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1 Introduction

In the following paper, we will explore various properties of numerical semigroups, such as specialized
elasticity, delta sets, omega primality, and catenary degree. In particular, we will focus on extreme cases of
these invariants, such as when specialized elasticity or the size of the delta set is very small, and show what
kinds of numerical semigroups have these properties. We will begin with some definitions, which, unless
otherwise stated, are adapted from [11]:

Let S = 〈n0, n1, . . . , nx〉 be a numerical semigroup, and let m ∈ S. Any element in the set {n0, n1, . . . , nx}
is a generator or atom of S. Since there are x+ 1 generators of S, we say S has embedding dimension x+ 1.
S is minimally generated if no proper subset of {n0, n1, . . . , nx} generates S. We say that S isprimitive, if
gcd(n0, n1, . . . , nx) = 1. We can write m as a non-negative linear combination of {n0, n1, . . . , nx}. That is,
m =

∑x
i=0 cini is a factorization of m in S. If we let z be this factorization of m, then the length of z, or

|z|, is
∑x
i=0 ci. We denote the set of all factorizations of m as F(m).

As explained in [2], the length set of m, written as L(m), is {|z| : z ∈ F(m)}. We write `(m) for
min{l : l ∈ L(m)} and L(m) for max{l : l ∈ L(m)}. If L(m) = {l1, l2, . . . , lk} where li < li+1, then the delta
set of m is ∆(m) = {li+1 − li} for 1 ≤ i ≤ k − 1. The delta set of S is the union of the delta sets of all the
elements in S. That is, ∆(S) =

⋃
m∈S ∆(m).

Using the notation of [4], for every element m ∈ S, let Gm be the graph with vertices

Vm = {mi : m−mi ∈ S}

and edges
Em = {mimj : m− (mi +mj) ∈ S}.

Any m for which Gm is a disconnected graph is a Betti element of S.
Now, suppose z =

∑x
i=0 zini and z′ =

∑x
i=0 z

′
ini are two factorizations of m in S. If

gcd(z, z′) = (min{z0, z′0},min{z1, z′1}, . . . ,min{zx, z′x}),

then define the distance between z and z′ to be:

d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|}.

There is an N -chain of factorizations connecting z and z′ if there is a sequence of factorizations z0, z1, . . . , zk
such that z0 = z and zk = z′ and d(zi, zi+1) ≤ N for all i. The catenary degree of m, c(m), is the minimal
N ∈ N ∪∞ such that for any two factorizations of m, z and z′, there exists an N -chain from z to z′. The
catenary degree of S, c(S), is defined to be

c(S) = sup{c(m) : m ∈ S}.

According to [8], the elasticity of m, denoted ρ(m), is equal to the longest factorization of m divided by
the shortest factorization of m. The elasticity of the entire semigroup, ρ(S), is max{ρ(m) : m ∈ S}. For
some k ∈ N, the specialized elasticity of a semigroup, which we denote as ρk(S), is max{L(m) : `(m) ≤ k}.
It can be shown that this is equivalent to finding max{L(m) : `(m) = k}. (Suppose `(m) < k and L(m) = l.
Then by adding some generator ni to m we have `(m + ni) ≤ k and L(n + ni) > l.) So throughout the
paper, when determining ρk(S) we will only consider those elements m in S such that `(m) = k.

Given some generator ni of S, the Apéry set of S with respect to ni is

Ap(S, ni) = {s ∈ S : s− ni 6∈ S}.

An equivalent description of the Apéry set is

Ap(S, ni) = {w0, . . . , wni−1},

where each wj = min{s ∈ S : s ≡ j (mod ni)}. The Frobenius number of S, denoted F (S), is the largest
natural number that is not in S. It follows from the definition of the Apéry set that F (S) = max{Ap(S, ni)}−
ni.
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For any element n ∈ S, we say m precedes n, or m � n, if n − m ∈ S. As defined in [9], the omega
primality of m, denoted ωS(m) (or simply ω(m) if it is clear from context which semigroup we are referring
to), is the smallest positive integer k such that whenever m �

∑r
i=0 ai for ai ∈ {n0, n1, . . . , nx} and r > k,

there exists a subset T ⊂ {1, 2, . . . , r} with |T | ≤ k such that m �
∑
i∈T ai. A bullet of m is an expression

a1 + a2 + · · · + al such that m � a1 + a2 + · · · + al and m 6� a1 + a2 + · · · + al − ai for every i ∈ [1, l]. We
denote the set of bullets of m with bul(m).

Let S = 〈n0, n1, . . . , nx〉. If there exist natural numbers d1 and d2 and primitive numerical semigroups
A = 〈a0, a1, . . . , ai〉 and B = 〈bi+1, bi+2, . . . , bx〉 with the following properties, then S is a gluing of A and B
by d1d2, which is the glue, and we write S = d1A+ d2B:

1. d1 ∈ 〈bi+1, . . . , bx〉 but d1 6∈ {bi+1, . . . , bx},

2. d2 ∈ 〈a0, . . . , ai〉 but d2 6∈ {a0, . . . , ai},

3. gcd(d1, d2) = 1,

4. nj = d1aj for each j ∈ [0, i],

5. nj = d2aj for each j ∈ [i+ 1, x].

An important property of the glue, d1d2, is that any factorization of d1d2 in S is either a factorization
in d1A or a factorization in d2B.

In embedding dimension 2, the numerical semigroup S is free if it is the gluing of N with N, that is, if
S = d1〈1〉+ d2〈1〉. In any higher embedding dimension n, S is free if it is the gluing of a free semigroup in
embedding dimension n− 1 with 〈1〉.

2 Catenary Degree

The following proposition was proven in [10] and restated in [6] in the following way:

Proposition 2.1. Let S be a minimally generated numerical semigroup. Then

c(S) = max{c(b) : b ∈ Betti(S)}.

The following theorem was given in [3]:

Theorem 2.2. If S is the gluing of S1 and S2 by d, then Betti(S) = Betti(d1S1) ∪ Betti(d2S2) ∪ {d}.

The following corollary was given in [3] as a consequence of Theorem 2.2. However, this corollary turns
out to be false, as shown by the counterexample that follows:

Corollary 2.3. Assume that S is the gluing of S1 and S2 by d, then

c(S) = max{c(S1), c(S2), c(d)}.

Counterexample 2.4. Consider the numerical semigroup S = 〈6, 9, 10, 14〉, where S = 2 · 〈3, 5, 7〉 + 9〈1〉.
Then, c(S) = 3 and c(〈3, 5, 7〉) = 4. According to Corollary 2.3, we should have c(S) ≥ c(〈3, 5, 7〉), but this
is clearly not the case.

Here is a corrected version of Corollary 2.3:

Corollary 2.5. Assume that S is the gluing of S1 and S2 by d, then

c(S) ≤ max{c(S1), c(S2), c(d)}.

Proof. We know from Proposition 2.1 that the catenary degree of a semigroup is the maximum of the
catenary degrees of the Betti elements. By Theorem 2.2, the Betti elements of S are the Betti elements
of d1S1, the Betti elements of d2S2, and d. Therefore, c(S) is the maximum of the catenary degrees of
Betti(d1S1), Betti(d2S2), and d. Let b ∈ Betti(d1S1). Then, the catenary degree of b in d1S1 is equal to
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the catenary degree of b in S1. The catenary degree of b in S is no greater than the catenary degree of b in
d1S1 because any N -chain that exists between two factorizations of b in d1S1 also exists in S. However, the
catenary degree of b in S may be smaller that the catenary degree of b in d1S1, as shown by Counterexample
2.4, because there may be new factorizations of b in S. The same is true for any Betti element of d2S2.
Therefore, c(S) ≤ max{c(d1S1), c(d2S2), c(d)} = max{c(S1), c(S2), c(d)}.

Lemma 2.6. If S = 〈a, b〉 is a primitive numerical semigroup in embedding dimension 2 and a < b, then
c(S) = b.

Proof. According to Proposition 2.1, c(S) = max{c(b) : b ∈ Betti(S)}. The only Betti element of S in this
case is ab. There are exactly 2 factorizations of ab: ab and ba, and the distance between these factorizations is
b. Therefore, the smallest N for which there is an N -chain connecting ab and ba is b, so c(ab) = c(S) = b.

Lemma 2.7. If S is a primitive numerical semigroup with embedding dimension ≥ 2, then c(S) ≥ 3.

Proof. Suppose S is a numerical semigroup with c(S) ≤ 2. We will show that this implies that S has
embedding dimension 1. If c(S) = 0, then every element in S has exactly one factorization, so S = 〈1〉.
If c(S) = 1, then for some element m ∈ S, there are two factorizations z and z′ such that d(z, z′) = 1.
However, this never happens for any element. Finally, if c(S) = 2, then S is half-factorial. However, the
only half-factorial semigroup is 〈1〉, which has catenary degree 0, as shown in [8]. Therefore, if S is such that
c(S) ≤ 2, then S has embedding dimension 1. The contrapositive is also true: If S has embedding dimension
≥ 2, then c(S) ≥ 3.

Theorem 2.8. Let Sn be a primitive free numerical semigroup in embedding dimension n of the form

Sn =


〈2, 3〉 n = 2

〈bs1, . . . , bsn−1, i〉, b ∈ {2, 3}, i ∈

{
n−1∑
j=1

ajsj 6≡ 0(mod b) :
n−1∑
j=1

aj ∈ {2, 3}

}
n > 2

where Sn−1 = 〈s1, . . . , sn−1〉 is a free semigroup of dimension n− 1 with c(Sn−1) = 3. Then, c(Sn) = 3.

Proof. Let S have the form above. First suppose that n = 2. By Lemma 2.6, c(S) = 3. In fact, 〈2, 3〉 is the
only numerical semigroup of embedding dimension two with catenary degree three.
Now suppose n > 2. Then Sn is the gluing of Sn−1 and 〈1〉 by bi. By Corollary 2.5,

c(Sn) ≤ max{c(Sn−1), c(〈1〉), c(bi)}.

