (mod k) as S is not sporadic).
Without loss of generality, remove Ajy1, yielding

t:Al—i-...—i-Ak.
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By Lemma 1.2, we know that a=<t unless ¢t = ka + (a — 1)d, so suppose t is of this form. First
suppose that there exists some A; # Aj.1 and consider the element ¢ =t + Ay — A;. This
can be written as

t'=kah + (a — 1+ jg41 — ji)d = kah + Nd

Note that as A; # Agy1 we have that jx11 —ji #0s00 < N < 2a—2 and thus N # a—1. But
then by Lemma 1.2, we have that a=<t'.
Now suppose that there does not exist any A; # Ag+1. Then we can write

t =kah + kjd for 0 < j < x.
But a #1 (mod k) = kj # a — 1, thus by Lemma 1.2, we have that a=t. O

Theorem 7.1. Let S = (a,ah +d,...,ah + zd), then we have:

wla)=k+1 if S is sporadic
w(a) =k otherwise

Proof. First assume that S is sporadic. By Lemma 1.1 it is clear that w(a) < k+ 1. We have
that “7_2 €Zand j = “T_l € Z, yielding

. oa—1 a—1 a—1
= = =
J k a2 4 a—2+xz)’
so clearly j < z. Hence, ah+jd is an atom. Note that by Lemma 1.1 we have a=<(k+1)(ah+jd).

But we also know that a ~<k(ah + jd) = kah + (a — 1)d by Lemma 1.2, so (k+ 1)(a + jd) is a
bullet for a.

Now assume that S is not sporadic. First suppose a # 2 (mod z). By Lemma 1.2 it follows

that w(a) < k. Let j = H—:ﬂ and notice that j = [[Z% < [z], so clearly 1 < j < .
Clearly, 7 > 1, being the ceiling of a positive number. Now we will show that when a > 3,

then 57 > 2. Since j is an integer, it suffices to show that j = [[HW—‘ > 1. We can prove

this by showing that % >1 <= a—2> {“7_2] It then suffices to show that a — 2 >

amztro]l — 083 1] = q-3> 23 — > 1.
Now let’s see what happens when a = 3. Then k—1 = (“Tfﬂ = Ew =landj= [ﬁ-‘ =L
Then (k—1)j - (a—2)=1-1=0.

Consider
s=[(a—1) = (k-1 — Dl(ah + jd) + [(k — 1)j — (a — 2)](ah + (j — 1)d).

(a—1)—(k-1D@EF-1)>@-1)—(k—1)(224+1-1)=1>0and (k—1)j — (a —2) >
(k — 1)‘;—:% —(a—2) = 0 so s is the sum of k atoms. Note that in the derivation above,
ah+ (j —1)d is an atom when j > 1, which is the case when a > 3. But when a = 3, we showed
that (k—1)j — (a — 2) = 0, so the coefficient of ah + (j — 1)d in the expression for s is 0, so no
harm done there.

By Lemma 1.2 we have that a<s. Now consider s’ = s — (ah + jd). We can write

s =(k-1ha+(a—2)d = s —a=(kh—h—1)a+ (a —2)d

But kh —h—1=h[%=2] —1 < h[%“2], so by Theorem 0.1 s —a ¢ S and a s’
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Also consider s” = s — (ah + (j — 1)d). We can write
s"=(k—-1Dha+(a—1)d = s"—a=(kh—h—-1)a+ (a—1)d

But kh—h—1=h[%2] —1 < h[%L], so by Theorem 0.1 s —a & S and a /<s”. Thus s is
a bullet of a.

Now suppose a = 2 (mod z). Notice this means that a # 1 (mod k) as S is not sporadic.
Consider t = k(ah + xzd) = kah + kxd. But kx = a —2+ 2 > a — 1, so by Lemma 1.2
we have that a<t¢. Now consider t' = ¢t — (ah + zd) = (k — 1)ha + (k — 1)zd. But then

t'—a=(kh—h—1)a+ (k—1)zd. But {@—‘ =k—-1>k—1-1= kh_hh_l, so by Theorem
0.1t —a¢ S and a At'. Thus t is a bullet of a. O

7.2 w(ah+id)

Let S = (a,ah+d,...ah+xd) be a generalized arithmetic progression numerical semigroup. We
will find the omega primality for all generators of the form ah + id where h > 2 and 1 <@ < z.
Let k; = {“_;ﬁ]

Lemma 7.4. For (ah + id) where h > 2 and 1 <1 < z, the following is a bullet:
(hk; +d,0,0,...,0)

which means w(ah + id) > hk; + d.

