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Abstract

A generalized arithemtic numerical monoid is of the form S = 〈a, ah+d, ah+2d, . . . , ah+
xd〉 where the gcd(a, d) = 1 and a > x. Much is known for the arithmetic numerical monoid,
when h = 1, due to known information for that specific monoid’s length set. Therefore, this
paper will explore various invariants of the generalized arithmetic numerical monoid.

1 Introduction and Preliminaries

Before we introduce a generalized arithmetic numerical monoid and present properties of this
monoid, we must present some basic terms important to understanding numerical monoids in
general.

Definition 1.1 ([8]). A numerical monoid S is a subset of N such that

• 0 ∈ S

• if a, b ∈ S, then a+ b ∈ S

• gcd(S) = 1

Definition 1.2 ([8]). A generator or atom ni of a numerical monoid S is an element of S
that can not be written as the sum of elements of S \ {0} and {n0, n1, . . . , nx} is called the set
of atoms of S.

Definition 1.3 ([2]). Define the set of factorizations of an element s ∈ S to be the set of all
solutions to m = A0n0 +A1n1 + · · ·+Axnx for Ai ∈ N. We will denote the set of factorizations
of m as (A0, A1, . . . , Ax).

Definition 1.4 ([2]). Define the length of factorization of s ∈ S to be A0 +
∑x

i=1Ai.

Definition 1.5 ([2]). Define the length set of an element in S, L(s), to be the set of all
lengths of factorization of s. The the length set of a numerical monoid, L(S), is given by
L(S) = {L(s) | s ∈ S}.

We will now go on to define several important invariants of numerical monoids that will help
us to later understand properties of generalized arithmetic numerical monoids.

Definition 1.6 ([1]). The elasticity of an element s ∈ S, denoted ρ(s), is given by ρ(s) =
L(s)
`(s) where L(s) = max(L(s)) and `(s) = min(L(s)). The elasticity of a numerical monoid,

ρ(S), is given by ρ(S) = sup{ρ(s)|s ∈ S}.

We can define a more specific type of elasticity for numerical monoids, specialized elasticity,
which we will later explore fully for generzlied arithmetic numerical semigroups.
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Definition 1.7 ([4]). The specialized elasticity of a numerical monoid S is given by ρk(S) =
sup{L(s) | `(s) ≤ k}

Another invariant that we will explore later for generalized arithmetic sequences is delta
sets.

Definition 1.8 ([2]). Let L(s) = {n1, n2, . . . , nt} with ni < ni+1. Define the delta set of an
element s ∈ S as ∆(s) = {ni+1−ni | 1 ≤ i ≤ t− 1} and define the delta set of a numerical
monoid S as ∆(S) =

⋃
s∈S ∆(s)

The last invariant that we consider in this paper is omega-primality for arithmetic sequences.
Before we define omega-primality, some other definitions are necessary.

Definition 1.9 ([7]). For s, t ∈ S, we say that s precedes t (s � t) if t− s ∈ S.

Definition 1.10 ([7]). A bullet for s ∈ S is an expression u1 + . . .+ uk such that

• s�u1 + . . .+ uk

• s 6 �u1 + . . .+ uk − ui for all i.

Now we can define omega-primality for a numerical monoid.

Definition 1.11 ([7]). Define the omega primality of s ∈ S, ω(s), to be the smallest value
of m such that if s � u1 + · · ·+ uk where k ≥ m, then there exists T ⊆ {1, . . . , k} with |T | ≤ m
such that s �

∑
i∈T ui.

2 Generalized Arithmetic Numerical Monoids

Much is known about arithmetic numerical monoids so much of our paper is focused on gen-
eralized arithmetic numerical monoids. However, we do also present some previously unknown
results about arithmetic numerical monoids.

Definition 2.1 ([5]). A generalized arithmetic numerical monoid is a monoid that is
generated by a generalized arithmetic seqeunce, that is a numerical monoid of the form S =
〈a, a + d, . . . , ah + xd〉, where gcd(a, d) = 1 and a > x. Also, h = 1 yields an arithmetic
numerical monoid.

It is essential that we have gcd(a, d) = 1 as otherwise gcd(S) 6= 1 and S will not be a
numerical monoid. We also require a > x as otherwise {a, ah + d, . . . , ah + xd} will not be a
minimal generating set.

Throughout the remainder of this paper we may write n0 = a and ni = ah+id. Furthermore,
s = (A0, A1, . . . , Ax) will represent an element s ∈ S that is the sum of A0 copies of a and Ai
copies of ah+ id.

3 Specialized Elasticity of Generalized Arithmetic Numerical
Monoids

We will now fully characterize the specialized elasticity of generalized arithmetic numerical
monoids. Let S = 〈a, a+ d, . . . , ah+ xd〉 with gcd(a, d) = 1 and a > x. Recall our definition of
specialized elasticity,

ρk(S) = sup{L(s) | `(s) ≤ k}
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Lemma 3.1 ([4]). ρk(S) = sup{L(s) | `(s) ≤ k} = sup{L(s) | `(s) = k}

We will use the definition of specialized elasticity found in Lemma 3.1 for the remainder of
this paper.

Consider an element t that can be written as the sum of k atoms. Assume we have N copies
of a, and (k −N) copies of the remaining atoms. We can then write

t = Na+ (k −N)ah+

(
k−N∑
i=1

βi

)
d

Suppose the longest factorization of t is given by (A0, A1, ..., Ax). Let k1 = A0 + h
∑x

i=1Ai and
k2 =

∑x
i=1 iAi. We can now write

t = k1a+ k2d = Na+ (k −N)ah+

(
k−N∑
i=1

βi

)
d. (1)

Looking at equation (1) modulo d yields k1 = N + (k − N)h + sd for some s ∈ Z. Plugging
this defenition of k1 back into equation (2) also yields k2 =

∑k−N
i=1 βi − sa. Note that k1 =

L(t) + (h− 1)
∑x

i=1Ai =⇒

L(t) = N + (k −N)h+ sd− (h− 1)

x∑
i=1

Ai = kh+ sd+ (1− h)

(
N +

x∑
i=1

Ai

)
. (2)

Lemma 3.2. Suppose a ≤ kx. Then k ≤ a
⌊
kx
a

⌋
.

Proof. First suppose k ≤ kx− a. Then

k ≤ kx− a = a

(
kx

a
− 1

)
< a

⌊
kx

a

⌋
.

Now consider k > kx− a and suppose k > a
⌊
kx
a

⌋
. Then

a ≤ kx =⇒ a ≤ a
⌊
kx

a

⌋
=⇒ a < k.

Furthermore,
k > kx− a =⇒ a > k(x− 1) ≥ k.

Thus k < a < k, a contradiction, so k ≤ a
⌊
kx
a

⌋
.

Lemma 3.3. Suppose a > kx. Then

kh− (h− 1)

(
N +

x∑
i=1

Ai

)
≤ (h− 1)

⌊
−k
x

⌋
+ kh

Proof. Recall from above that k2 =
∑x

i=1 iAi =
∑k−N

i=1 βi − sa. Notice

k −N ≤
k−N∑
i=1

βi =⇒ k −N − sa ≤
k−N∑
i=1

βi − sa.
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Hence,

k −N − sa ≤
x∑
i=1

iAi =⇒ k ≤
x∑
i=1

iAi + sa+N.

But a > kx and
∑k−N

i=1 βi − sa > 0 =⇒ s ≤ 0. Thus, we can write

k ≤
x∑
i=1

iAi +N ≤ x

(
x∑
i=1

Ai +N

)

But

k ≤ x

(
N +

x∑
i=1

Ai

)
=⇒ −N −

x∑
i=1

Ai ≤
⌊
−k
x

⌋

=⇒ kh− (h− 1)

(
N +

x∑
i=1

Ai

)
≤ (h− 1)

⌊
−k
x

⌋
+ kh

We can now present our theorem characterizing specialized elasticity for all generalized
arithmetic numerical monoids.

Theorem 3.1. Let S be defined as above. Then

ρk(S) =

{
kh+

⌊
kx
a

⌋
d if a ≤ kx

kh+ (h− 1)
⌊−k
x

⌋
if a > kx

Proof. First suppose a ≤ kx. From equation (2), we can write

L(t) ≤ kh+ sd.

Note that

k2 ≥ 0 =⇒
k−N∑
i=1

βi ≥ sa =⇒ sa ≤ (k −N)x ≤ kx =⇒ s ≤
⌊
kx

a

⌋
.

Hence,

L(t) ≤ kh+

⌊
kx

a

⌋
d

Now let n = abkxa c. By Lemma 3.2, k ≤ n ≤ kx, so there exists 1 ≤ ij ≤ x for all 1 ≤ j ≤ k

such that
∑k

i=1 ij = n. Then consider the element

(ah+ i1d) + ...+ (ah+ ikd) = kah+ nd = a
(
kh+

n

a
d
)

= a

(
kh+

⌊
kx

a

⌋
d

)
Thus, L(t) ≥ kh+

⌊
kx
a

⌋
d and ρk(S) = kh+

⌊
kx
a

⌋
d.

Now suppose a > kx. As before, we have s ≤ 0. Then looking at equation (2) we have

L(t) ≤ kh− (h− 1)

(
N +

x∑
i=1

Ai

)
≤ (h− 1)

⌊
−k
x

⌋
+ kh

4



by Lemma 3.3.
Now consider the element k(ah+ d). First suppose x | k. Then

k(ah+ d) =

⌊
k

x

⌋
(ah+ xd) +

(
k −

⌊
k

x

⌋)
ha

But x | k =⇒
⌊−k
x

⌋
= −

⌊
k
x

⌋
, so

L(t) ≥
⌊
k

x

⌋
+

(
k −

⌊
k

x

⌋)
h = kh+ (h− 1)

(
−
⌊
k

x

⌋)
= (h− 1)

⌊
−k
x

⌋
+ kh.

Now suppose x - k. Notice we can write k = n1x+ n2 where 0 < n2 < x. Then

k(ah+ d) = n1(ah+ xd) + (ah+ n2d) + (k − n1 − 1)ha.

But x - k =⇒
⌊−k
x

⌋
= −

⌊
k
x

⌋
− 1 =⇒

⌊−k
x

⌋
= −

⌊
n1x+n2

x

⌋
− 1 = −n1 − 1, so

L(t) ≥ n1 + 1 + (k − n1 − 1)h = (h− 1)

⌊
−k
x

⌋
+ kh

Thus, ρ(S) = kh+ (h− 1)
⌊−k
x

⌋
Notice that by the definition of specialized elasticity, ρ(S) = limk→∞

ρk(S)
k . Also take note

of the following theorem:

Proposition 3.1 ([3]). Let M = 〈a1, . . . , at〉 be a numerical monoid where a1 < a2 < · · · < at
is a minimal set of generators of M . Then ρ(M) = at

a1
.