We know that c(Sn−1) = 3 and that c(〈1〉) = 0.
Since Sn is a gluing with glue bi, any factorization of bi in Sn is either a factorization in bSn−1 or in 〈i〉.
Let z be a factorization of bi in bSn−1, so bi =

∑n−1
j=1 ajbsj where

∑n−1
j=1 aj ≤ 3. Let z′ be a factorization

of bi in 〈i〉, so bi = bi. The greatest common divisor of z and z′ is trivial, so d(z, z′) = max{|z|, |z′|} =

max{
∑n−1
j=1 aj , b} ≤ 3. Hence, c(bi) ≤ 3.

Therefore, we have that c(S) ≤ max{3, 0, c(bi)} = 3. In fact, since n > 2, by Lemma 2.7, c(S) = 3.

Unfortunately, the converse of Theorem 2.8 is not true, since there are other free numerical semigroups
with catenary degree 3 that do not have the form above. (See Counterexample 2.4 for one such semi-
group.) However, an important consequence of this theorem is that there are numerical semigroups in every
embedding dimension greater than or equal to 2 that have catenary degree 3.

Theorem 2.9. Let S = 〈n1, . . . , np〉 be a numerical semigroup of catenary degree three, and let σ =
{(α1, β1) . . . , (αt, βt)} be a minimal presentation. Pick a subset {(α1, β1), . . . , (αp−1, βp−1)} which is lin-
early independent. Then

det(X,α1 − β1, . . . , αp−1 − βp−1) = λ(n1x1 + · · ·+ npxp)

for some λ ∈ Z.
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Proof. Let M = {(x1, . . . , xp) ∈ Zp : n1x1 + · · · + npxp = 0}. Now, consider the vector spaces LQ(M) and
LQ({α1 − β1, . . . , αp−1 − βp−1}) (the set of linear combinations with rational coefficients). Note that the
second of these is included in the first, and since both have dimension p− 1 they must be equal. The space
LQ({α1 − β1, . . . , αp−1 − βp−1}) is defined by the equation n1x1 + · · · + npxp = 0. Furthermore, we have
X ∈ LQ(M) if and only if det(X,α1−β1, . . . , αp−1−βp−1) = 0, so LQ(M) is defined by m1x1+· · ·+mpxp = 0
for integers m1, . . . ,mp. Therefore, there exists nonzero λ ∈ Q such that we have mj = λnj for j = 1, . . . , p.
But since we have mj , nj ∈ Z and gcd(n1, . . . , np) = 1, we know λ ∈ Z.

We can use Theorem 2.9 to find all numerical semigroups in embedding dimension n that have catenary
degree 3 using the following steps:

1. Compile a list of all possible equations for a minimal presentation that could produce a semigroup of
embedding dimension 3. (The sum of the coefficients on each side of the equations must be less than
or equal to 3.)

2. Form an n×n matrix where the first row contains n variables and where every other row contains the
coefficients of an equation from step (1) (the coefficients on one side of the equation will be positive
and the coefficients on the other side will be negative).

3. Compute the determinant. The coefficients in front of the n variables are generators for a semigroup.
Check to see if that semigroup has catenary degree 3.

4. Repeat steps (2) and (3), taking all possible combinations of rows. Although not every combination
will result in a semigroup of catenary degree 3, all semigroups of catenary degree 3 can be found in
this way.

Using this method, we were able to find all semigroups in embedding dimension 3 that have catenary
degree 3. They are:

〈3, 4, 5〉, 〈4, 5, 6〉, 〈4, 5, 7〉, 〈4, 6, 7〉, 〈4, 6, 9〉, 〈5, 6, 9〉, 〈6, 7, 9〉, 〈6, 8, 9〉

Note: 〈3, 4, 5〉 and 〈4, 5, 7〉 are the only semigroups that were not found using gluing.
Here is the code that we used:

permlist=[]

perm1=permutations([-2,0,3])

perm2=permutations([-2,1,2])

perm3=permutations([-3,1,2])

perm4=permutations([-2,1,1])

perm5=permutations([-3,1,1])

for i in range(6):

permlist.append(perm1[i])

permlist.append(perm2[i])

permlist.append(perm3[i])

for i in range(3):

permlist.append(perm4[i])

permlist.append(perm5[i])

print(permlist)

def determinant(l1,l2):

c1=l1[0]*l2[1]-l1[1]*l2[0]

c2=-l1[0]*l2[2]+l1[2]*l2[0]

c3=l1[1]*l2[2]-l1[2]*l2[1]

return [c1,c2,c3]
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def numlist(List):

numlist=[]

for i in range(24):

for j in range(24):

numlist.append(determinant(List[i],List[j]))

return numlist

def narrow(List):

newSet=[]

for i in List:

keep = true

Gcd=max(1,gcd(i))

for k in range(3):

i[k]=i[k]/Gcd

for j in range(3):

if i[j]<2:

keep=false

if i[0]>=i[1] or i[1]>=i[2] or i[0]>=i[2]:

keep=false

if keep:

newSet.append(i)

return newSet

Narrow=narrow(numlist(permlist))

Narrow

for l in Narrow:

S=NumericalSemigroup(l)

print l,S.CatenaryDegree()

sorted(Narrow)

Using this same method, we discovered 157 semigroups in embedding dimension 4 that have catenary
degree 3. These semigroups are listed in Appendix 7.1.

3 Special Elasticity

The elasticity of numerical semigroups has been a popular invariant to look at over the years. This invariant
describes the largest ratio between the maximum and minimum of the longest factorization lengths. What
has not been looked at as much is the special elasticity of a numerical semigroup. The special elasticity of a
monoid S or ρk(S) is defined [8] to be the following

ρk(S) = sup{L(n) : n ∈ S and `(n) = k}.

A problem posed by Alfred Geroldinger was to investigate extreme cases for special elasticity in semi-
groups. Specifically, characterize ρ2(S) ≤ 3 for a numerical semigroup S. This problem is one that deals
with minimal cases for special elasticity. This section discusses semigroups of embedding dimension three
and the process taken to characterize a portion of ρ2(S) = 2 and all of ρ2(S) = 3. Also, we will show that
removing a single generator from a semigroup generated by a general arithmetic sequence rarely changes the
special elasticity.

3.1 Preliminaries

Throughout this section we will use S as a numerical semigroup. Suppose S = 〈n1, n2, n3〉 is a numerical
semigroup where gcd(n1, n2, n3) = 1. Also suppose that (r, s, t) represents the semigroup element r(n1) +
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s(n2) + t(n3). For ρ2(S) we are considering the six elements (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1),
(0, 1, 1) and looking for their longest factorizations. Let ~v be one of these elements, and ~u be its longest
factorization. Then I claim that if u 6= v, then ~v ·~u = 0, where · denotes the dot product. The reason is that
if both ~u and ~v are strictly positive in some coordinate, then we may subtract one from that coordinate to get
again two factorizations that agree – except now one of them is a single irreducible, which is a contradiction.

The following proposition limits the number of factorizations we need to look at when ρ2(S) ≤ 3.

Proposition 3.1. Suppose S = 〈a, b, c〉 is a numerical semigroup with minimal generators. The only
possibilities for sums of pairs of factorizations such that ρ2(S) ≤ 3 are unique factorizations and

• (1, 0, 1) = (0, 2, 0) or (0, 3, 0)

• (0, 2, 0) = (3, 0, 0) or (2, 0, 1)

• (0, 1, 1) = (3, 0, 0)

• (0, 0, 2) = (3, 0, 0) or (2, 1, 0) or (1, 2, 0) or (0, 3, 0)

Proof. Suppose S = 〈a, b, c〉 is a numerical semigroup with minimal generators where a < b < c. As described
above, (r, s, t) denotes the element r(a) + s(b) + t(c) in S. I will first show that (2, 0, 0) and (1, 1, 0) are
always unique factorizations. After that I will show the rest of possible equalities

Case 1:
Consider (2, 0, 0) and suppose it has a factorization ~u = (0, s, t) where s, t ∈ N. Since b and c are atoms and
all three generators are distinct, ~u cannot be (0, 1, 0), (0, 0, 1), (0, 2, 0), nor (0, 0, 2). This gives us 2a = sb+tc.
But since a is smaller than both b and c, 2a < 3b ≤ sb, 2a < 3c ≤ tc, and 2a < (b + c) ≤ (xb + yc) for
x, y ∈ Z+. Hence 2a < (sb+ tc), this is a contradiction. Therefore (2, 0, 0) has no factorizations other than
itself.

Case 2:
Consider (1, 1, 0) and suppose it has a factorization ~v = (0, 0, t). Since c is an atom ~v 6= (0, 0, 1). This gives
us that a+ b = tc for t ≥ 2. But since c is greater than both a and b, a+ b < 2c ≤ tc. Thus (1, 1, 0) has no
factorizations other than itself.

Case 3:
Consider (1, 0, 1) and it’s possible factorizations ~v = (0, s, 0). If s = 1, then a+c = b which is a contradiction
because b is an atom. If s ≥ 4, then the length of the factorization would be ρ2(S) = s > 3 which is a
contradiction. Thus s ∈ {2, 3}. Therefore the possible factorizations of (1, 0, 1) are (0, 2, 0) and (0, 3, 0).

Case 4:
Consider (0, 2, 0) and it’s possible factorizations ~u = (r, 0, t). If t = 0, then 2b = ra. Since a < b < 2b,
r 6∈ {1, 2}. From similar reasoning in case 3, r ≤ 3. Thus r = 3. Now if t = 1, then 2b = ra + c. The
previous paragraph covers when r = 1. Again by similar reasoning in case 3, r ≤ 2. Hence r = 2. Since
2b < 2c, t < 2. Therefore the possible factorizations for (0, 2, 0) are (3, 0, 0), (2, 0, 1), and (1, 0, 1).