Proof. Consider the element (hk; +d,0,0,...,0). Then

a(hks + d) — (ah + id) = ah [“;ﬂ +(a—i)d

Notice, [2=4] < [“*] by Omidali’s characterization. Thus ah [%t] 4+ (a — i)d € S and

ah +id X (hk; + d,0,0,...,0).
To show that this is a bullet, consider the element (hk; +d — 1,0,0,...,0). Then

a—1

a(hki—l-d—l)—(ah—l-id):a(h[ —‘—1)+(a—i)d

T

Notice, h [4%] > h [2%£] — 1 by Omidali’s characterization. Thus a(h [] = 1)+ (a—i)d ¢ S
and ah +id A (hk; +d —1,0,0,...,0).
O

Lemma 7.5. Let s be the sum of hk; + d elements. Then ah + id < s unless s is of the form
(hki + d — 1)a + (ah + Bd) with [i} = [a=i] 41

Proof. Let p be the number of copies of a, and let ¢ be such that p 4+t = hk; + d. We can then
write s = ap + aht + (E;zl B;)d. Consider the element

s — (ah+id) = ap+aht + (Y _ Bj)d — (ah+id) =a(p+ h(t— 1))+ (O _B;—i)d  (4)
j=1 j=1

First consider the case when ) ;—i > 0: In this case write > fj—i = Aa+r with 0 <r < a—1.
Hence we can rewrite above as:

a(p+ h(t —1) + Ad) + rd
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Note h [ﬂ <h [%q, we also have that

p+h@—U+Ad2hF%éfo+Ad

because the left hand side is minimized when ¢ is as low as possible. Since Z§:1 B —1 >0 we
have that ¢ > 1, so this quantity is minimized when ¢ = 1 and the inequality holds. Hence we
have that

—1 —z+1 —z+1
hmghﬁ ]gh[w]gh{wwﬂdgpw_l)m

T T x

and by Omidali’s characterization we have that this is in S.

For the case ) f; —i < 0, note that we can rewrite the equation (1) as
¢
alp+h(t—1)—d)+ (a+ ) B —i)d (5)
j=1

Let r=a+ Z;Zl Bj —i. First of all note that the case t = 0 is done by the previous lemma. If
t > 2 then we have that

a—1t+x
z

p+h@—n—dzmh+d—m+h—d:h{ W—2+h

since the left hand side is minimized when ¢ is as low as possible. Note that { ] < [ and

T afi+z'|
xT xT
since h — 2 > 0 we have that

r

_2+hz[?

p+h(t_1)_d2h[a—z—l—x-‘

and we get that ah + id does indeed preceed s.

The last case is when ¢ = 1, in this case equation (2) reads:
alp—d)+ (a+ B —i)d =a(hk; — 1)+ (a + f —i)d

this is in S if and only if h {%ﬁ_l—‘ < h[e=2] — 1 = p %] 4+ (h —1). Note that [L'f_i—‘

is equal to [%1 or { = ] + 1. In the first case the inequality holds trivialy and in the second
case the inequality does not hold, which is precisely what the theorem states. O

Lemma 7.6. Let s be the sum of any hk; +d + 1 atoms. Then ah + id=s.

Proof. Let s = A1 + ... + Apg,+d+1 and let s = Ay + ... + Apg,+a- By above we know that
ah + id=s' unless s is of the form (hk; +d — 1)a + (ah + Bd) with [%ﬂﬂ-‘ = [22] + 1. If this
is the case then define s” = s' + Apk,+a+1 — Ag (with A, = a). Then by the above lemma we

have ah + i1d<s"=<s, and we are done.
O

Lemma 7.7. Let s be the sum of m atom, with m > hk;+d and ah+id=s, then we can always
find hk; + d of them such that ah + id precedes their sum. Hence, w(ah + id) < hk; +d
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Proof. By the above lemma it suffices to assume that m = hk; + d + 1. Then we can do as in
the proof above and obtain that either ah +id=s’ or ah +id=s" and this finishes the proof. []

Theorem 7.2. Let S = (a,ah +d,..,ah + xd), then w(ah + id) = hk; + d.

Proof. Last lemma proved the upper bound for w(ah + id) and our first construction proved
the lower bound. Hence we have that w(ah + id) = hk; + d.

O]
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