By Proposition 3.1, ρ(S) = ah+xd
a .

To see that our findings for specialized elasticity correspond to the known value of the
generalized elasticity, consider limk→∞

ρk(S)
k . Notice that for large values of k we have a ≤ kx

and ρk(S) = kh+
⌊
kx
a

⌋
d. Notice that

lim
k→∞

ρk(S)

k
= lim

k→∞

kh+
⌊
kx
a

⌋
d

k
= lim

k→∞
h+

x

a
d =

ah+ xd

a
,

so our results are consistent with previous findindings. This can be visualized in Figure 1.

Figure 1: Plot of ρk(S)
k versus k given in blue

and ρ(S) versus k given in red for for S =
〈101, 308, 313, 323, 328〉.
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4 Delta Sets of Generalized Arithmetic Numerical Monoids

Lemma 4.1. Let S = 〈a, ah+ d, ah+ 2d, . . . , ah+ xd〉. Let a > x, gcd(a, d) = 1. Suppose N is
an integer that can be factorized multiple ways. The difference between the lengths of any such
factorizations is a multiple of gcd(h− 1, d).

Proof. Suppose that

aA0 +

x∑
i=1

(ah+ id)Ai = aB0 +

x∑
i=1

(ah+ id)Bi

⇐⇒ a(A0 −B0) +

x∑
i=1

(ah+ id)(Ai −Bi) = 0

⇐⇒ a(A0 −B0) +

x∑
i=1

[a+ a(h− 1) + id](Ai −Bi) = 0

⇐⇒ a

x∑
i=0

(Ai −Bi) +

x∑
i=1

[a(h− 1) + id](Ai −Bi) = 0

Let g = gcd(d, h − 1). Taking both sides mod g, we get that a
∑x

i=0(Ai − Bi) ≡ 0 mod g.
But since a, d are coprime, and d is divisible by g, a must also not share any prime factors with
g. Thus dividing both sides by a gives us the desired

∑x
i=0(Ai −Bi) ≡ 0 mod g.

Lemma 4.2. Let S = 〈a+1, a+2, . . . , a+x〉 with x > 1 and n be a nonnegative integer. n ∈ S
if and only if there exists a nonnegative integer j such that j(a+ 1) ≤ n ≤ j(a+ x).

Proof. Reverse direction is intuitive. The generators are all consecutive, so we can shimmy our
way up from j(a + 1) to j(a + x) using j atoms in each of our factorizations. For the forward
direction, we let j be the number of atoms in one of our decompositions of n.

Corollary 4.1. As a corollary of lemma 2, n 6∈ S = 〈a+ 1, a+ 2, . . . , a+x〉 if and only if there
is a nonnegative integer j such that j(a+ x) < n < (j + 1)(a+ 1).

Lemma 4.3. If x, y are positive reals with y ≤ 1, then for any positive integer k′ ≤ dxe, there
is an integer m with 0 ≤ m ≤ dxy e − 1 such that dx−mye = k′.

Proof. First note that for any positive reals x1, x2 with x2 ≤ 1, we have dx1− x2e ≥ dx1− 1e =
dx1e−1 =⇒ dx1e−dx1−x2e ≤ 1. Let f(m) = dx−mye. Note that between successive values of
m (i.e. m to m+1), f(m)−f(m+1) = dx−mye−dx−(m+1)ye = d(x−my)e−d(x−my)−ye ≤ 1.
Thus, between successive values of m, f(m) cannot jump by more than 1. Note that if we take
m′ = dxy e − 1, f(m′) = dx − (dxy e − 1)ye ≤ dx − (xy − 1)ye = dx − x

y y + ye = dye ≤ 1. Thus,
increasing m from 0 to dxy e−1, f(m) must traverse through all integers from 1 to dxe. Therefore,

there is an integer m where 0 ≤ m ≤ dxy e − 1 such that k′ = dx−mye.

Lemma 4.4. Let m ≤ a
x−1 be a nonnegative integer and S = 〈an+1, an+2, . . . , an+x〉, where

n ≥ 1, a > x. The smallest positive integer k such that ka+m(an+ 1) ∈ S is nda−m(x−1)
x e+ 1.
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Proof. This is similar to the previous proof. Let ka+m(an+ 1) =
∑x

i=1(an+ i)Bi. First write
k = cn+ r, where 1 ≤ r ≤ n. Note that if k is divisible by n, r = n.

a(cn+ r) + (an+ 1)m =
x∑
i=1

(an+ i)Bi ≥ (an+ 1)
x∑
i=1

Bi

=⇒
x∑
i=1

Bi ≤
a(cn+ r)

an+ 1
+m ≤ a(nc+ n)

an+ 1
+m ≤ an(c+ 1)

an+ 1
+m < c+ 1 +m

=⇒
x∑
i=1

Bi ≤ c+m (note that inequality is strict because
an

an+ 1
< 1)

=⇒ a(cn+ r) + (an+ 1)m =
x∑
i=1

(an+ i)Bi ≤ (an+ x)
x∑
i=1

Bi ≤ (an+ x)(c+m)

⇐⇒ acn+ ar + anm+m ≤ acn+ anm+ xc+ xm

⇐⇒ ar −m(x− 1)

x
≤ c ⇐⇒ c ≥ dar −m(x− 1)

x
e

=⇒ k = cn+ r ≥ ndar −m(x− 1)

x
e+ r ≥ nda−m(x− 1)

x
e+ 1

Note that the above inequality is true since r ≥ 1. It is necessary for the argument in the
ceiling to be nonnegative to make this conclusion, which is the case when m ≤ a

x−1 .

We will now use the intuitive lemma (Lemma 2) to implicitly show that if k = nda−m(x−1)
x e+

1 then ka + m(an + 1) ∈ S. As in lemma 2, let j = nda+mx e + 1. We wish to show that
j(an + 1) ≤ ak + m(an + 1) ≤ j(an + x). After some simplifying of the middle side of the
inequality,

ak +m(an+ 1) = a(nda−m(x− 1)

x
e+ 1) +m(an+ 1)

= (nda+m

x
− mx

x
e+ 1)a+ (an+ 1)m

= (nda+m

x
e − nm+ 1)a+ (an+ 1)m = nada+m

x
e+ a+m

We first show the higher bound.

nada+m

x
e+ a+m ≤ da+m

x
e(an+ x) ⇐⇒ a+m ≤ da+m

x
ex

But note that a+m = a+m
x x ≤ da+mx ex, which proves the upper bound inequality.

Now we show the lower bound.

da+m

x
e(an+ 1) ≤ nada+m

x
e+ a+m ⇐⇒ da+m

x
e ≤ a+m

Note that da+mx e ≤
a+m
x + 1, so it suffices to show that a+m

x + 1 ≤ a + m ⇐⇒ a + m + x ≤
x(a + m) ⇐⇒ 1 ≤ (x − 1)(a + m − 1). But this latter inequality is clearly true since
a > x ≥ 2, thus proving the lower bound. Therefore, the intuitive lemma allows us to conclude
that ka+m(a+ 1) ∈ S.

Lemma 4.5. Let S = 〈an+ 1, an+ 2, . . . , an+ x〉, where x ≥ 2. Let 1 ≤ n′ ≤ n. The smallest
k > 0 such that ak + (an+ x)dan+1−an′

x−1 e ∈ S is n′.
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Proof. We utilize lemma 2 and its corollary. Let n1 = dan+1−an′
x−1 e (simplify the cloggy terms).

We let j = n1 + 1 as in lemma 2. Thus we want to show that

(an+ 1)(n1 + 1) ≤ an′ + (an+ x)n1 ≤ (an+ x)(n1 + 1)

⇐⇒ an+ n1 + 1 ≤ an′ + xn1 ≤ an+ xn1 + x

The upper bound is immediately true by a comparison of terms since n′ < n. For the lower
bound, we have

an+ n1 + 1 ≤ an′ + xn1 ⇐⇒ an− an′ + 1 ≤ (x− 1)n1

an− an′ + 1 ≤ (x− 1)dan+ 1− an′

x− 1
e (this is true by the ceiling bound)

Now we have to show that for any positive n0 with n0 < n′, an0 + (an+ x)dan+1−an′
x−1 e 6∈ S.

We apply the corollary to lemma 2, with j = n1. We wish to prove that (an + x)n1 <
an0 + (an + x)n1 < (an + 1)(n1 + 1). The lower bound is definitely true by a comparison of
terms since an0 > 0. For the upper bound, we have

an0 + (an+ x)n1 < (an+ 1)(n1 + 1)

⇐⇒ an0 + ann1 + xn1 < ann1 + an+ n1 + 1

⇐⇒ an0 + xn1 < an+ n1 + 1 ⇐⇒ an0 + (x− 1)n1 < an+ 1

⇐⇒ an0 + (x− 1)dan+ 1− an′

x− 1
e < an+ 1

Again, bounding the ceiling function by an+1−an′
x−1 + 1, it suffices to show that

an0 + (x− 1)(
an+ 1− an′

x− 1
+ 1) < an+ 1

⇐⇒ an0 + an+ 1− an′ + x− 1 < an+ 1

⇐⇒ an0 − an′ + x− 1 < 0 ⇐⇒ x− 1 < a(n′ − n0)

But note that since n0 < n′, n′ − n0 ≥ 1. Thus a(n′ − n0) ≥ a > x− 1 since we know that
a > x, thus proving the lemma.

Lemma 4.6. S = 〈an + 1, an + 2, . . . , an + x〉, and x ≥ 2. If m ≥ a
x−1 , then the smallest k

such that ak + (an+ 1)m ∈ S is at most 1.

Proof. It is enough to show that if k = 1, then ak+(an+1)m ∈ S. We again apply the intuitive
lemma with j = m. Then we want (an + 1)m ≤ a(1) + (an + 1)m ≤ (an + x)m. The lower
bound for sure holds. For the upper bound to hold, we need a+ (an+ 1)m ≤ (an+ x)m ⇐⇒
a ≤ (an+x−an−1)m = (x−1)m ⇐⇒ a

x−1 ≤ m, which is true by assumption, as desired.

Lemma 4.7. Let S = 〈an+ 1, an+ 2, . . . , an+ x〉. Suppose that Bj > 0 for some j > 1. The
smallest k such that ak +

∑x
i=1(an+ i)Bi ∈ S is at most n.