Case 5:
Consider (0, 1, 1) and it’s possible factorizations ~v = (r, 0, 0). Since a < 2a < b+ c, r 6∈ {1, 2}. From similar
reasoning in case 3, r ≤ 3. Thus r = 3. Therefore the only possible factorization for (0, 1, 1) is (3, 0, 0).

Case 6:
Consider (0, 0, 2) and it’s possible factorizations ~u = (r, s, 0). From similar reasoning in case 3, r, s ≤ 3. If
s = 0, then ra = 2c. Since a < 2a < 2c, r 6∈ {1, 2}. Thus r = 3. If s = 1, then ra+ s = 2c. Since a+ b < 2c,
r 6= 1. Again by similar reasoning in case 3, r ≤ 2. Hence r = 2. If s = 2, then ra+ 2b = 2c. From similar
reasoning in case 3, r ≤ 1. So r = 1. If s = 3, then by similar reasoning in case 3, r = 0. Therefore the
possible factorizations for (0, 0, 2) are (3, 0, 0), (2, 1, 0), (1, 2, 0), and (0, 3, 0).

This proposition is key in proving many of our results. It cuts down on the amount of cases that we must
look at. Note that this proposition can only be used when the generators are specifically ordered. Now we
will draw from other results on special elasticity. We use the following theorem [1] which characterizes ρk
for semigroups generated by a general arithmetic sequences.
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Theorem 3.2. Let S be a numerical semigroup generated by a general arithmetic sequence a, ah + d, ah +
2d, ..., ah+ xd with gcd(a, d) = 1. Then

ρk(S) =

{
kh+

⌊
kx
a

⌋
d if a ≤ kx

kh+ (h− 1)
⌊−k
x

⌋
if a > kx

From this theorem we can extrapolate the instances when ρ2(S) ≤ 3 form this theorem in the following
corollaries.

Corollary 3.3. If S = 〈a, a+ 1, . . . , a+ x〉 is a numerical semigroup and a ≤ 2x, then ρ2(S) = 3

Corollary 3.4. If S = 〈a, a+ d, a+ 2d, . . . , a+ xd〉 is a numerical semigroup and a > 2x, then ρ2(S) = 2

Corollary 3.5. If S = 〈a, 2a+d, 2a+2d, . . . , 2a+xd〉 is a numerical semigroup and a > 2x, then ρ2(S) = 3

A useful tool to quickly check if a semigroup has ρk ≤ m for some m > k is to show that m times the
smallest generator is greater than k times the largest generator.

Lemma 3.6. If S = 〈a, a+x, a+y〉 is a numerical semigroup where x ∈ {1, 2, . . . , a−2} and y ∈ {2, 3, . . . , a−
1} and x < y, then ρ2(S) ≤ 3.

Proof. Let S = 〈a, a+x, a+y〉 be a numerical semigroup where x ∈ {1, 2, . . . , a−2} and y ∈ {2, 3, . . . , a−1}.
BWOC assume that two generators can be written as 4 generators. Then r1 +r2 = r3 +r4 +r5 +r6 where

ri are generators. This equation is bounded by 2(a + y) and 4a. Hence 2(a + y) ≥ 4a simplifies to y ≥ a.
This is a contradiction from our hypothesis and can be generalized for all n ≥ 4. Therefore ρ2(S) ≤ 3.

Example 3.7. Consider 〈7, 12, 13〉. Using Proposition 3.1, we need to look at the factorizations (1, 0, 1) = 20,
(0, 1, 1) = 25, (0, 2, 0) = 24, and (0, 0, 2) = 26. The first factorization is not a multiple of 12 so we can that
(1, 0, 1) is unique. The second factorization is not a multiple of 7 so we can say that (0, 1, 1) is unique.
The third factorization cannot be written as a linear combination of 7 and 13 so we can say that (0, 2, 0) is
unique. Finally we see that 26 = 12 + 2 · 7 so we can say that (0, 0, 2) = (2, 1, 0). Thus ρ2(〈7, 12, 13〉) = 3.

3.2 ρ2(S) = 2

Now we will be delving into the minimal value for ρ2(S). Although this is the smallest value, this is in no
way the most trivial case. From Proposition 3.1 we can partition ρ2(S) = 2 into two categories.

Definition 3.8. If ρ2(S) = 2 and all pairwise factorizations are unique, then we call S 2-unique

Definition 3.9. If ρ2(S) = 2, the factorizations (1, 0, 1) and (0, 2, 0) are equal, and all other pairwise
factorizations are unique, then we call S 2-non-unique

The following theorem characterizes all 2-non-unique semigroups.

Theorem 3.10. Suppose S = 〈n1, n2, n3〉 is a minimally generated numerical semigroup where the generators
are in ascending order. S is 2-non-unique if and only if S = 〈n1, n1 + d, n1 + 2d〉 where gcd(d, n1) = 1 and
n1 > 4.

Proof. Let S = 〈n1, n2, n3〉 is a minimally generated numerical semigroup where the generators are in
ascending order.

(⇒) Suppose S = 〈n1, n1+d, n1+2d〉. By Corollary 3.4 ρ2(S) = 2. We can see that (0, 2, 0) = 2(n1+1) =
n1 + n1 + 2 = (1, 0, 1). Thus by Proposition 3.1 we only need to show that the factorizations (0, 1, 1) and
(0, 0, 2) are unique. We are going to let [(r, s, t)] represent the residue of r(n1) + s(n1 + d) + t(n1 + 2d)
(mod n1) for r, s, t > 0.

Consider (0, 1, 1), and suppose its longest factorization is (r, 0, 0). [(0, 1, 1)] = [3d] and [(r, 0, 0)] = [0].
Hence 3d ≡ 0 (mod n1). Since gcd(d, n1) = 1 we can divide by d. We have 3 ≡ 0 (mod n1), but n1 ≥ 5
which means we have a contradiction.
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Consider (0, 0, 2), and suppose its longest factorization is (r, s, 0). [(0, 0, 2)] = [4d] and [(r, s, 0)] = [sd].
Hence 4d ≡ sd (mod n1). Similarly we divide by d to get that 4 ≡ s (mod n1), and in particular 4 ≥ s. But
(r, s, 0) ≤ (r, 4, 0) = rn1 + 4n1 + 4d = 2n1 + 4d = (0, 0, 2) implies r = −2 which is a contradiction.

Therefore by Definition 3.9, S is 2-non-unique.
(⇐) Suppose S is 2-non-unique. Then we know that (1, 0, 1) = n1 + n3 = 2n2 = (0, 2, 0). Hence n2 is

the midpoint of n1 and n3 so the only form possible is S = 〈n1, n1 + d, n1 + 2d〉. Now it is necessary to show
that gcd(d, n1) = 1. Since d = n2 − n1 = n3 − n2, we have gcd(d, n1) = gcd(n3, n2, n1), so the semigroup is
reduced exactly when gcd(d, n1) = 1. This completes the second direction of the if and only if.

Furthermore, arithmetic sequences of this form are the only semigroups that have the factorization
(1, 0, 1) = (0, 2, 0).

Corollary 3.11. Suppose S = 〈n1, n2, n3〉 is a minimally generated numerical semigroup where the gener-
ators are in ascending order. S = 〈n1, n1 + d, n1 + 2d〉 where gcd(d, n1) = 1 if and only if the factorization
(1, 0, 1) = (0, 2, 0) holds.

Interestingly enough there are only 2 semigroups of the above form that have ρ2 = 3. They are 〈3, 4, 5〉
and 〈4, 5, 6〉. This results directly from Corollary 3.3.

Unfortunately, 2-unique semigroups are much harder to characterize. We have only begun to scratch the
surface of this type. Although we have found some notable forms. The first form is where at least two atoms
share a common factor, the largest common factor between any two atoms is 3, and that the multiplicity of
the semigroup is at least 8. The second form characterizes all semigroups which have multiplicity 7.

Proposition 3.12. If S = 〈ba, ca, n〉 is a minimally generated numerical semigroup where a ≥ 3 is the
largest common factor between any two atoms, 2 < b < c, and 2c < n, then S is 2-unique.

Proof. Let S = 〈ba, ca, n〉 where a ≥ 3. We can use the division algorithm to get n = qa+ r. Let (j, k, l) be
the semigroup element j(ba) + k(ca) + l(qa + r), and let [(j, k, l)] = [lr] be the residue modulo a. Note we
have not designated any order between generators.

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [0] = [rl] = [(0, 0, l)]. But
since gcd(r, a) = 1 we must have l ≥ a. Hence ba+ ca = l(n) ≥ an, so n ≤ b+ c, contradiction. Thus (1, 1, 0)
is a unique factorization.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [r] 6= [0] = [(0, k, 0)] and
thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [r] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [rl] = [(0, k, l)]. Either
l = 0 (impossible since ba < ca) or l ≥ a. Hence 2(ba) = k(ca) + l(n) ≥ k(ca) + an, so n ≤ 2b, contradiction.
Thus (2, 0, 0) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [rl] = [(j, 0, l)]. Either
l = 0 (impossible since b ≥ 3) or l ≥ a. Hence 2(ca) = j(ba) + l(n) ≥ j(ba) + an, so n ≤ 2c, contradiction.
Thus (0, 2, 0) is a unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [2r] 6= [0] = [(j, k, 0)] and
thus (0, 0, 2) is a unique factorization.
Therefore S is 2-unique.

In the following proposition we fix the multiplicity to be 7 and form the other two generators by congruence
classes modulo 7. From analyzing data we noticed that when we look at the residues modulo 7, certain
relationships appeared between the two larger generators.

Proposition 3.13. Let S = 〈7, c, d〉 be a minimally generated numerical semigroup where 7 is the multiplic-
ity. Then S is 2-unique if and only if S = 〈7, c, 3c− 7γ〉 where gcd(7, c) = 1 and γ ∈ {2, 3, . . . , d c3e − 1}.

Proof. Suppose that S = 〈7, c, d〉 be a minimally generated numerical semigroup and S is not of the form
from Theorem 3.10. Notice that we do not restrict c < d or alternatively d < c. They may be in either order.
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(⇒) Assume S is 2-unique. Since S is minimally generated, we know that the gcd(7, c, d) = 1. In order
to show that S is of the form 〈7, c, 3c−7γ〉 we must show that d ≡ 3c (mod 7). To do this we will show that
the residue of d modulo 7 cannot be 0, c, 2c, 4c, 6c. Also when d ≡ 5c (mod 7) we get that

3d ≡ 15c ≡ c (mod 7). (1)

Therefore we can rename the second and third generators so that we have our desired form. Now we will
begin our 5 cases. For any of the following cases we will use that d ≡ lc (mod 7) implies that d = lc + 7j
for l ∈ {0, 1, 2, 4, 6} and j ∈ Z. In every case j must be negative or else we can simply write d in terms
of multiples of the first and second generators. Hence we will refer to d = lc − 7k for l ∈ {0, 1, 2, 4, 6} and
k ∈ Z+.

Case 1: l = 0
Suppose that d = −7k. This means that d < 0, thus a contradiction.

Case 2: l = 1
Suppose that d = c− 7k. Then we can write (0, 1, 0) = c = 7k + c− 7k = (k, 0, 1). We have a contradiction
since c is an atom.

Case 3: l = 2
Suppose that d = 2c− 7k. Then we can write (0, 2, 0) = 2c = 7r + 2c− 7k = (r, 0, 1) for some r ∈ Z+. This
leads us to r = k. We assumed that ρ2(S) = 2, so r = k = 1. This means that S is overlapping, which is a
contradiction since we assumed S to be definite.

Case 4: l = 4
Suppose that d = 4c − 7k. Then we can write (0, 0, 2) = 2(4c − 7k) = c + 7(c − 2k) = (c − 2k, 1, 0). If
c − 2k > 0, then c − 2k = 1 because ρ2(S) = 2. Again this implies that S is overlapping, so contradiction.
If c − 2k = 0, then c = 2(4c − 7k) = (0, 0, 2). But c is an atom so contradiction. If c − 2k < 0, then
c = 2(4c− 7k) + (2k − c)7 = (2k − c, 0, 2). This isn’t possible since c is an atom.

Case 5: l = 6
Suppose that d = 6c− 7k. Consider (0, 1, 1) = c+ 6c− 7k = 7(c− k). If c ≤ k+ 1, then 7(c− k) <≤ 7 which
is a contradiction since 7 is the multiplicity. Hence we consider when last possible choice that c = k + 2.
This gives us S = 〈7, k + 2, 12 − k〉. From k + 2 we get that k > 5, but from 12 − k we get that k < 5.
This is a contradiction. Therefore S = 〈7, c, 3c − 7k〉. If gcd(c, 7)z > 1, then 7|z. This implies that
gcd(7, c, 3c− 7k) 6= 1. Hence gcd(c, 7) = 1.

Now we must show that k ∈ {2, 3, . . . , d c3e − 1}. It will be shown that 2 ≤ k and k ≤ d c3e − 1.
Case i: k = 1

Then (1, 0, 1) = 7 + 3c− 7 = 3c = (0, 3, 0). Whence, ρ2(S) = 3 which is a contradiction.
Case ii: k ≥ d c3e

Then we can write k = d c3e + y where y ≥ 0. Choose x to be the smallest non-negative integer such that
3|(c+ x). This bounds x ∈ {0, 1, 2}. Then we can say that d c3e = c+x

3 . Hence

(0, 2, 0) = 2c = 2c+ 7c− 7c+ 7x− 7x+ 7(3y)− 7(3y)

= 9c− 7(c+ x+ 3y) + 7(x+ 3y)

= 3[3c− 7(
c+ x

3
+ y)] + 7(x+ 3y)

= (x+ 3y, 0, 3).

Therefore ρ2(S) ≥ 3 which is a contradiction. This completes our bounds on k and the forward direction.
(⇒) Now let S = 〈7, c, 3c− 7γ〉 where gcd(7, c) = 1 and γ ∈ {2, 3, . . . , d c3e− 1}. From Proposition 3.1 we

need only concern ourselves with (0, 1, 1), (1, 0, 1), (0, 0, 2), and (0, 2, 0).
Consider [(0, 1, 1)] and suppose its longest factorization is [(r, 0, 0)]. Then [(0, 1, 1)] = [4c] = [0] =

[(r, 0, 0)], but since gcd(7, c) = 1, [4c] 6= [0].
Consider [(1, 0, 1)] and suppose its longest factorization is [(0, s, 0)]. Then [(1, 0, 1)] = [3c] = [sc] =

[(0, s, 0)], in particular s ≥ 3. We have (0, s, 0) = sc ≥ 3c > 3c+ 7(1− k) = (1, 0, 1) since k > 1, which is a
contradiction.

Consider [(0, 0, 2]) and suppose its longest factorization is [(r, s, 0)]. Then [(0, 0, 2)] = [6c] = [sc] =
[(r, s, 0)], in particular s ≥ 6. We have (r, s, 0) ≥ (0, 6, 0) = 6c > 6c − 7(2k) = (0, 0, 2), which is a
contradiction.
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Consider [(0, 2, 0)] and suppose its longest factorization is [(r, 0, )t]. Then [(0, 2, 0)] = [2c] = [3ct] =
[(r, 0, t)], in particular 3t ≥ 2. The smallest t that satisfies this is 3, so t ≥ 3. Again assume that x is
the smallest non-negative integer such that 3|(c + x) and d c3e = c+x

3 . From our bounds on k, we can write
k = d c3e − z = c+x

3 − z for 1 ≤ z ≤ d c3e − 2. Then

(r, 0, t) ≥ (0, 0, 3) = 9c− 7(3k) = 2c = (0, 2, 0)

7c− 7(3k) = 0

c = 3k

c = c+ x− 3z

3z = x (2)

Equation (2) is a contradiction since x < 3 and 3z ≥ 3. Therefore S is 2-unique and we have completed our
proof.

Example 3.14.

These are two different methods to look at 2-unique semigroups. Looking at them in the symmetric/non-
symmetric sense and organizing them by multiplicity. We had difficulties in both directions. As you will see
later it is very difficult to work with non-symmetric semigroups and it seemed that there were gaps or missing
elements in the patterns we were looking at. While characterizing by multiplicity we were hoping to find a
more general form by using the congruence class of one of the other two generators. As the multiplicities
grew, the patterns seemed to use more and more congruence classes.

3.3 ρ2(S) = 3

We are going to split this up into two cases. The first will be semigroups where at least two generators share
a common factor greater than 1. The Second will be when all generators are pairwise coprime.

Definition 3.15. We call S = 〈x, y, z〉 symmetric, if at least one pair of atoms share a common factor
greater than 1.

Definition 3.16. We call S = 〈x, y, z〉 non-symmetric, if x, y, and z are pairwise coprime.

These definitions are not to be confused with symmetric from [11]. Our definitions deal strictly with
common factors between generators of semigroups.

3.3.1 Symmetric Semigroups

Suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup. The following lemmas and propositions
will characterize many numerical semigroups of embedding dimension 3 when ρ2(S) = 3. The goal is to
characterize all semigroups where the atoms are pairwise not coprime, two pairs of atoms have a common
factor greater than 1 but the other pair doesn’t, and where exactly one pair of atoms has a common factor
greater than 1. To do this we will change our semigroup form to S = 〈ab, ac, n〉 where a is the largest
common factor between any two atoms and the atoms are not necessarily in order. This leaves n to fall into
any of the three partitions above. Also, this forces b and c to be coprime. For simplicity, we make b < c.
We will split up these 3 types for ρ2(S) = 3 into five different cases.

Lemma 3.17 will characterize ρ2(S) = 3 for our smallest possible values for a, b, and c. Proposition 3.18
will characterize ρ2(S) = 3 for a = 2 and non-minimal values of b and c. Lemma 3.20 will characterize
ρ2(S) = 3 for 2 < a and any values of b and c, where n ≤ 2c. Lemma 3.22 will characterize ρ2(S) = 3
for 2 < a and the minimal values of b and c, where 2c < n. Proposition 3.12 showed that for 2 < a and
non-minimal values of b and c, where 2c < n, there are only 2-unique semigroups.

Consider the general form of 〈ab, ac, n〉 and let b = 2. Now we can write the factorization (0, 2, 0) =
2(ac) = c(2a) = (c, 0, 0). Thus we can say that ρ2(〈2a, ac, n〉) ≥ c. Thus when b = 2 we must also have
c = 3. The following Lemma is the smallest case, where a = 2, b = 2, and c = 3.

Lemma 3.17. Suppose S = 〈4, 6, n〉 is a minimally generated numerical semigroup. ρ2(S) = 3 if and only
if n ∈ {5, 7}.
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Proof. Let S = 〈4, 6, n〉 be a minimally generated numerical semigroup. We can use the division algorithm
to get n = 2q+ 1. Let (j, k, l) be the semigroup element j(4) + k(6) + l(2q+ 1), and let [(j, k, l)] = [l] be the
residue modulo 2. Note we have not designated any order between generators.