Proof. It is enough to show that k = n will make ak +
∑x

i=1(an+ i)Bi ∈ S. Suppose we have

Bj > 0. Then we want an+(an+j)Bj+
∑j−1

i=1 (an+i)Bi+
∑x

i=j+1(an+i)Bi =
∑x

i=1(an+i)Ai for
some nonnegative Ai’s. But note that an+(an+j)Bj = (an+1)+(an+j−1)+(an+j)(Bj−1).
Then we let A1 = B1 + 1, Aj−1 = Bj−1 + 1, Aj = Bj − 1, and Ai = Bi for all the other indices.
Note that Aj ≥ 0 since Bj ≥ 1.
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Theorem 4.1. Let S = 〈a, ah+d, ah+2d, . . . , ah+xd〉. Let a > x, gcd a, d = 1, and h = nd+1.
Then ∆(S) = {d, 2d, . . . , nd}

⋃
{(n+ 1)d, (2n+ 1)d, . . . , (ndaxe+ 1)d}.

Proof. Suppose that we have an arbitrary N that can be factorized in multiple ways. We have

N = aA0 + [a(nd+ 1) + d]A1 + [a(nd+ 1) + 2d]A2 + . . .+ [a(nd+ 1) + xd]Ax

= aB0 + [a(nd+ 1) + d]B1 + [a(nd+ 1) + 2d]B2 + . . .+ [a(nd+ 1) + xd]Bx

where Ai’s and Bi’s are the coefficients of their corresponding atoms.

and that A0 + A1 + . . . + Ax = L, which corresponds to the length of the factorization.
Suppose that the other factorization is longer. We have that gcd(h − 1, nd) = gcd(d, nd) = d,
so by lemma 1 above, B0 +B1 + . . .+Bx = L+ kd for some positive integer k.

More compactly, these equations can be written as

N = aA0 +
x∑
i=1

(a(nd+ 1) + id)Ai = aB0 +
x∑
i=1

(a(nd+ 1) + id)Bi

x∑
i=0

Ai = L,
x∑
i=0

Bi = L+ kd

Now if this k is the smallest positive integer such that there exists no factorizations of N of
length L+ k′d for k′ < k, then this implies that kd ∈ ∆(S).

Let us keep manipulating these equations. Note that by subtracting two equations, we have∑x
i=0(Bi −Ai) = (L+ kd)− L = kd. The two factorizations of N tells us that

a(B0 −A0) +

x∑
i=1

[a(nd+ 1) + id](Bi −Ai) = 0

a(B0 −A0) +

x∑
i=1

a(Bi −Ai) +

x∑
i=1

[(an+ i)d](Bi −Ai) = 0 (extract out a from the second summation)

x∑
i=0

a(Bi −Ai) +

x∑
i=1

[(an+ i)d](Bi −Ai) = 0 (combine first term with first summation)

akd+

x∑
i=1

[(an+ i)d](Bi −Ai) = 0 (since

x∑
i=0

(Bi −Ai) = kd)

ak +

x∑
i=1

(an+ i)(Bi −Ai) = 0 (divide out d)

ak +

x∑
i=1

(an+ i)Bi =

x∑
i=1

(an+ i)Ai (add our Ai’s to both sides)

Recall that if k is the smallest positive integer such that L + kd is the length of the next
longest factorization after a length of L, then kd ∈ ∆(S). Therefore, in order to show that
k′d ∈ ∆(S), we will pick our Bi’s (B1, B2, . . . , Bx) (each Bi nonnegative) such that the
equation

ak′ +

x∑
i=1

(an+ i)Bi =

x∑
i=1

(an+ i)Ai (3)
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admits a nonnegative x-tuple integer solution (A1, A2, . . . , Ax), and that this k′ is
the smallest positive integer that does so.

We have now shown a way to reinterpret the problem. Despite the heavy algebra, the
advantage of this interpretation is that we do not have to carry the d term around. In fact, our
next arguments are independent of d. Equation 1 strongly resembles the form of the lemmas
above, which will be exploited. In fact, our lemmas will show precisely how to choose our Bi’s.

First, we will show how to attain {n + 1, 2n + 1, . . . , ndaxe + 1}. Note that these values
are of the form nu + 1 for some positive integer u ≤ daxe. First, for such a u, choose our

m ≤ d a
x−1e − 1 < a

x−1 such that da−m(x−1)
x e = u. This is possible by lemma 3, where our x is

lemma 3 is interchanged with a
x and our y is interchanged with x−1

x . If we choose B1 = m,B2 =
B3 = . . . = Bx = 0, then by lemma 4, the smallest positive k such that ka+

∑x
i=1(an+ i)Bi =

ka+m(an+ 1) =
∑x

i=1(an+ 1)Ai is solvable in Ai’s is nda−m(x−1)
x e+ 1 = nu+ 1.

Now we show how to attain {1, 2, . . . , n}. Let’s suppose we want to attain some arbitrary
n′ ≤ n. Now we set B1 = B2 = . . . = Bx−1 = 0 and Bx = dan+1−an′

x−1 e. Now we consider the

minimal k such that ka +
∑x

i=1(an + i)Bi = ka + (an + x)dan+1−an′
x−1 e =

∑x
i=1(an + i)Ai is

solvable in Ai’s. But by lemma 5, the smallest k > 0 that admits a solution is n′, as desired.
We’re almost done! Now as an essential step, we need to see what additional k can possibly

arise from some arbitrary x-tuple (B1, B2, . . . , Bx). Suppose that we have Bj > 0 for some j ≥ 2.
Now consider the equation ak +

∑x
i=1(an + i)Bi =

∑x
i=1(an + i)Ai. But by lemma 7, k = n

already admits a solution! Thus the smallest possible k that can yield a solution in this case is
at most n, which does not add anything new to our ∆ set. We can thus restrict our analysis to
B1 being arbitrary and B2 = B3 = . . . = Bx = 0. We have ak + (an+ 1)Bi =

∑x
i=1(an+ i)Ai.

But for B1 ≤ a
x−1 , lemma 4 immediately gives us all k ∈ {n + 1, 2n + 1, . . . , ndaxe + 1}. If

B1 ≥ a
x−1 , lemma 6 already tells us that k ≤ 1, and we’ve shown k = 1 admits a solution of

Ai’s in lemma 5.

Lastly, since we found a new way to interpret the problem, we need to go back to our old
ways. Recall that we had d,A0, B0 involved.

N = aA0 +
x∑
i=1

(a(nd+ 1) + id)Ai = aB0 +
x∑
i=1

(a(nd+ 1) + id)Bi

x∑
i=0

Ai = L,
x∑
i=0

Bi = L+ kd

The structure of the proof involved choosing our B1, B2, . . . , Bx to obtain a specific k. This
predetermines the values A1, A2, . . . , Ax (determined by ka+

∑x
i=1Bi(an+ id) =

∑x
i=1Ai(an+

id), with (A1, A2, . . . , Ax) the solution corresponding to the value of k).
Now using our equations as laid out above, we can manipulate them to obtain B0 = L +

kd−
∑x

i=1Bi = A0 + kd+
∑x

i=1(Ai −Bi). Now we choose a nonnegative A0 large enough such
that B0 = A0 + kd +

∑x
i=1(Ai − Bi) ≥ 0. This well-defines N in terms of the generators and

B0, B1, . . . , Bx, as given in the equation above.
Thus, after exhausting all possibilities for (B1, B2, . . . , Bx),

∆(S) = {d, 2d, . . . , nd}
⋃
{(n+ 1)d, (2n+ 1)d, . . . , (nda

x
e+ 1)d}
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5 Omega Primality of ja for Arithmetic Numerical Monoids of
Embedding Dimension 3

We will now consider omega primality for all multiples of a for an arithmetic numerical monoid
of embedding dimension three. Suppose j ≥ 1 ∈ N and S = 〈a, a+ d, a+ 2d〉.

The following two propositions will be very useful in the following sections regarding omega-
primality.

Proposition 5.1 ([6, Theorem 3.1]). Let n = qa+ id where q, i ∈ N and 0 ≤ i ≤ a− 1. Then
n ∈ S if and only if

⌈
i
x

⌉
≤ q.

Proposition 5.2 ([7]). ω(s) = max{k|n1 + · · ·+ nk a bullet for s}

Lemma 5.1. Let m = da2d
2j

a+2dee. Then (0, 0,m) is a bullet for ja.

Proof. We need to find the smallest positive integer m such that (a+ 2d)m− ja ∈ S. Thus we
have aA0 + (a+d)B0 + (a+ 2d)C0 = (a+ 2d)m− ja. First note that if in such a representation,
C0 ≥ 1, then (a+ 2d)m is not a bullet to begin with, as we can delete out C0 copies of a+ 2d
on both sides. Thus, we can assume C0 = 0 so we have

aA0 + (a+ d)B0 = (a+ 2d)m− ja = (m− j) + 2md

Now we take both sides of the above equation mod d, giving us a(A0 + B0) ≡ a(m − j)
mod d ⇐⇒ A0 + B0 ≡ m − j mod d ⇐⇒ A0 + B0 = m − j + kd, where k is an integer.
Plugging this back in we get

a(m− j + kd) +B0d = a(m− j) + 2md

B0 = 2m− ak
A0 = k(a+ d)−m− j

Since we know B0 ≥ 0, we have m ≥ ak
2 . Since A0 ≥ 0, we have m ≤ k(a + d) − j. Thus

we have a
2k ≤ m ≤ k(a + d) − j =⇒ a

2k ≤ k(a + d) − j ⇐⇒ 0 ≤ ak
2 + kd − j ⇐⇒ j ≤

k(a2 + d) ⇐⇒ k ≥ 2j
a+2d ⇐⇒ k ≥ d 2j

a+2de. (Note that in our chain of inequalities, we’ve shown
k ≥ 0 and hence all the upcoming inequalities do not receive a change in direction)

But then we know that m ≥ ak
2 ⇐⇒ m ≥ da2ke =⇒ m ≥ da2d

2j
a+2dee.

Now that we’ve showed a tight bound, we need to show the equality can be achieved (i.e.
that we can actually make A0, B0 ≥ 0). We will let k = d 2j

a+2de and m = da2ke. Clearly, B0 =

2m−ak = 2da2ke−ak is nonnegative. Now we have A0 = k(a+d)−m− j = k(a+d)−dak2 e−j.
But note that dak2 e = ak

2 + r, where r ∈ {0, 1/2}. Then A0 = k(a+d− a
2 )− j = k a+2d

2 − j− r =

d 2j
a+2de

a+2d
2 − j − r ≥ 2j(a+2d)

2(a+2d) − j − r = −r ≥ −1
2 . Thus we have A0 ≥ −1

2 , but since our
expression for A0 is known to be an integer, it must be at least 0. Thus, we’ve shown our
lemma.