(⇒) Suppose that ρ2(S) = 3.
Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [0] = [l] = [(0, 0, l)]. But

since gcd(r, 2) = 1 we must have 3 ≥ l ≥ 2. This leaves l = 2. Hence 4 + 6 = 2(n), so n = 5.
Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [1] 6= [0] = [(0, k, 0)] and

thus (1, 0, 1) is a unique factorization.
Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] 6= [0] = [(j, 0, 0)] and

thus (0, 1, 1) is a unique factorization.
Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [l] = [(0, k, l)]. Either

l = 0 (impossible since 2b < 2c) or 3 ≥ l ≥ 2. This leaves l = 2. Hence 2(4) = k(6) + 2(n), so either j = 0
(impossible since n is odd) or j = 1. Thus n = 4 − 3 = 1 which is a contradiction since S is minimally
generated.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. Either
l = 0 (which gives j = 3 = ρ2(S)) or 3 ≥ l ≥ 2. This leaves l = 2. Hence 2(6) = j(4) + 2(n), so either j = 0
(impossible since n is odd) or j = 1. Thus n = 6− 2 = 4, a contradiction.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [0] = [(j, k, 0)]. So
either j = k = 1 or j = 2 and k = 1 or j = 1 and k = 2. The case where j = k = 1 is covered in the (1, 0, 1)
factorization. Thus either n = 6 + 2 = 8 (contradiction) or n = 4 + 3 = 7.

Therefore n ∈ {5, 7}.
(⇐) Consider S = 〈4, 5, 6〉, by Corollary 3.3, ρ2(S) = 3. Consider S = 〈4, 6, 7〉, by Lemma 3.6, ρ2(S) ≤ 3.

But since (0, 0, 2) = (2, 1, 0), ρ2(S) = 3.

The next proposition is the case where a = 2 and 2 < b < c.

Proposition 3.18. Suppose S = 〈2b, 2c, n〉 is a minimally generated numerical semigroup where 2 is the
largest common factor between any two atoms and 3 ≤ b < c. Then ρ2(S) = 3 if and only if n ∈ {2c±b, 2b±c}

Proof. Let S = 〈2b, 2c, n〉 be a minimally generated numerical semigroup where 2 is the largest common
factor between any two atoms and b < c. This implies that gcd(b, c) = 1. We can use the division algorithm
to get n = 2q + 1. Let (j, k, l) be the semigroup element j(2b) + k(2c) + l(2q + 1), and let [(j, k, l)] = [l] be
the residue modulo 2. Note we have not designated any order between generators.
(⇒) Suppose that ρ2(S) ≤ 3.

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [0] = [l] = [(0, 0, l)]. Since
gcd(r, 2) = 1 we must have 3 ≥ l ≥ 2. This leaves l = 2. Hence 2b+ 2c = 2(n), so n = b+ c. But in this case
we could write S = 〈x, x + d, x + 2d〉 where x = 2b and d = c − b. By Corollary 3.4, ρ2(S) = 2, which is a
contradiction.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [1] 6= [0] = [(0, k, 0)] and
thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [l] = [(0, k, l)]. Either
l = 0 (impossible since 2b < 2c) or 3 ≥ l ≥ 2. This leaves l = 2. Hence 2(2b) = k(2c) + 2(n), so either j = 0
(impossible since n is odd) or j = 1. Thus n = 2b− c.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. Either
l = 0 (impossible since b ≥ 3) or 3 ≥ l ≥ 2. This leaves l = 2. Hence 2(2c) = j(2b) + 2(n), so either j = 0
(impossible since n is odd) or j = 1. Thus n = 2c− b.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [0] = [(j, k, 0)]. So
either j = k = 1 or j = 2 and k = 1 or j = 1 and k = 2. The case where j = k = 1 is covered in the (1, 0, 1)
factorization. Thus either n = 2b+ c or n = 2c+ b.
(⇐) It is only necessary to show that for the five values of n listed above, ρ2(S) ≤ 3.

Case 1: S = 〈2b, 2c, 2c+ b〉
This implies that b must be odd. By Proposition 3.1, we only need to check four factorizations.

12



Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [1] 6= [0] = [(0, k, 0)] and
thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. Either
l = 0 (impossible since b ≥ 3) or l ≥ 2. If l ≥ 2, then (0, 2, 0) = 4c < l(2c + b) ≤ (j, 0, l). Thus (0, 2, 0) is a
unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [0] = [(j, k, 0)]. Hence
we have 2(2c + b) = j(2b) + k(2c), which simplifies to 2c + b = jb + kc. If k = 0, then 2c ≡ 0 (mod b) but
b ≥ 3. If k = 1, then c ≡ 0 (mod b) but b ≥ 3. If k ≥ 3, then (0, 0, 2) = 2(2c + b) < 2(ck) ≤ (j, k, 0). If
k = 2, then 2c+ b = jb+ 2c, so j = 1.
Therefore ρ2(S) = 3.

Case 2: S = 〈2b, 2c− b, 2c〉
This implies that b must be odd. By Proposition 3.1, we only need to check four factorizations.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [0] = [k] = [(0, k, 0)]. Either
k = 0 (impossible) or k ≥ 2. If k = 2, then 2(2b) = 2c, a contradiction since 2c is an atom. Suppose k ≥ 4.
Since c− b > 0, 2c− b > c. Hence (1, 0, 1) = 2b + 2c < 4c ≤ k(2c− b) = (0, k, 0). Thus (1, 0, 1) is a unique
factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [0] = [(j, 0, l)]. Whence
we have 2(2c − b) = j(2b) + l(2c), which simplifies to 2c − b = jb + lc. If l = 0, then 2c ≡ 0 (mod b) but
b ≥ 3. If l = 1, then c ≡ 0 (mod b) but b ≥ 3. If l ≥ 2, then (0, 2, 0) = 2(2c − b) < l(2c) ≤ (j, 0, l). Thus
(0, 2, 0) is a unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [k] = [(j, k, 0)]. We
have 2(2c) = j(2b)+k(2c−b). l = 0, 1, 3 are impossible since b ≥ 3. If l ≥ 4, then (0, 0, 2) = 4c < k(2c−b) ≤
(j, k, 0). If l = 2, then we get 4c = j(2b) + 4c− 2b. Thus j = 1.
Therefore ρ2(S) = 3.

Case 3: S = 〈2b, 2c, 2b+ c〉
This implies that c must be odd. In this case we do not know whether 2b < c or c < 2b, so we must consider
all 6 factorizations.

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [0] = [l] = [(0, 0, l)]. Either
l = 0 (impossible) or l ≥ 2. If l ≥ 2, then (1, 1, 0) = 2(b+ c) < l(2b+ c) = (0, 0, l). Thus (1, 1, 0) is a unique
factorization.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [1] 6= [0] = [(0, k, 0)] and
thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [l] = [(0, k, l)]. Either
l = 0 (impossible since 4 ≤ c) or l ≥ 2. If l ≥ 2, then (2, 0, 0) = 2(2c) < l(2b+ c) ≤ (0, k, l). Thus (2, 0, 0) is
a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. Either
l = 0, 2 (impossible since b ≥ 3) or l ≥ 4. If l ≥ 4, then (0, 2, 0) = 2(2c) < l(2b+ c) ≤ (j, 0, l). Thus (0, 2, 0)
is a unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [0] = [(j, k, 0)]. If
k = 0, 2 is impossible since b ≥ 3. If k ≥ 3, then (0, 0, 2) = 2(2b + c) < 2(kc) ≤ (j, k, 0). If k = 1, then
2(2b+ c) = j(2b) + 2c, which simplifies to give us j = 2.
Therefore ρ2(S) = 3.

Case 4: S = 〈2b− c, 2b, 2c〉
This case is equivalent to the numerical semigroup S = 〈x, 2x+d, 2x+2d〉 where x = 2b−c and d = 2(c−b).
By Corollary 3.5, ρ2(S) = 3.

Example 3.19. Consider 〈12, 14, n〉. This is a semigroups of the above form where b = 6 and c = 7. This

13



means that n ∈ {5, 19} we have excluded 8 and 20 from the set of n values because they would not give a
minimally generated numerical semigroup. Therefore ρ2(〈12, 14, n〉) = 3.

For our next lemma we will use the fact that for a semigroup of the form 〈b+c, ab, ac〉 where gcd(b, c) = 1,
ρ2 ≥ a. The factorization (0, 1, 1) = ab + ac = a(b + c) = (a, 0, 0). We have characterized all values when
a = 2, so we will set a = 3. Now we have 〈b + c, 3b, 3c〉. But when b = 2 we can write (0, 0, 2) = 2(3c) =
c(2 ∗ 3) = (0, c, 0). This restricts c = 3 in this case.

Lemma 3.20. Let S = 〈n, 3b, 3c〉 be a minimally generated numerical semigroup where 3 is the largest
common factor between any two atoms and n ≤ 2c. ρ2(S) = 3 if and only if n = b + c and b = 2 implies
c = 3.

Proof. Let S = 〈n, 3b, 3c〉 be a minimally generated numerical semigroup where 3 is the largest common
factor between any two atoms and n ≤ 2c. We can use the division algorithm to get n = 3q + r. Let (j, k, l)
be the semigroup element j(3q+ r) +k(3b) + l(3c), and let [(j, k, l)] = [jr] be the residue modulo 3. To begin
this proof we will eliminate some factorizations based on their residue modulo 3.

From Proposition 3.1 and since 3c is the largest atom we can ignore the factorization (1, 1, 0).
Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [r] 6= [0] = [(0, k, 0)] and

thus (1, 0, 1) is a unique factorization.
Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [2r] 6= [0] = [(0, k, l)] and

thus (2, 0, 0) is a unique factorization.
Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [jr] = [(j, 0, l)]. This

factorization is not necessarily unique.
Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [jr] = [(j, k, 0)]. This

factorization is not necessarily unique.
Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [0] = [jr] = [(j, 0, 0)]. This

factorization is not necessarily unique.
(⇒) Suppose ρ2(S) = 3.
Consider (0, 2, 0), from above we know [(0, 2, 0)] = [0] = [jr] = [(j, 0, l)]. So either j = 0 and l = 3 which

yields 2b ≡ 0 (mod c) (impossible) or j = 3 and l = 0. Hence 2(3b) = 3(n) which simplifies to n = 2b.
Thus gcd(n, 3b) = b < 3, so b = 2. But by Lemma 3.17 ρ2(〈4, 6, 3c〉) 6= 3. Therefore (0, 2, 0) is a unique
factorization.