Lemma 5.2. Let S = 〈a, a+ d, a+ 2d〉. Suppose that j is a positive integer that can be written
as (a+ d)r0 + r1 where 1 ≤ r1 ≤ a+ d. Then (0,m, 0) is a bullet for ja, where

m =

{
ad j

a+de if r1 ≥ a
2

2j − (a+ 2d)b j
a+dc if r1 ≤ a

2

11



Proof. We need to see when aA0 + (a + 2d)C0 = (a + d)m − ja = a(m − j) + md admits a
nonnegative solution A0, C0 (we assumed B0 = 0 for same reasons as last proof) As usual, we
have A0 + C0 = m− j + kd, so a bit of computation shows that

C0 =
m− ak

2
A0 = k(

a

2
+ d) +

m

2
− j

C0 tells us that m = ak+ 2k1 for some nonnegative integer k1. Thus A0 = ka+m
2 + kd− j =

ak+ak+2k1
2 +kd− j = ak+kd+k1− j ≥ 0. Thus we have k(a+d) ≥ j−k1 ⇐⇒ k ≥ j−k1

a+d ⇐⇒
k ≥ d j−k1a+d e.

Now we have m = ak+2k1 ≥ ad j−k1a+d e+2k1. Now let us try to minimize the expression on the

RHS. Write j = r0(a+d)+r1 where 1 ≤ r1 ≤ a+d. Then we have m ≥ ad r0(a+d)+r1−k1a+d e+2k1 =

a(r0 + d r1−k1a+d e) + 2k1.

We need to minimize the expression ad r1−k1a+d e + 2k1 in order to minimize m by choosing
an optimal k1 ≥ 0. We analyze the components of this sum. The left-hand term is a from
k1 = 0 to r1 − 1 while the right-hand term increases with k1, so clearly k1 ∈ {1, 2, . . . , r1 − 1}
cannot possibly minimize the sum. Now for k1 = r1 to a + d, the LH term is zero (note that
1 ≤ r1 ≤ a + d) while the RH term increases, so therefore k1 ∈ {r1 + 1, r1 + 2, . . . , a + d} also
does not minimize the sum.

Now suppose that more generally, k1 = k2(a+ d) + k3, where 0 ≤ k3 ≤ a+ d− 1. Our sum

is thus equal to ad r1−(k2(a+d)+k3)a+d e+ 2(k2(a+d) +k3) = a(−k2 + d r1−k3a+d e) + 2k2a+ 2k2d+ 2k3 =

k2(a+ 2d) + ad r1−k3a+d e+ 2k3. This sum is minimized when k2 = 0, but we’ve shown above that

ad r1−k3a+d e+ 2k3 cannot be minimal for k3 ∈ {1, 2, . . . , r1 − 1} ∪ {r1 + 1, r1 + 2, . . . , a+ d}.
Thus our problem boils down to a comparison of k3 = 0 with k3 = r1. When plugging these

values in, their respective expressions are ad r1
a+de = a and 2r1. The latter expression (when

k3 = r1) is smaller when r1 ≤ a
2 , and the former expression is larger when r1 ≥ a

2 . Thus, for

our expression m = ak + 2k1 (recall that k ≥ d j−k1a+d e), so we have m ≥ d j−k1a+d e + 2k1). When

k1 = 0 (whenever r1 ≥ a
2 ), we have m ≥ d j

a+de. When k1 = r1 (whenever 1 ≤ r1 ≤ a
2 ), we

have m ≥ d j−r1a+d e + 2r1. But note that since 1 ≤ r1 ≤ a
2 , r1 is the remainder when dividing

j by a + d, so r1 = j − (a + d)d j
a+de. Thus we have m = ak + 2r1 ≥ ad j−r1a+d e + 2r1 =

ad j−(j−(a+d)d
j

a+d
e)

a+d e+ 2(j− (a+ d)d j
a+de) = ab j

a+dc+ 2(j− (a+ d)d j
a+de) = 2j− (a+ 2d)b j

a+dc,
after some simplification.

Now we need to show that our bound for m (which is a piecewise function of j) is tight. We
will do so by explicitly constructing A0, C0. As above, we let C0 = k1, which is nonnegative
(recall it’s either 0 or r1). Now let A0 = k(a+d)+k1−j, where m is defined piecewise as above,
and k1 is given above. Then let k = d j−k1a+d e. Also take note that j − k1 = r0(a+ d) + r1 − k1 ≥
r1 − k1 ≥ 0, so again, no change of directions invoked in our inequalities. This implies that
A0 = d j−k1a+d e(a+ d) + k1 − j ≥ 0, as desired, thus proving our lemma.

Lemma 5.3. Let S = 〈a, a+ d, a+ 2d〉. Then (j, 0, 0) is a bullet for ja.

Proof. Don’t think too hard on this. It’s right in front of your eyes.

Definition 5.1. A pure bullet is a bullet (A0, A1, A2) such that only one component is nonzero.

Lemma 5.4. Suppose a even and j 6= a
2 . Let s be the sum of any j + a

2 atoms. Then ja�s.
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Proof. Note we can write s = (j + a
2 )a + Nd. Then s − ja = (a2 )a + Nd. Then we can write

N = qa+ r for 0 ≤ r < a and q ≥ 0 and

s− ja =
(a

2
+ qd

)
a+ rd

But
⌈
r
2

⌉
≤ a

2 + qd so by Proposition 5.1, s− ja ∈ S and ja�s.

Lemma 5.5. Suppose a even and j 6= a
2 . Let s be the sum of any j + a−2

2 atoms. Then ja�s
unless s is of the form

(
j + a−2

2

)
a+ (a− 1)d.

Proof. Say we have s = aA + (a + d)B + (a + 2d)C = a(A + B + C) + d(B + 2C) where
A+B +C = j + a

2 − 1. Now s− ja = a(j + a
2 − 1)− ja+ (B + 2C)d = a(a2 − 1) + (B + 2C)d.

Now let B + 2C = q1a + q2 where q1 ≥ 0, 0 ≤ q2 ≤ a − 1. We use this substitution and get
that s− ja = a(a2 − 1 + q1d) + q2d. Now in order for s− ja ∈ S, by the membership criterion,
this is equivalent to stating that 2(a2 − 1 + q1d) ≥ q2 ⇐⇒ a − 2 + q1d ≥ q2. We know that
the LHS is at least a− 2, and the RHS is at most a− 1. The only way the inequality fails is if
q1 = 0, q2 = a− 1, giving us s = a(A+B + C) + d(a− 1) = a(j + a

2 − 1) + (a− 1)d.

Proposition 5.3. Suppose a even and j 6= a
2 . ω(ja) ≤ j + a−2

2 .

Proof. By Lemma 5.4, it is clear that ω(ja) ≤ j+ a
2 . For sake of contradiction, suppose s is the

sum of j + a
2 atoms.

Suppose our bullet is (A,B,C) so that we have A+B+C = j+ a
2 . To prove this supposition

false, we need to show that we can somehow remove an element from the bullet and still remain
in S.

Description of Process: For a factorization (A0, B0, C0), we will need to check whether
m = aA0 + (a+ d)B0 + (a+ 2d)C0 − ja = a(A0 +B0 +C0 − j) + d(B0 + 2C0) ∈ S. First write
B0+2C0 = q1a+q2 where q1 ≥ 0, 0 ≤ q2 ≤ a−1. Then m = a(A0+B0+C0−j+q1d)+dq2. Then
by membership criterion, this is equivalent to checking whether q2 ≤ 2(A0 +B0 +C0− j+ q1d).

Now take our bullet (A,B,C) and remove an element from it (so you’re left with either
(A− 1, B,C), (A,B− 1, C), (A,B,C − 1)). By membership criterion, we need to see when q2 ≤
2(A+B+C−1−j+q1d) = 2(a2−1+q1d). We know that q2 ≤ a−1. If q2 < a−1, then the RHS
strictly dominates the LHS. Also, if q1 > 0, then we’d have q2 ≤ a−1 ≤ 2(a2 −1+d) = a−2+d,
which clearly, RHS bounds the LHS from above. Thus q1 > 0 or q2 < a− 1 will show that we
can remove an element from the bullet and still remain in S. Thus, we can further assume that
q1 = 0 and q2 = a− 1.

Suppose that two of the bullet components are nonzero.

1. Case 1: A,B > 0. We either need to show that (A− 1, B,C) or (A,B− 1, C) is in S. For
the first factorization, we’d have to see whether (A−1+B+C−j)a+(B+2C)d ∈ S, so we
want to show that q2 ≤ 2(A− 1 +B+C+ q1d− j) (refer to description of process above).
We want to show that a−1 ≤ 2(j+ a

2−1−j) = a−2. We have A−1+B+C−j = a
2−1 and

B + 2C = a− 1 (recall last sentence of previous paragraph). Now consider (A,B − 1, C).
We have A+B + C − 1− j = a

2 − 1 and B − 1 + 2C = a− 1. This implies both B + 2C
and B + 2C − 1 are a− 1, which clearly is false.

2. Case 2: A,C > 0. Here, the only way a(A−1+B+C−ja)+d(B+2C) cannot be a member
of S is if B + 2C = a− 1, and the only way a(A+B +C − 1− ja) + d(B + 2(C − 1)) 6∈ S
is if B+ 2(C−1) = B+ 2C−2 = a−1. But since a ≥ 3, both of these constraints cannot
be met.
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3. Case 3: B,C > 0. Let us interchange B → B − 1. Again, the only way a(A + B − 1 +
C − ja) + d(B − 1 + 2C) 6∈ S is if B − 1 + 2C = a− 1. Now we interchange C → C − 1.
a(A+B+C − 1− ja) + d(B+ 2(C − 1)) 6∈ S if B+ 2C − 2 = a− 1. These two conditions
cannot be simultaneously satisfied.

Now suppose that we have a pure bullet of length a
2 + j. Clearly, it can’t be (A,B,C) =

(a2 + j, 0, 0) since (j, 0, 0) is already a bullet for ja. Suppose it is (A,B,C) = (0, 0, a2 + j). Well,
we again need to have A+B+C−1 = a

2 +j−1 and B+2C−2 = a−1. Plugging in A = B = 0,
these equations simplify to C−1 = a

2 +j−1 and 2(C−1) = a−1. The first equation requires us
to have 2(C−1) = a+2j−2. The second equation tells us that a+2j−2 = a−1 ⇐⇒ 2j = 1,
which can’t be satisfied, hence a contradiction.