Consider (0, 0, 2), from above we know [(0, 0, 2)] = [0] = [jr] = [(j, k, 0)]. So either j = 0 and k = 3 or
j = 3 and k = 0. The first gives 6c = 9b and yields 2c ≡ 0 (mod b). In other words b = 2 implies that c = 3.
Hence 2(3c) = 3(n) which simplifies to n = 2c. Thus gcd(n, 3c) = c < 3, which is a contradiction.

Consider (0, 1, 1) from above we know [(0, 1, 1)] = [0] = [jr] = [(j, 0, 0)]. Hence j = 3 and (0, 1, 1) =
3b+ 3c = 3n = (3, 0, 0). Thus n = b+ c.

(⇐) Now suppose that S = 〈b+ c, 3b, 3c〉.
Consider (0, 2, 0) from above we know [(0, 2, 0)] = [0] = [jr] = [(j, 0, l)]. So either j = 0 and l ≥ 3 which

yields 2b ≡ 0 (mod c) (impossible) or j ≥ 3. Hence (0, 2, 0) = 6b < j(b + c) ≤ (j, 0, l). Therefore (0, 2, 0) is
a unique factorization.

Consider (0, 0, 2) from above we know [(0, 0, 2)] = [0] = [jr] = [(j, k, 0)]. So either j = 0 and k ≥ 3 or
j ≥ 3. The first of which yields 2 ≡ 0 (mod b), in other words b = 2 and c = 3 (which gives rho2 = 3). If
j = 3, then we have 3(b+ c) + k(3b) = 6c. It can be simplified to c ≡ 0 (mod b) (impossible). If j ≥ 6, then
(0, 0, 2) = 6c < j(b+ c) ≤ (j, k, 0). Thus (0, 0, 2) gives ρ2 = 3 when b = 2.

Consider (0, 1, 1) from above we know [(0, 1, 1)] = [0] = [jr] = [(j, 0, 0)]. Hence j ≥ 3 and (0, 1, 1) =
3b+ 3c = 3(b+ c) = j(b+ c) = (j, 0, 0). Thus j = 3 and ρ2 = 3.

Example 3.21. Consider 〈9, 14, 24〉. This is a semigroup of the form above where b = 3, c = 8, and
n = 14 ≤ 16. We notice that gcd(n, 3c) = 2 < 3 which meets our requirements. Hence ρ2(〈9, 14, 24〉) = 3.

Next we have the monoid S = 〈2a, ac, n〉 where there is no necessary order. In this form we can see that
2(ac) and always be written as c(2a) where 2 < c. This leaves us with ρ2(S) ≥ c. Hence the only possibility
for c that may keep ρ2(S) ≤ 3 is c = 3. Thus the following lemma will characterize ρ2(S) = 3 when b = 2
and c = 3.
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Lemma 3.22. Let S = 〈2a, 3a, n〉 be a minimally generated numerical semigroup where a ≥ 3 is the largest
common factor between any two atoms and gcd(a, n) = 1, then ρ2(S) = 3. Except for the special cases when
n ∈ {4, 6} and when n = 5, then only a = 3 gives ρ2(S) = 3.

Proof. Let S = 〈2a, 3a, n〉 where a ≥ 3 and gcd(a, n) = 1. Note that the only values possible for n are
those that are coprime with a. We can use the division algorithm to get n = qa + r. Let (j, k, l) be the
semigroup element j(2a) + k(3a) + l(qa+ r), and let [(j, k, l)] = [lr] be the residue modulo a. Note we have
not designated any order between generators.

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [0] = [rl] = [(0, 0, l)]. But
since gcd(r, a) = 1 we must have l ≥ a. Hence 2a+ 3a = l(n) ≥ an, so n ≤ 5.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [r] 6= [0] = [(0, k, 0)] and
thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [r] 6= [0] = [(j, 0, 0)] and
thus (0, 1, 1) is a unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [rl] = [(0, k, l)]. Either
l = 0 (impossible since 2a < 3a) or l ≥ a. Hence 2(2a) = k(3a) + l(n) ≥ k(3a) + an, so n ≤ 4.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [rl] = [(j, 0, l)]. Either
l = 0 (which gives ρ2 = 3) or l ≥ a. Hence 2(3a) = j(2a) + l(n) ≥ j(2a) + an, so n ≤ 6.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [2r] 6= [0] = [(j, k, 0)] and
thus (0, 0, 2) is a unique factorization.

Thus all the values for n > 6 that are coprime with a give ρ2(S) = 3. Now consider the values for n ≤ 6,
namely n ∈ {4, 5, 6}.

For n = 4, we have the semigroup 〈4, 2a, 3a〉. But ρ2(〈4, 2a, 3a〉) ≥ a + 1, because 2(3a) = a(4) + (2a).
So for a ≥ 3, ρ2(S) > 3.

For n = 5, we have the semigroup 〈5, 2a, 3a〉. But ρ2(〈5, 2a, 3a〉) ≥ a, because 2a+ 3a = a(5). Hence this
is only possible when a = 3. By a quick computation we can see that ρ2(〈5, 6, 9〉) = 3.

For n = 6, we have the semigroup 〈6, 2a, 3a〉. But ρ2(〈6, 2a, 3a〉) ≥ a, because 2(3a) = a(6). When a = 3,
S isn’t minimal. Thus ρ2(S) > 3.

Since we have shown that for all values that of n > 2c give ρ2(S) = 3 and exhausted all other cases
(n ∈ {4, 5, 6}), we have fully characterized all semigroups of the form 〈2a, 3a, n〉.

Theorem 3.23. Suppose S = 〈ab, ac, n〉 is a minimally generated numerical semigroup where a is the
greatest common factor between any two atoms and b < c. Then ρ2(S) = 3 if and only if one of the following
cases hold

(1) a = 2, b = 2, c = 3, and n ∈ {5, 7}, or

(2) a = 2, 2 < b, and n ∈ {2c± b, 2b± c}, or

(3) a = 3, 2 < b, n ≤ 2c, n = b+ c, and b = 2 implies c = 3, or

(4) 2 < a, b = 2, c = 3. Except for the special cases when n ∈ {4, 6} and when n = 5, then only a = 3 gives
ρ2(S) = 3.

Proof. (1) follows from Lemma 3.17. (2) follows from Proposition 3.18. (3) follows from Lemma 3.20. (4)
follows from Lemma 3.22. By Proposition 3.12, we can say that for 2 < a, 2 < b, and 2c < n there are no
numerical semigroups that have ρ2 = 3.

Notice that this theorem also characterizes ρ2 = 3 for gluings of 〈b, c〉.

3.4 Non-Symmetric

Again suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup. Now we will look at numerical
semigroups where the atoms are pairwise coprime. Note we have not designated any order. Lemma 3.25
shows that there must be exactly one even generator. Lemma 3.26 will characterize all semigroups where the
even generator is 4. Theorem 3.27 will characterize all semigroups where the even generator is large than 4.

We begin by narrowing our search for non-symmetric semigroups with ρ2(S) = 3 by eliminating the
places in which we can show that they cannot occur.

15



Theorem 3.24. Let S = 〈a, b〉 be a numerical semigroup with gcd(a, b) = 1, 5 ≤ a < b < g(S), and

g(S) =
ab− a− b+ 1

2
. If T (c) = 〈a, b, c〉 then ρ2(T ) > 3 for all g(S) ≤ c ≤ ab− a− b.

Proof. To show this, we must only show that there will always be at least one factorization of some com-
bination of two generators n which always has ρ2(n) ≥ 4. We now break the proof into cases. Because
gcd(a, b) = 1 we know that both values are either both odd or of differing parities. We now consider the case
where both a and b are odd:

Because 2g(S) = 2

(
ab− a− b+ 1

2

)
= ab − a − b + 1, we know that 2g(S) ∈ 〈a, b〉, and therefore has the

factorization 2g(S) = Aa+Bb, for A,B ∈ Z+. Since 〈a, b〉 is in embedding dimension 2, we know that 〈a, b〉
is symmetric, so ab− a− b+ 1 will always be even. Knowing that a and b are both odd, we know that the
A + B must be even, and since a + b < 2b < 2g(S), we can exclude A = B = 1. Because A = 2, B = 1 or
A = 1, B = 2 produce odd values, we can also eliminate those cases as well. From this we can conclude that
if 2g(S) = Aa+Bb, then A+B ≥ 4 and so our ρ2(T ) ≥ 4.
In the case in which a and b are of differing parities, we can observe that there will be two cases. In the first
case we consider when a is odd and b is even.
First we eliminate the possibility that 2g(S) could be a multiple of a or b with a length less than 4.
If 2g(S) = Aa, then A = 2k because a is odd. If A is even, we reach a contradiction since 2g(S) cannot
be a multiple of another generator. If 2g(S) = Bb, we know that B cannot be even or else we reach a
contradiction. Since we know 2b < 2g(S) we need to show that B = 3 is not a possibility.

3b = ab− a− b+ 1

3b− ab+ b = 1− a
0 ≡ 1− a mod b

a ≡ 1 mod b

Because 5 ≤ a < b we can see that this equation has no solutions and thus this factorization cannot occur.
We now look at the case in which 2g(S) = Aa + Bb. Because a + b < 2g(S), we know that A = B = 1 is
not a possible factorization. Because a is odd, we know that A = 1, B = 2 is not a solution, so we need to
eliminate A = 2, B = 1. This case can be eliminated by showing that for 5 ≤ a < b, 2a+ b < 2g(S).

2a+ b < ab− a− b+ 1

2a+ 2b < a(b− 1) + 1

Since a is fixed and b can grow large,we show that this statement holds by performing induction on b.
Base Case: for a = 5 and b = 6 we can see that the inequality holds as 22 < 26. For b+ 1 we get:

2a+ 2b+ 2 < ab+ 1

2a+ 2b+ 2 < a(b− 1) + 1 + a

2 < a Inductive Hypothesis

Because 5 ≤ a, we can see the LHS will always be smaller than the RHS, and so the factorization cannot
occur.
If a is even and b is odd, we again begin by eliminating the cases with 2g(S) being a multiple of a single
generator.
For 2g(S) = Bb, we reach a contradiction since B has to be even which would imply that 2g(S) is a multiple
of b.
For 2g(S) = Aa we can use our previous result to infer that 3a < 2a+b < 2g(S), so this factorization cannot
occur and so A ≥ 4.
Lastly we know that A + B > 2,so we need to demonstrate that A = 2, B = 1 and A = 1, B = 2 are not
a possibility. Since b is odd we know that A = 2, B = 1 is not a possible factorization, and we can use
induction in the following way to eliminate A = 2, B = 1:

2b+ a < ab− a− b+ 1

2b+ 2a < b(a− 1) + 1
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Base Case: For a = 6 and b = 7 we get 26 < 36, and for b+ 1:

2b+ 2a+ 2 < (b+ 1)(a− 1) + 1

2b+ 2a+ 2 < b(a− 1) + 1 + (a− 1)

3 < a Inductive Hypothesis

Because 5 ≤ a we can see that the inequality holds and A = 2, B = 1 is not a valid factorization.
We can now conclude that 〈a, b, g(S)〉 will always have ρ2(S) > 3, but what about the values of g(S) < c ≤
ab − a − b? To show this is not possible we need only to show that the factorizations a + b, 2a + b, 2b + a
cannot produce the max length of 3 for our given interval of c (other factorizations would not produce a
valid semigroup).
For a+ b we can assume that at some values of a and b that c = a+ b, and using the following inequality we
can check what those values are.

ab− a− b+ 1

2
≤ a+ b

ab− a− b+ 1 ≤ 2a+ 2b

ab− 3b ≤ 3a− 1

b ≤ 3a− 1

a− 3

We have the condition that a ≥ 5, and plugging in 5 we get that b ≤ 7, and for a = 6, b does not have any
valid values.
For 2a+ b we can make the same assumption that c = 2a+ b, so we check the possible values of b obtained
from the following inequality:

ab− a− b+ 1

2
≤ 2a+ b

b ≤ 5a− 1

a− 3

For a = 5, b ≤ 12. For a = 6, b ≤ 9. a = 7, b ≤ 8. For a = 8 no valid values of b occur.
For 2b+ a, we again use the same inequality strategy to determine our valid values for a and b.

ab− a− b+ 1

2
≤ a+ 2b

b ≤ 3a− 1

a− 5

Our inequality tells us that a ≥ 6, and in plugging in a = 6 we get that b ≤ 17. For a = 7 we get that b ≤ 10.
For a = 8 we have no valid values for b.
After running a program to check all the possible semigroups with these characteristics, there were none with
ρ2(S) < 4. We can now conclude that for any g(S) ≤ c ≤ F (S) we will find no semigroups with ρ2 < 4.

Lemma 3.25. Suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup where x, y, and z are
pairwise coprime. If ρ2(S) = 3, then exactly one atom is even.

Proof. Suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup where x, y, and z are pairwise
coprime. Also suppose that ρ2(S) = 3. If there are more than two even atoms, then two atoms share a
common factor greater than 2. BWOC suppose all atoms are odd. Since the sum of any two atoms is even,
ρ2(S) must be even. Therefore exactly one atom is even.

By Lemma 3.25 we will write our semigroup as S = 〈2x′, 2y′+ 1, 2z′+ 1〉 where y and z are both odd and
y < z. The following Lemma will characterize all symmetric semigroups of embedding dimension 3 where
the even generator is 4.

Lemma 3.26. Suppose S = 〈4, y, z〉 is a minimally generated numerical semigroup where 4, y, and z are
pairwise coprime. ρ2(S) = 3 if and only if y = 3 and z = 5 or y = 5 and z = 7.
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Proof. Suppose S = 〈4, y, z〉 is a minimally generated numerical semigroup where 4, y, and z are pairwise
coprime. By Lemma 3.25 y and z are both odd. Thus y = 2y′ + 1 and z = 2z′ + 1. WLOG let y′ < z′.

(⇒) Suppose ρ2(S) = 3. Since 3 ≤ y < z (y = 1 is impossible), then x < z. We do not need to check the
factorization (1, 1, 0). This leaves 5 factorizations. Let (j, k, l) be the semigroup element j(x) + k(y) + l(z),
and let [(j, k, l)] = [k + l] be the residue modulo 2.

[(1, 0, 1)] = [1] = [k] = [(0, k, 0)] which implies that k = 3. (3)

[(0, 1, 1)] = [0] = [0] = [(j, 0, 0)] which implies that j = 2 or 3. (4)

[(2, 0, 0)] = [0] = [k + l] = [(0, k, l)] which implies that k = l = 1 (covered in case above).

[(0, 2, 0)] = [0] = [l] = [(j, 0, l)] which implies that l = 2 and j = 1. This is impossible since 2y < 2z.

[(0, 0, 2)] = [0] = [k] = [(j, k, 0)] which implies that k = 2 and j = 1. (5)

From (3), we get 4 + z = 3y. Simplifying, we get 3y′ = z′ + 1. This means that our semigroup is
〈4, 2y′ + 1, 6y′ − 1〉. We can see that (0, 0, 2) = 2(6y′ − 1) = 4(2y′ − 1) + (2y′ + 1)2 = (2y′ − 1, 2, 0). Hence
ρ2 ≥ 2y′ + 1, so the only possible values are y = 3 and z = 5

From (4), we get the two equations y + z = 8 and y + z = 12. The first equation can be ignored since
it gives back the possibility for ρ2 = 2. For the second equation, we have the possibilities y = 3 and z = 11
and y = 5 and z = 7. The semigroup 〈3, 4, 11〉 has ρ2 = 7, 2 · 11 = 4 + 6 · 3.

From (5), we get 2z = 2y + x. Simplifying, we get z′ = y′ + 1. This means that our semigroup is
〈4, 2y′ + 1, 2y′ + 3〉. We can see that (0, 1, 1) = 4y′ + 4 = 4(y′ + 1). Hence ρ2 ≥ y′ + 1, so the possible values
are y = 3 and z = 5 and also y = 5 and z = 7.

(⇐) Suppose S = 〈3, 4, 5〉. By Corollary 3.3, ρ2(S) = 3. Now suppose S = 〈4, 5, 7〉. By Lemma 3.6,
ρ2(S) ≤ 3 but (0, 1, 1) = 5 + 7 = 3 ∗ 4 = (3, 0, 0). Therefore ρ2(S) = 3.

The following theorem will characterize all numerical semigroups for dimension 3 that are pairwise coprime
such that the even generator is at least 6. Combined with the last Lemma 3.26 we have completed the
characterization.

Theorem 3.27. Suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup where x, y, and z are
pairwise coprime, x = 2x′ is even, and x′ ≥ 3. ρ2(S) = 3 if and only if S is of one of the following forms

1. y = 6λ + 1 and z = 2x′−2
3 + 2λ + 1 where λ ∈ {1, 2, . . . , bx

′−4
6 c}, gcd(x′, 6λ + 1) = 1, and x′ ≡ 1

(mod 3), or

2. y = 6λ + 5 and z = 2x′+2
3 + 2λ + 1 where λ ∈ {1, 2, . . . , bx

′−6
6 c}, gcd(x′, 6λ + 5) = 1, and x′ ≡ 2

(mod 3), or

3. y = 2x′−2
3 + 2λ+ 1 and z = 6λ+ 1 where gcd(x′, 6λ+ 1) = 1, x′ ≡ 1 (mod 3), and λ ≥ (bx

′

6 c+ 1), or

4. y = 2x′+2
3 + 2λ+ 1 and z = 6λ+ 5 where gcd(x′, 6λ+ 5) = 1, x′ ≡ 2 (mod 3), and λ ≥ bx

′+1
6 c, or

5. y = 2λ+ 7 and z = 6x′− (2λ+ 7) where λ ∈ {0, . . . , (b 3x
′−4
2 c−2)}, 3 - (λ+ 2), and gcd(x′, 2λ+ 7) = 1,

or

6. y = 2λ+ 5 and z = x′ + 2λ+ 5 where λ ≥ 0 and gcd(x′, 2λ+ 5) = 1.

Proof. Suppose S = 〈x, y, z〉 is a minimally generated numerical semigroup where x, y, and z are pairwise
coprime and x ≥ 6. From Lemma 3.25 we can write x = 2x′, y = 2y′ + 1, and z = 2z′ + 1. Also, WLOG let
y′ < z′.

(⇒) Suppose that ρ2(S) = 3. We must check all six pairwise factorizations. Let (j, k, l) be the semigroup
element j(x) +k(y) + l(z), and let [(j, k, l)] = [k+ l] be the residue modulo 2. We will consider each pairwise
sum of atoms and its supposed longest factorization.
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[(1, 1, 0)] = [1] = [l] = [(0, 0, l)] which implies that l = 3. (6)

[(1, 0, 1)] = [1] = [k] = [(0, k, 0)] which implies that k = 3. (7)

[(0, 1, 1)] = [0] = [0] = [(j, 0, 0)] which implies that j = 2 or 3. (8)

[(2, 0, 0)] = [0] = [k + l] = [(0, k, l)] which implies that k = l = 1 (covered in case above).

[(0, 2, 0)] = [0] = [l] = [(j, 0, l)] which implies that l = 2 and j = 1. This is impossible since 2y < 2z.