Now for our final case, we have (A,B,C) = (0, a2 + j, 0). We need to have A+B+C = a
2 + j

and B − 1 + 2C = a − 1 ⇐⇒ B + 2C = a. Since A = C = 0, we have B = a
2 + j = a. If

j 6= a
2 , then there cannot be a pure bullet in the middle component. But if j = a

2 , then by
lemma above, it is a bullet of length a

2 .

Theorem 5.1. For a odd, ω(ja) = j + a−1
2 .

Proof. Let a be odd.

First suppose j < a+1
2 . Consider the element

t = (2j − 1)(a+ d) +

(
a+ 1

2
− j
)

(a+ 2d) = a

(
j +

a− 1

2
+ d

)
.

Then t− ja =
(
a−1
2 + d

)
a ∈ S and ja�t.

Now consider

t′ = (2j − 2)(a+ d) +

(
a+ 1

2
− j
)

(a+ 2d) =

(
j +

a− 3

2

)
a+ (a− 1)d.

Then t′ − ja = (a−32 )a + (a − 1)d. But
⌈
a−1
2

⌉
> a−3

2 so by Proposition 5.1 t′ − ja 6∈ S and
ja 6 �t′.
Also consider

t′′ = (2j − 1)(a+ d) +

(
a+ 1

2
− j − 1

)
(a+ 2d) =

(
j +

a− 3

2

)
a+ (a− 2)d.

Then t′′−ja = (a−32 )a+(a−2)d. But
⌈
a−2
2

⌉
> a−3

2 so by Proposition 5.1 t′′−ja 6∈ S and ja 6 �t′′.

Thus t is a bullet for ja

Now suppose j ≥ a+1
2 . Consider the element

s =

(
j − a− 1

2

)
a+ (a− 1)(a+ d) =

(
a− 1

2
+ j

)
a+ (a− 1)d.

Then s− ja =
(
a−1
2

)
a+(a−1)d. But

⌈
a−1
2

⌉
= a−1

2 so by Proposition 5.1, s− ja ∈ S and s�ja.
Now consider

s′ =

(
j − a− 1

2
− 1

)
a+ (a− 1)(a+ d) =

(
a− 3

2
+ j

)
a+ (a− 1)d.
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Then s′ − ja =
(
a−3
2

)
a + (a − 1)d. But

⌈
a−1
2

⌉
> a−3

2 so by Proposition 5.1 s′ − ja 6∈ S and
ja 6 �s′.
Also consider

s′′ =

(
j − a− 1

2

)
a+ (a− 2)(a+ d) =

(
a− 3

2
+ j

)
a+ (a− 2)d.

Then s′′ − ja =
(
a−3
2

)
a + (a − 2)d. But

⌈
a−2
2

⌉
> a−3

2 so by Proposition 5.1 s′′ − ja 6∈ S and
ja 6 �s′′.

Thus s is a bullet for ja.

Theorem 5.2. For a even and j 6= a
2 , ω(ja) = j + a−2

2 .

Proof. Let a be even.

First suppose j < a
2 . Consider the element

t = (2j − 2)(a+ d) +
(a

2
− j + 1

)
(a+ 2d) =

(
a− 2

2
+ j + d

)
a.

Then t− ja =
(
a−2
2 + d

)
a ∈ S and ja�t.

Now consider

t′ = (2j − 3)(a+ d) +
(a

2
− j + 1

)
(a+ 2d) =

(
a− 4

2
+ j

)
a+ (a− 1)d.

Then t′ − ja =
(
a−4
2

)
a + (a − 1)d. But

⌈
a−1
2

⌉
> a−4

2 so by Proposition 5.1 t′ − ja 6∈ S and
ja 6 �t′.
Also consider

t′′ = (2j − 2)(a+ d) +
(a

2
− j
)

(a+ 2d) =

(
a− 4

2
+ j

)
a+ (a− 2)d.

Then t′′−ja =
(
a−4
2

)
a+(a−2)d. But

⌈
a−2
2

⌉
> a−4

2 so by Proposition 5.1 t′′−ja 6∈ S and ja 6 �t′′.

Thus t is a bullet for ja.

Now suppose j > a
2 . Consider the element

s =
(
j − a

2
+ 1
)
a+ (a− 2)(a+ d) =

(
a− 2

2
+ j

)
a+ (a− 2)d

Then s− ja =
(
a−2
2

)
a+ (a− 2)d. But

⌈
a−2
2

⌉
= a−2

2 so by Proposition 5.1 s− ja ∈ S and ja�s.
Now consider

s′ =
(
j − a

2

)
a+ (a− 2)(a+ d) =

(
a− 4

2
+ j

)
a+ (a− 2)d

Then s′ − ja =
(
a−4
2

)
a + (a − 2)d. But

⌈
a−2
2

⌉
> a−4

2 so by Proposition 5.1 s′ − ja 6∈ S and
ja 6 �s′.
Also consider

s′′ =
(
j − a

2
+ 1
)
a+ (a− 3)(a+ d) =

(
a− 4

2
+ j

)
a+ (a− 3)d
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Then s′′ − ja =
(
a−4
2

)
a + (a − 3)d. But

⌈
a−3
2

⌉
> a−4

2 so by Proposition 5.1 s′′ − ja 6∈ S and
ja 6 �s′′.

Thus s is a bullet for ja.

Definition 5.2. Define β(n) to be the set of all bullets of n.

Lemma 5.6. Let a be even then {(0, 2i, a2 − i)}
a
2
i=0

⋃
{(i, a− 2i, 0)}

a
2
i=1 ⊆ β(a

2

2 ).

Proof. Let n ∈ Z 3 0 ≤ n ≤ a
2 . Then we claim that (0, 2n, a2 − n) ∈ β(a

2

2 ), so we want to

show that a2

2 � 2n(a+ d) + (a2 − n)(a+ 2d), a2

2 � (2n− 1)(a+ d) + (a2 − n)(a+ 2d), anda
2

2 �
2n(a+ d) + (a2 − n− 1)(a+ 2d).
Now

2n(a+ d) + (
a

2
− n)(a+ 2d)− a2

2
= 2na+ 2nd+

a2

2
+ ad− an− 2nd− a2

2
= a(n+ d)

∈ S

Suppose a2

2 � (2n−1)(a+d)+(a2−n)(a+2d). Then (2n−1)(a+d)+(a2−n)(a+2d)− a2

2 ∈ S.
This implies

a(A0 +A1 +A2) + d(A1 + 2A2) = (2n− 1)(a+ d) + (
a

2
− n)(a+ 2d)− a2

2
= an+ ad− a− d.

It follows that

a(A0 +A1 +A2) ≡ an− a(mod d)

=⇒ A0 +A1 +A2 ≡ n− 1(mod d)

=⇒ A0 +A1 +A2 = n− 1 + kd for some k ∈ Z

Substituting A0+A1+A2 = n−1+kd, it is clear that A1+2A2 = a−1−ak. Since A1+2A2 ≥ 0,
we see that k ≤ 0.

Now,

a− 1

2
≤ a− 1− ak

2

=
A1

2
+A2

≤ A0 +A1 +A2

= n− 1 + kd

≤ n− 1

≤ a

2
− 1
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Thus we have a−1
2 ≤

a−2
2 , a contradiction. Thus a2

2 � (2n− 1)(a+ d) + (a2 − n)(a+ 2d).

Suppose a2

2 � 2n(a + d) + (a2 − n − 1)(a + 2d). Note that in order for this condition to be

true, n is forced to be at most a
2 − 1. Now 2n(a+ d) + (a2 − n− 1)(a+ 2d)− a2

2 ∈ S.
Hence

a(A0 +A1 +A2) + d(A1 +A2) = 2n(a+ d) + (
a

2
− n− 1)(a+ 2d)− a2

2
= an− a− 2d+ ad.

Taking both sides modulo d yields

a(A0 +A1 +A2) ≡ an− a(mod d)

=⇒ A0 +A1 +A2 ≡ n− 1(mod d) since gcd(a, d) = 1

=⇒ A0 +A1 +A2 = n− 1 + kd for some k ∈ Z.

This implies

akd+ d(A1 + 2A2) = ad− 2d

=⇒ A1 + 2A2 = a− ak − 2

Since A1 + 2A2 ≥ 0 and a ≥ 2, we have k ≤ 0.

a− 2

2
≤ a− ak − 2

2

=
A1

2
+A2

≤ A0 +A2 +A3

= n− 1 + kd

≤ n− 1

≤ a

2
− 2

So a
2 − 1 ≤ a

2 − 2, a contradiction! Thus a2

2 � 2n(a+ d) + (a2 − n− 1)(a+ 2d), and so we have

{(0, 2i, a2 − i)}
a
2
i=0 ⊆ β(a

2

2 ).

All that is left to show is that {(i, a− 2i, 0)}
a
2
i=1 ⊆ β(a

2

2 ).

Let n ∈ Z 3 1 ≤ n ≤ a
2 . Consider (n, a− 2n, 0). We want to show that a2

2 � na+ (a− 2n)(a+

d), a
2

2 � (n− 1)a+ (a− 2n)(a+ d), and a2

2 � na− (a− 2n− 1)(a+ d).
Now,

na+ (a− 2n)(a+ d)− a2

2
=

a2

2
− na+ ad− 2nd

= a(
a

2
− n) + 2d(

a

2
− n)

= (a+ 2d)(
a

2
− n)

∈ S.
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Suppose a2

2 � (n− 1)a+ (a− 2n)(a+ d). Then (n− 1)a+ (a− 2n)(a+ d)− a2

2 ∈ S.

Using a similar argument as above we see that A0 +A1 +A2 = a
2 − n− 1 + kd,A1 + 2A2 =

a− 2n− ak where k ∈ Z and k ≤ 0.

a

2
− n ≤ a− 2n− ak

2

=
A1

2
+A2

≤ A0 +A1 +A2

=
a

2
− n− 1 + kd

Thus a
2 − n ≤ a

2 − n − 1 + kd =⇒ 0 ≤ kd − 1 a contradiction as k ≤ 0. Therefore,
a2

2 � (n− 1)a+ (a− 2n)(a+ d).

Lastly, suppose a2

2 � na−(a−2n−1)(a+d). Then na−(a−2n−1)(a+d)− a2

2 ∈ S. Then going
through the same argument we find that A0+A1+A2 = a

2−n−1+kd,A1+2A2 = a−2n−1−ak,
where k ∈ Z and k ≤ 0.

It follows that a
2−n−

1
2 ≤

a
2−n−1, a contradiction. Therefore, a

2

2 � na−(a−2n−1)(a+d)

and so we have {(i, a− 2i, 0)}
a
2
i=1 ⊆ β(a

2

2 ).

Definition 5.3. Let A = (A1, A2, . . . , Ax) and B = (B1, B2, . . . , Bx), and A 6= B Then we say
A majorizes B if ∀1≤i≤xAi ≥ Bi.

Lemma 5.7. Let A and B be as above. Suppose B ∈ β(n). If A majorizes B, then A /∈ β(n).

Proof. Trivial, and very easy to see.

Theorem 5.3. Let a ∈ S be even. Then ω(a
2

2 ) = a.

Proof. Recall {(0, 2i, a2 − i)}
a
2
i=0

⋃
{(i, a− 2i, 0)}

a
2
i=1 ⊆ β(a

2

2 ). Now (0, a, 0) ∈ β(a
2

2 ) so ω(a
2

2 ) ≥ a.

Let (A,B,C) ∈ β(a
2

2 ). Then note if B = a, then A = C = 0 for if not then (A,B,C) majorizes
(0, a, 0). So suppose B < a, is even, then B ≤ a − 2. Then B = 2j or B = a − 2j for some
1 ≤ j ≤ a

2 − 1. Now if B = 2j then C ≤ a
2 − j. This gives B + 2C ≤ a. If B = a − 2j, then

A ≤ j which implies 2A + B ≤ a. It follows that A + B + C ≤ a, and so we have ω(a
2

2 ) ≤ a.

So ω(a
2

2 ) = a when B is even. Now suppose B is odd, then B ≤ a − 1. Now realize since B
is odd, it can be written as B = 2k + 1 where 1 ≤ k ≤ a

2 . Now notice C < a
2 − k for if not

then (A,B,C) majorizes (0, 2k, a2 − k). Thus C ≤ a
2 − k − 1, implying 2C + B ≤ a. Likewise

2A+B ≤ a. After adding our two equations we get A+B + C ≤ a. Therefore ω(a
2

2 ) = a.

Lemma 5.8. Let S be as above, a ≥ 3 be odd and k ≥ 2. Whenever A0+A1+A2 ≥
⌈
a
2

⌉
+k−1,

then ak � a(A0 +A1 +A2) + d(A1 + 2A2).

Proof. Realize by the division algorithm, A1 + 2A2 = q1a+ q2 where q1 > 0 and 0 ≤ q2 ≤ a− 1.
Let t = a(A0 +A1 +A2 − k) + d(A1 + 2A2).
Now

t = a(A0 +A1 +A2 + q1d− k) + q2d.
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Then

q2 ≤ a− 1

= 2(
a

2
+

1

2
− 1)

= 2(
⌈a

2

⌉
− 1)

≤ 2(
⌈a

2

⌉
+ k − 1 + q1d− k)

≤ 2(A0 +A1 +A2 + q1d− k).

Therefore t ∈ S by the membership criterion. Hence ak � a(A0 +A1 +A2) + d(A1 + 2A2).

6 Omega Primality of Generators of Arithmetic Numerical Monoids

Let S = 〈a, a + d, . . . a + xd〉 be an arithmetic numerical monoid. We will find the omega pri-
mality for all generators of S, ω(a+ id) for 0 ≤ i ≤ x.

Before we begin, it is interesting to note that omega-primality is a measurement of how far
an element is from being prime. To see this, first consider the natural numbers. In N, a|b if
there exists some c ∈ Z such that ac = b and x ∈ N is prime if whenever x|ab, then x|a or x|b.
Now consider our numerical monoid S. In S, a�b if there exists some c ∈ S such that a+ c = b
and if x�n1 + n2, x is prime if x�n1 or x�n2. Elements with higher ω values are further away
from prime.
It is also worth noting that by this definition no element of a numerical monoid will be prime,
so min(ω) = 2.

6.1 ω(a)

let k =
⌈
a−2
x

⌉
+ 1

Lemma 6.1. Let s ∈ S be the sum of any k + 1 atoms. Then a�s.

Proof. Note that we can write

s = (k + 1)a+Md for 0 ≤M ≤ k + 1.

Hence
s− a = ka+Md.

We can write M = qa+ r with 0 ≤ r < a. Thus

s− a = (k + qd)a+ rd.

Clearly
⌈
r
x

⌉
≤
⌈
a−1
x

⌉
≤ k+qd, thus by Theorem 0.1 we have that s−a ∈ S and we are done.

Lemma 6.2. Let s be the sum of any k atoms of S. Then a�s unless the following happens:
a ≡ 2 mod x and s is of the form ka+ (a− 1)d.

Proof. Note that we can write

s = ka+Md for 0 ≤M ≤ k.
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Hence
s− a = (k − 1)a+Md.

As above, write M = qa+ r with 0 ≤ r < a. Thus

s− a = (k − 1 + qd)a+ rd

Clearly when r ≤ a − 2,
⌈
r
x

⌉
≤ k − 1 + qd so s − a ∈ S by Theorem 0.1. Hence assume

r = a − 1. Write a − 2 = ux + v with 0 ≤ v < x. Then k − 1 = u when a ≡ 2 (mod x) and
k−1 = u+ 1 otherwise. Note that

⌈
r
x

⌉
=
⌈
a−1
x

⌉
= u+ 1, so if a 6≡ 2 (mod x), then s−a ∈ S by

Theorem 0.1. Hence s− a 6∈ S only when a ≡ 2 (mod x) and q = 0 (if q is positive then clearly
s − a ∈ S). Hence, s − a 6∈ S is only possible when a ≡ 2 (mod x) and M = a − 1, meaning
s = ka+ (a− 1)d.

Definition 6.1. Call the numerical semigroup S = 〈a, a+ d, . . . , a+ xd〉 sporadic if both of the
following hold: a ≡ 2 (mod x) and a ≡ 1 (mod k).

Lemma 6.3. Suppose S is not sporadic. Then ω(a) ≤ k.

Proof. Let S be not sporadic and let s = A1 + ...+ Ak+1. If a 6≡ 2 (mod x) then a�s− Ai for
any Ai by Lemma 1.2 and we obtain ω(a) ≤ k. Hence, assume that a ≡ 2 (mod x) (meaning
a 6≡ 1 (mod k) as S is not sporadic). Without loss of generality, remove Ak+1, yielding

t = A1 + ...+Ak.

By Lemma 1.2, we know that a�t unless t = ka+ (a− 1)d, so suppose t is of this form. First
suppose that there exists some Ai 6= Ak+1 and consider the element t′ = t + Ak+1 − Ai. This
can be written as

t′ = ka+ (a− 1 + jk+1 − ji)d = ka+Nd

Note that as Ai 6= Ak+1 we have that jk+1 − ji 6= 0 so 0 ≤ N ≤ 2a − 2 and N 6= a − 1. But
then by Lemma 1.2, we have that a�t′.
Now suppose that there does not exist any Ai 6= Ak+1. Then we can write

t = ka+ kjd for 0 ≤ j ≤ x.

But a 6≡ 1 (mod k) =⇒ kj 6= a− 1, thus by Lemma 1.2, we have that a�t.

Theorem 6.1. Let S = 〈a, a+ d, ..., a+ xd〉, then we have:{
ω(a) = k + 1 if S is sporadic

ω(a) = k otherwise

Proof. First assume that S is sporadic. By Lemma 1.1 it is clear that ω(a) ≤ k + 1. We have
that a−2

x ∈ Z and j = a−1
k ∈ Z, yielding

j =
a− 1

k
=

a− 1
a−2
x + 1

= x

(
a− 1

a− 2 + x

)
,

so clearly j < x. Hence, a+ jd is an atom. Note that by Lemma 1.1 we have a�(k+ 1)(a+ jd).
But we also know that a 6 �k(a + jd) = ka + (a − 1)d by Lemma 1.2, so (k + 1)(a + jd) is a
bullet for a.

Now assume that S is not sporadic. First suppose a 6≡ 2 (mod x). By Lemma 1.2 it is clear
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that ω(a) ≤ k. Let j =
⌈
a−2
k−1

⌉
and notice that j =

⌈
a−2
da−2

x e

⌉
≤ dxe, so clearly 1 ≤ j ≤ x.

Consider

s = [(a− 1)− (k − 1)(j − 1)](a+ jd) + [(k − 1)j − (a− 2)](a+ (j − 1)d).

(a−1)−(k−1)(j−1) ≥ (a−1)−(k−1)(a−2k−1−1) > 0 and (k−1)j−(a−2) ≥ (k−1)a−2k−1−(a−2) = 0
so s is the sum of k atoms. By Lemma 1.2 we have that a�s. Now consider s′ = s− (a+ jd).
We can write

s′ = (k − 1)a+ (a− 2)d =⇒ s′ − a = (k − 2)a+ (a− 2)d

But k − 2 =
⌈
a−2
x

⌉
− 1 <

⌈
a−2
x

⌉
, so by Theorem 0.1 s′ − a 6∈ S and a 6 �s′. Also consider

s′ = s− (a+ (j − 1)d). We can write

s′′ = (k − 1)a+ (a− 1)d =⇒ s′′ − a = (k − 2)a+ (a− 1)d

But k − 2 =
⌈
a−2
x

⌉
− 1 <

⌈
a−1
x

⌉
, so by Theorem 0.1 s′′ − a 6∈ S and a 6 �s′′. Thus s is a bullet

of a.
Now suppose a ≡ 2 (mod x). Notice this means that a 6≡ 1 (mod k) as S is not sporadic.
Consider t = k(a+xd) = ka+ kxd. But kx = a− 2 +x > a− 1, so by Lemma 1.2 we have that
a�t. Now consider t′ = t−(a+xd) = (k−1)a+(k−1)xd. But then t′−a = (k−2)a+(k−1)xd.

But
⌈
(k−1)x
x

⌉
= k − 1 < k − 2, so by Theorem 0.1 t′ − a 6∈ S and a 6 �t′. Thus t is a bullet of

a.

6.2 ω(a+ id)

Let t =
⌈
a−2
x

⌉
+ d+ 1.

Lemma 6.4. Let s be the sum of any t+ 1 atoms of S. Then (a+ id)�s.

Proof. Note we can write s = (t+ 1)a+Md. Then s− (a+ id) = ta+ (M − i)d.
Suppose M − i ≥ 0. Then we can write (M − i) = Aa+ r for 0 ≤ r ≤ a− 1 and

s− (a+ id) =

(
d+

⌈
a− 2

x

⌉
+ 1 +Ad

)
a+ rd

Now,
⌈
r
x

⌉
≤ d+

⌈
a−2
x

⌉
+ 1 +Ad and s− (a+ id) ∈ S by the membership criteria.

Next suppose M − i < 0. Then s − (a + id) =
(⌈

a−2
x

⌉
+ 1
)
a + (a + M − i)d. We can write

(a+M − i) = r for 0 < r ≤ a− 1 and

s− (a+ id) = (

⌈
a− 2

x

⌉
+ 1)a+ rd

Now,
⌈
r
x

⌉
≤
⌈
a−2
x

⌉
+ 1 and s− (a+ id) ∈ S by the membership criteria.

Lemma 6.5. Let s be the sum of any t atoms of S. Then (a + id)�s unless the following
happens: a ≡ 2 mod x and s is of the form ta+Nd where N − i = −1

Proof. Let s be the sum of t atoms, i.e, s = ta+Nd.Then

ta+Nd− (a+ id) = a(t− 1) + d(N − i)

First suppose N ≥ i. Notice we can write N − i = qa+ r where 0 ≤ r < a and q ≥ 0. Then

a(t− 1) + d(N − 1) = a(t− 1 + qd) + dr.
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which is clearly in S by membership criterion. Now suppose N < i. Notice we can write
a(t − 1) + d(N − i) = a(t − 1 − d) + d(N − i + a). Then we can write N − i + a = r where
0 < r ≤ a− 1. Then

a(t− 1− d) + d(N − i+ a) = a(t− 1− d) + dr =

⌈
a− 2

x

⌉
a+ rd

first of all if a 6≡ 2 (mod x), then
⌈
r
x

⌉
≤
⌈
a−2
x

⌉
. The only way this element fails to be in S is if

a−2
x ∈ Z and r = a− 1, which precisely says N − i = −1.

Theorem 6.2. Let S = 〈a, a+ d, ..., a+ xd〉, then we have:{
ω(a+ id) = t+ 1 if a ≡ 2 (mod x) and i ≡ 1 (mod t)

ω(a+ id) = t otherwise

Proof. First suppose a ≡ 2 (mod x) and i ≡ 1 (mod t). By Lemma 2.1 it is clear that
ω(a + id) ≤ t + 1. Let m = i−1

t ∈ Z. Notice 1 ≤ i ≤ x =⇒ 0 ≤ m ≤ x, so a + md
is an atom. Consider s = (t + 1)(a + md). Notice a + id�s by Lemma 2.1. Now consider
s′ = s− (a+md) = ta+ (i− 1)d. But (i− 1)− i = −1 so by Lemma 3.2, a+ id 6 �s′. Thus s is
a bullet for a+ id and ω(a+ id) = t+ 1.

Now assume that S does not satisfy the first case. First we show the upper bound. If a 6≡ 2
(mod x) then we have that ω(a+ id) ≤ t by the above lemma. If a ≡ 2 (mod x) (which implies
that i 6≡ 1 (mod t)) then we have that if s is the sum of t+ 1 atoms:

s = A1 + ...+At+1

We want to show that we can always remove one, Ai such that a + id precedes s − Ai. Let
p = s − At+1. By above work, we know that (a + id)�p most of the time, and fails when
N − i = −1, hence assume this happens. Choose Ai for 1 ≤ i ≤ t such that Ai 6= At+1 (this can
be done unless all the atoms are the same). Consider

p̃ = p−Ai +At+1 = ta+ Ñd− (a+ id).

Now, Ñ − i 6= −1 and therefore, (a+ id)�p̃. If all the atoms are the same, then p = t(a+ jd),
so we have:

p− (a+ id) = (t− 1)a+ (tj − i)d

this fails to be in S if and only if tj− i = −1, but this implies i ≡ 1 (mod t) which we said does
not happen. Hence, ω(a+ id) ≤ t.

To show lower bounds we will exhibit bullets that attain the desired values. If a ≡ 2 (mod x)
and i 6≡ 1 (mod t), then we have that (a + id)�ta by the previous lemma. Also, note that
(a+ id) 6 �(t− 1)a since

(t− 2− d)a+ (a− i)d 6∈ S

by an easy application of the membership criterion.

For the bullet when a ≡ 2 (mod x) consider the following construction: First recall the def-
inition of k from earlier sections (so we have t = k + d). Then write a − 1 = k1x + k2 with
0 ≤ k2 < x. Note that we have that k2 6= 1. First we do the case when k2 ≥ 2. Let j = b i−1

d+k−1c.
Let m,n satisfy the following system of equations:
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m+ n = d+ k mj + n(j + 1) = i− 1 + j

Solving the system yields

m = (d+ k − 1)(j + 1)− (i− 2) n = i− 1− (d+ k − 1)j

We claim that N = m(a+ jd) + n(a+ (j + 1)d) is a bullet for a+ id. Like before, we want
to show this decomposition is well-defined (i.e. 0 ≤ j ≤ x− 1,m ≥ 0, n ≥ 0).

Clearly j ≥ 0. Now we also have that j = b i−1
d+k−1c ≤ i− 1 ≤ x− 1.

Now n = i− 1− (d+ k − 1)j = i− 1− (d+ k − 1)b i−1
d+k−1c ≥ i− 1− (d+ k − 1) i−1

d+k−1 = 0.

Now m = (d+k−1)(j+1)− (i−2) = (d+k−1)(b i−1
d+k−1c+1)− (i−2) ≥ (d+k−1) i−1

d+k−1 −
(i− 2) = 1, so m ≥ 0.

We need to show that these actually are bullets. We proved earlier that an upper bound
for ω(a + id) is as given in the lemma (so we already know N − (a + id) ∈ S), and now we
have to show that N1 = N − (a + jd) − (a + id) and N2 = N − (a + (j + 1)d) − (a + id) are
not in S. First, recall our handy dandy system of equations for m and n, which tells us that
m+ n− 2 = d+ k − 2 and jm+ (j + 1)n− j − i = −1.

For the first case, N1 = N − (a+ jd)− (a+ id) = (m+n− 2)a+ d(jm+ (j + 1)n− j − i) =
(d + k − 2)a + d(−1) = (k − 2)a + d(a − 1), which is in canonical form. Now note that
a− 1 = xa−1x > x(da−1x e − 1) = (k − 2)x, so by membership criterion, N1 6∈ S.

Before we take a step further, first note that a − 1 = k1x + k2, with 2 ≤ k2 ≤ x − 1. We
note that da−1x e = dk1 + k2

x e = k1 + dk2x e = k1 + 1.
But we also have that a − 2 = k1x + k2 − 1, where 1 ≤ k2 − 1 ≤ x − 2. Then we have

da−2x e = k1 + dk2−1x e = k1 + 1, so da−1x e = da−2x e.

For the second case, N2 = N − (a + (j + 1)d) − (a + id) = (m + n − 2)a + d(−2) =
(d+ k − 2)a+ d(−2) = (k − 2)a+ d(a− 2). We have k − 2 = da−1x e − 1 = da−2x e − 1. So then
we have a− 2 = xa−2x > x(da−2x e − 1) = x(da−1x e − 1) = (k − 2)x, so by membership criterion,
N2 6∈ S.

Thus, we’ve constructed an explicit bullet for a+ id.

The only remaining case is when a − 1 = k1x (meaning k2 = 0). In this case the bullet is
much easier and it is given by (t, 0, ..., 0). First of all it is clear by our previous lemma that
a+ id�ta, and if we have:

(t− 1)a− (a+ id) = (t− 2− d)a+ (a− i)d

but t − 2 − d =
⌈
a−2
x

⌉
− 1 <

⌈
a−2
x

⌉
=
⌈
a−(x−1)

x

⌉
≤
⌈
a−i
x

⌉
and by membership criteria we have

that this elements is not in S, i.e., (t, 0, ..., 0) is a bullet for a+ id.

7 Omega Primality of Generators of Generalized Arithmetic
Numerical Monoids

In the section below let S = 〈a, ah+ d, . . . , ah+ xd〉 where gcd(a, d) = 1, h ≥ 2, and x < a.
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7.1 ω(a)

let k =
⌈
a−2
x

⌉
+ 1

Definition 7.1. If S = 〈a, ah+ d, ah+ 2d, . . . , ah+ xd〉, define a large atom to be an atom in
the set S − {a}. In other words, it’s of the form ah+ bd.

Lemma 7.1. Let s ∈ S be the sum of any k + 1 atoms. Then a�s.

Proof. First note that if s has any atoms equal to a, then clearly, a�s. Thus assume the k + 1
atoms are large atoms. Note that we can write

s = (k + 1)ah+Md for 0 ≤M ≤ (k + 1)x.

Hence
s− a = ((k + 1)h− 1)a+Md.

We can write M = qa+ r with 0 ≤ r < a. Thus

s− a = ((k + 1)h− 1 + qd)a+ rd.

Clearly
⌈
r
x

⌉
≤
⌈
a−1
x

⌉
≤ k ≤ k + 1 − 1

h ≤ k + 1 − 1
h + qd

h , thus by Theorem 0.1 we have that
s− a ∈ S and we are done.

Lemma 7.2. Let s be the sum of any k large atoms of S. Then a�s unless the following
happens: a ≡ 2 mod x and s is of the form kah+ (a− 1)d.

Proof. Note that we can write

s = kah+Md for 0 ≤M ≤ kx.

Hence
s− a = (kh− 1)a+Md.

As above, write M = qa+ r with 0 ≤ r < a. Thus

s− a = (kh− 1 + qd)a+ rd

Clearly when r ≤ a − 2,
⌈
r
x

⌉
≤ k − 1 ≤ kh−1

h ≤ kh−1+qd
h so s − a ∈ S by Theorem 0.1. Hence

assume r = a− 1. Write a− 2 = ux+ v with 0 ≤ v < x. Then k − 1 = u when a ≡ 2 (mod x)
and k−1 = u+1 otherwise. Note that

⌈
r
x

⌉
=
⌈
a−1
x

⌉
= u+1, so if a 6≡ 2 (mod x), then s−a ∈ S

by Theorem 0.1. Hence s − a 6∈ S only when a ≡ 2 (mod x) and q = 0 (if q is positive then
clearly s − a ∈ S). Hence, s − a 6∈ S is only possible when a ≡ 2 (mod x) and M = a − 1,
meaning s = kah+ (a− 1)d.

Definition 7.2. Call the numerical semigroup S = 〈a, ah+ d, . . . , ah+ xd〉 sporadic if both of
the following hold: a ≡ 2 (mod x) and a ≡ 1 (mod k).

Lemma 7.3. Suppose S is not sporadic. Then ω(a) ≤ k.

Proof. Let S be not sporadic and let s = A1 + ...+Ak+1. Clearly, we can assume that the Ai’s
are all large atoms. If a 6≡ 2 (mod x) then a�s − Ai for any Ai by Lemma 1.2 and we obtain
ω(a) ≤ k. Hence, assume that a ≡ 2 (mod x) (meaning a 6≡ 1 (mod k) as S is not sporadic).
Without loss of generality, remove Ak+1, yielding

t = A1 + ...+Ak.
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By Lemma 1.2, we know that a�t unless t = ka+ (a− 1)d, so suppose t is of this form. First
suppose that there exists some Ai 6= Ak+1 and consider the element t′ = t + Ak+1 − Ai. This
can be written as

t′ = kah+ (a− 1 + jk+1 − ji)d = kah+Nd

Note that as Ai 6= Ak+1 we have that jk+1− ji 6= 0 so 0 ≤ N ≤ 2a− 2 and thus N 6= a− 1. But
then by Lemma 1.2, we have that a�t′.
Now suppose that there does not exist any Ai 6= Ak+1. Then we can write

t = kah+ kjd for 0 ≤ j ≤ x.

But a 6≡ 1 (mod k) =⇒ kj 6= a− 1, thus by Lemma 1.2, we have that a�t.

Theorem 7.1. Let S = 〈a, ah+ d, ..., ah+ xd〉, then we have:{
ω(a) = k + 1 if S is sporadic

ω(a) = k otherwise

Proof. First assume that S is sporadic. By Lemma 1.1 it is clear that ω(a) ≤ k + 1. We have
that a−2

x ∈ Z and j = a−1
k ∈ Z, yielding

j =
a− 1

k
=

a− 1
a−2
x + 1

= x

(
a− 1

a− 2 + x

)
,

so clearly j < x. Hence, ah+jd is an atom. Note that by Lemma 1.1 we have a�(k+1)(ah+jd).
But we also know that a 6 �k(ah+ jd) = kah+ (a− 1)d by Lemma 1.2, so (k + 1)(a+ jd) is a
bullet for a.

Now assume that S is not sporadic. First suppose a 6≡ 2 (mod x). By Lemma 1.2 it follows

that ω(a) ≤ k. Let j =
⌈
a−2
k−1

⌉
and notice that j =

⌈
a−2
da−2

x e

⌉
≤ dxe, so clearly 1 ≤ j ≤ x.

Clearly, j ≥ 1, being the ceiling of a positive number. Now we will show that when a > 3,

then j ≥ 2. Since j is an integer, it suffices to show that j =

⌈
a−2
da−2

x e

⌉
> 1. We can prove

this by showing that a−2
da−2

x e
> 1 ⇐⇒ a − 2 >

⌈
a−2
x

⌉
. It then suffices to show that a − 2 >

a−2+x−1
x = a−3

x + 1 ⇐⇒ a− 3 > a−3
x ⇐⇒ x > 1.

Now let’s see what happens when a = 3. Then k−1 =
⌈
a−2
x

⌉
=
⌈
1
x

⌉
= 1 and j =

⌈
1

k−1

⌉
= 1.

Then (k − 1)j − (a− 2) = 1− 1 = 0.
Consider

s = [(a− 1)− (k − 1)(j − 1)](ah+ jd) + [(k − 1)j − (a− 2)](ah+ (j − 1)d).

(a − 1) − (k − 1)(j − 1) ≥ (a − 1) − (k − 1)(a−2k−1 + 1 − 1) = 1 > 0 and (k − 1)j − (a − 2) ≥
(k − 1)a−2k−1 − (a − 2) = 0 so s is the sum of k atoms. Note that in the derivation above,
ah+ (j− 1)d is an atom when j > 1, which is the case when a > 3. But when a = 3, we showed
that (k− 1)j − (a− 2) = 0, so the coefficient of ah+ (j − 1)d in the expression for s is 0, so no
harm done there.

By Lemma 1.2 we have that a�s. Now consider s′ = s− (ah+ jd). We can write

s′ = (k − 1)ha+ (a− 2)d =⇒ s′ − a = (kh− h− 1)a+ (a− 2)d

But kh− h− 1 = h
⌈
a−2
x

⌉
− 1 < h

⌈
a−2
x

⌉
, so by Theorem 0.1 s′ − a 6∈ S and a 6 �s′.

25



Also consider s′′ = s− (ah+ (j − 1)d). We can write

s′′ = (k − 1)ha+ (a− 1)d =⇒ s′′ − a = (kh− h− 1)a+ (a− 1)d

But kh− h− 1 = h
⌈
a−2
x

⌉
− 1 < h

⌈
a−1
x

⌉
, so by Theorem 0.1 s′′ − a 6∈ S and a 6 �s′′. Thus s is

a bullet of a.

Now suppose a ≡ 2 (mod x). Notice this means that a 6≡ 1 (mod k) as S is not sporadic.
Consider t = k(ah + xd) = kah + kxd. But kx = a − 2 + x > a − 1, so by Lemma 1.2
we have that a�t. Now consider t′ = t − (ah + xd) = (k − 1)ha + (k − 1)xd. But then

t′− a = (kh− h− 1)a+ (k− 1)xd. But
⌈
(k−1)x
x

⌉
= k− 1 > k− 1− 1

h = kh−h−1
h , so by Theorem

0.1 t′ − a 6∈ S and a 6 �t′. Thus t is a bullet of a.

7.2 ω(ah+ id)

Let S = 〈a, ah+d, . . . ah+xd〉 be a generalized arithmetic progression numerical semigroup. We
will find the omega primality for all generators of the form ah+ id where h ≥ 2 and 1 ≤ i ≤ x.
Let ki =

⌈
a−i+x
x

⌉
.

Lemma 7.4. For (ah+ id) where h ≥ 2 and 1 ≤ i ≤ x, the following is a bullet:

(hki + d, 0, 0, . . . , 0)

which means ω(ah+ id) ≥ hki + d.

Proof. Consider the element (hki + d, 0, 0, . . . , 0). Then

a(hki + d)− (ah+ id) = ah

⌈
a− i
x

⌉
+ (a− i)d

Notice,
⌈
a−i
x

⌉
≤
⌈
a−i
x

⌉
by Omidali’s characterization. Thus ah

⌈
a−i
x

⌉
+ (a − i)d ∈ S and

ah+ id � (hki + d, 0, 0, . . . , 0).
To show that this is a bullet, consider the element (hki + d− 1, 0, 0, . . . , 0). Then

a(hki + d− 1)− (ah+ id) = a(h

⌈
a− i
x

⌉
− 1) + (a− i)d

Notice, h
⌈
a−i
x

⌉
> h

⌈
a−i
x

⌉
− 1 by Omidali’s characterization. Thus a(h

⌈
a−i
x

⌉
− 1) + (a− i)d 6∈ S

and ah+ id 6� (hki + d− 1, 0, 0, . . . , 0).

Lemma 7.5. Let s be the sum of hki + d elements. Then ah + id � s unless s is of the form

(hki + d− 1)a+ (ah+ βd) with
⌈
a+β−i
x

⌉
=
⌈
a−i
x

⌉
+ 1

Proof. Let p be the number of copies of a, and let t be such that p+ t = hki + d. We can then
write s = ap+ aht+ (

∑t
j=1 βj)d. Consider the element

s− (ah+ id) = ap+ aht+ (

t∑
j=1

βj)d− (ah+ id) = a(p+ h(t− 1)) + (

t∑
j=1

βj − i)d (4)

First consider the case when
∑
βj−i ≥ 0: In this case write

∑
βj−i = Aa+r with 0 ≤ r ≤ a−1.

Hence we can rewrite above as:

a(p+ h(t− 1) +Ad) + rd
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Note h
⌈
r
x

⌉
≤ h

⌈
a−1
x

⌉
, we also have that

p+ h(t− 1) +Ad ≥ h
⌈
a− i+ x

x

⌉
+Ad

because the left hand side is minimized when t is as low as possible. Since
∑t

j=1 βk − i ≥ 0 we
have that t ≥ 1, so this quantity is minimized when t = 1 and the inequality holds. Hence we
have that

h
⌈ r
x

⌉
≤ h

⌈
a− 1

x

⌉
≤ h

⌈
a− x+ 1

x

⌉
≤ h

⌈
a− x+ 1

x

⌉
+Ad ≤ p+ h(t− 1) +Ad

and by Omidali’s characterization we have that this is in S.

For the case
∑
βj − i < 0, note that we can rewrite the equation (1) as

a(p+ h(t− 1)− d) + (a+

t∑
j=1

βj − i)d (5)

Let r = a+
∑t

j=1 βj − i. First of all note that the case t = 0 is done by the previous lemma. If
t ≥ 2 then we have that

p+ h(t− 1)− d ≥ (hki + d− 2) + h− d = h

⌈
a− i+ x

x

⌉
− 2 + h

since the left hand side is minimized when t is as low as possible. Note that
⌈
r
x

⌉
≤
⌈
a−i+x
x

⌉
and

since h− 2 ≥ 0 we have that

p+ h(t− 1)− d ≥ h
⌈
a− i+ x

x

⌉
− 2 + h ≥

⌈ r
x

⌉
and we get that ah+ id does indeed preceed s.

The last case is when t = 1, in this case equation (2) reads:

a(p− d) + (a+ β − i)d = a(hki − 1) + (a+ β − i)d

this is in S if and only if h
⌈
a+β−i
x

⌉
≤ h

⌈
a−i+x
x

⌉
− 1 = h

⌈
a−i
x

⌉
+ (h − 1). Note that

⌈
a+β−i
x

⌉
is equal to

⌈
a−i
x

⌉
or
⌈
a−i
x

⌉
+ 1. In the first case the inequality holds trivialy and in the second

case the inequality does not hold, which is precisely what the theorem states.

Lemma 7.6. Let s be the sum of any hki + d+ 1 atoms. Then ah+ id�s.

Proof. Let s = A1 + ... + Ahki+d+1 and let s′ = A1 + ... + Ahki+d. By above we know that

ah+ id�s′ unless s is of the form (hki + d− 1)a+ (ah+ βd) with
⌈
a+β−i
x

⌉
=
⌈
a−i
x

⌉
+ 1. If this

is the case then define s” = s′ + Ahki+d+1 − Aq (with Aq = a). Then by the above lemma we
have ah+ id�s”�s, and we are done.

Lemma 7.7. Let s be the sum of m atom, with m > hki+d and ah+ id�s, then we can always
find hki + d of them such that ah+ id precedes their sum. Hence, ω(ah+ id) ≤ hki + d
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Proof. By the above lemma it suffices to assume that m = hki + d + 1. Then we can do as in
the proof above and obtain that either ah+ id�s′ or ah+ id�s” and this finishes the proof.

Theorem 7.2. Let S = 〈a, ah+ d, .., ah+ xd〉, then ω(ah+ id) = hki + d.

Proof. Last lemma proved the upper bound for ω(ah + id) and our first construction proved
the lower bound. Hence we have that ω(ah+ id) = hki + d.
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