[(0, 0, 2)] = [0] = [k] = [(j, k, 0)] which implies that k = 2 and j = 1. (9)

From (6), we get the equation x+y = 3z. Simplifying, we get x′+y′ = 3z′+ 1. Note this is only possible
when z′ < x′. Since 3(z) ≡ 0 (mod 3), x + y ≡ 0 (mod 3). If x ≡ 0 (mod 3), then y ≡ 0 (mod 3). This
cannot happen or else gcd(x, y) > 1. So now we have two cases.

Case 1: x = 2 and y = 1 modulo 3
Then we have x′ = 1 and y′ = 0 modulo 3. This is also the same as saying x′−1

3 is an integer and y′ = 3λ

for some λ ≥ 0. We substitute y′ into our z′ equation above and get z′ = x′−1
3 + λ. We know that λ ≥ 0,

but we want to show that 1 ≤ λ ≤ bx
′−4
6 c.

BWOC Suppose that λ = 0, then y = 1 which contradicts our minimality restriction. So 1 ≤ λ.
BWOC Suppose that λ = bx

′−4
6 c + k for some k ≥ 1. Choose c to be the smallest non-negative integer

such that 6|(x′ − 4− c). This bounds c ∈ {0, 3}. Then we can say that bx
′−4
6 c = x′−4−c

6 .

y′ = 3λ+ 2 <
x′ + 1

3
+ λ = z′

2

(
x′ − 6− c

6
+ k

)
+ 2 <

x′ + 1

3

6k 6< 1 + c

Therefore λ ≤ bx
′−4
6 c. Also, since y = 2(3λ+ 2) + 1 = 6λ+ 5, x′ - 6λ+ 5.

Case 2: x = 1 and y = 2 modulo 3
Then we have x′ = 2 and y′ = 2 modulo 3. This is also the same as saying x′+1

3 is an integer and y′ = 2 + 3λ

for some λ ≥ 0. We substitute y′ into our z′ equation above and get z′ = x′+1
3 + λ. We know that λ ≥ 0,

but now we want to show that 1 ≤ λ ≤ bx
′−6
6 c.

BWOC Suppose that λ = 0, then y = 5 and z = 2x′+5
3 . Consider the factorization

(2, 0, 0) = 4x′ =
2x′ + 5

3
+ 5

(
2x′ + 5

3
− 2

)
= (0, z − 2, 1).

Since z > 5, ρ2(S) = z − 1 > 4 which is a contradiction.

BWOC Suppose that λ = bx
′−6
6 c + k for some k ≥ 1. Choose c to be the smallest non-negative integer

such that 6|(x′ − c). This bounds c ∈ {2, 5}. Then we can say that bx
′−6
6 c = x′−6−c

6 .

y′ = 3λ+ 2 <
x′ + 1

3
+ λ = z′

2

(
x′ − 6− c

6
+ k

)
+ 2 <

x′ + 1

3

6k 6< 1 + c

Therefore λ ≤ bx
′−4
6 c. Also, since y = 2(3λ+ 2) + 1 = 6λ+ 5, x′ - 6λ+ 5.

From (7), we get the equation x+ z = 3y. Simplified we get x′ + z′ = 3y′ + 1. Since 3(y) ≡ 0 (mod 3),
x + z ≡ 0 (mod 3). If x ≡ 0 (mod 3), then z ≡ 0 (mod 3). This cannot happen or else gcd(x, z) > 1. So
now we have two cases.

Case 1: x = 2 and z = 1 modulo 3
Then we have x′ = 1 and z′ = 0 modulo 3. This is also the same as saying x′−1

3 is an integer and z′ = 3λ
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for some λ ≥ 0. We substitute z′ into our y′ equation above and get y′ = x′−1
3 + λ. Now we will show that

λ ≥ (bx
′

6 c+1). Choose c to be the smallest non-negative integer such that 6|(x′− c). This bounds c ∈ {1, 4}.
Then we can say that bx

′

6 c = x′−c
6 .

BWOC Suppose λ = bx
′

6 c+ 1− k = x′−c
6 + 1− k for some k > 0. We find that

z′ = 3

(
x′ − c

6
+ 1− k

)
>
x′ + 1

3
+

(
x′ − c

6
+ 1− k

)
= y′

2

(
x′ − c

6
+ 1− k

)
>
x′ + 1

3

x′ + 6− c− 6k > x′ + 1

5 6> 6k + c

Therefore, λ ≥ bx
′+1
6 c. Since z = 2(x′ + 3λ) + 1 = 2x′ + 3(2λ+ 1), x′ - 2λ+ 1.

Case 2: x = 1 and z = 2 modulo 3
Then we have x′ = 2 and z′ = 2 modulo 3. This is also the same as saying 2x′−1

3 is an integer and z′ = 3λ+2

for some λ ≥ 0. We substitute z′ into our y′ equation above and get y′ = x′+1
3 + λ. Now we will show that

λ ≥ bx
′+1
6 c. Choose c to be the smallest non-negative integer such that 6|(x′+1−c). This bounds c ∈ {0, 3}.

Then we can say that bx
′+1
6 c = x′+1−c

6 .

BWOC Suppose λ = bx
′+1
6 c − k = x′+1−c

6 − k for some k > 0. We find that

z′ = 3

(
x′ + 1− c

6
− k
)

+ 2 >
x′ + 1

3
+

(
x′ + 1− c

6
− k
)

= y′

2

(
x′ + 1− c

6
− k
)

+ 2 >
x′ + 1

3

x′ + 1− c− 6k + 6 > x′ + 1

6 6> 6k + c

Therefore, λ ≥ bx
′+1
6 c. Since z = 2(x′ + 3λ) + 1 = 2x′ + 3(2λ+ 1), x′ - 2λ+ 1.

From (8), we get the two equations y + z = 2x and y + z = 3x. For the first equation, y < x < z must
hold and we must have an arithmetic sequence of the form (y, y + d, y + 2d) by Corollary 3.11. The only
arithmetic sequence with one even number and ρ2 = 3 is 〈3, 4, 5〉 by Corollary 3.3.

For the second equation, since 3(x) ≡ 0 (mod 3), z + y ≡ 0 (mod 3). If y ≡ 0 (mod 3), then z ≡ 0
(mod 3). This cannot happen or else gcd(y, z) > 1, thus y′ 6= 1. Suppose y′ = 2, so y = 5. We then
have the semigroup 〈5, x, 3x − 5〉. I claim that this semigroup has ρ2 > 3. Consider (0, 0, 2) = 2(3x − 5) =
x+5(x−2) = (x−2, 1, 0). Since x > 6, ρ2 > 3. Therefore y′ ≥ 3. We can write y′ = 3+λ and z′ = 3x′−4−λ
for some λ ≥ 0. Now we must show that λ ≤ b 3x

′−4
2 c − 2. BWOC Suppose λ = b 3x

′−4
2 c − 2 + k for some

k ≥ 1. Choose c to be the smallest non-negative integer such that 2|(3x′ − 4 − c). This bounds c ∈ {0, 1}.
Then we can say that b 3x

′−4
2 c = 3x′−4−c

2 .

y′ = 3− 2 + k +
3x′ − 4− c

2
< 3x′ − 4 + 2− k − 3x′ − 4− c

2
= z′

y = (2 + 2k + 3x′ − 4− c) + 1 < (6x′ − 4− 2k − 3x′ + 4 + c) + 1 = z

2k + 3x′ − c− 1 < −2k + 3x′ + c+ 1

4k 6< 2c+ 2

Therefore λ ≤ b 3x
′−4
2 c. Also, since y = 2(3 + λ) + 1 = 2λ+ 7 = 2(λ+ 2) + 3 and z = 2(3x′ − 4− λ) + 1 =

3(2x′)− 2(λ+ 2)− 3, x′ - 2λ+ 7 and 3 - λ+ 2.
From (9), we get the equation 2z = 2y + x. This simplifies to 2z′ = 2y′ + x′, thus x′ must be even.

BWOC Suppose y′ = 1. Then we have the semigroup 〈3, 2x′, 3 + x′〉. I claim that ρ2 > 3. Consider
(0, 1, 1) = 2x′+3+x′ = 3(1+x′) = (x′+1, 0, 0). Since x′ ≥ 3, ρ2 > 3. Hence y′ ≥ 2. We can write y′ = 2+λ

and z′ = x′

2 + 2 + λ for some λ ≥ 0. Since y = 2λ+ 5, x′ - 2λ+ 5.
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(⇐) For the backwards direction, we will take each of the six cases and show that the numerical semigroup
has ρ2 = 3. This will be done by showing at least one factorization has a length of 3, and that all other
factorizations are unique.

Case I:
Suppose y = 6λ + 1 and z = 2x′−2

3 + 2λ + 1 where λ ∈ {1, 2, . . . , bx
′−4
6 c}, gcd(x′, 6λ + 1) = 1, and x′ ≡ 1

(mod 3). So our semigroup is 〈6λ+ 1, 2x
′+6λ+1

3 , 2x′〉. Choose c to be the smallest non-negative integer such

that 6|(x′−4−c). This bounds c ∈ {0, 3}. Then we can say that bx
′−4
6 c = x′−4−c

6 and 6λ+1 ≤ x′−3−c < x′.

We can eliminate (1, 1, 0) and (2, 0, 0) because 2x′+6λ+1
3 < 2x′+x′

3 < 2x′. Now we will show that a factorization
has length three, (1, 0, 1) = (0, 3, 0).

2x′ + 6λ+ 1 = 3

(
2x′ + 6λ+ 1

3

)
It will be shown that the other 3 factorizations are unique. Let (j, k, l) be the semigroup element j(x) +
k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] = [j] = [(j, 0, 0)]. We

must have j ≥ 3. Hence (0, 1, 1) = 2x′ + 2x′+6λ+1
3 = j(6λ+ 1) = (j, 0, 0). The equation can be simplified to

23x′ = (3j − 1)(6λ+ 1). Since 6λ+ 1 is odd, 23 | 3j − 1. This means that x′ | 6λ+ 1, a contradiction. Thus
(1, 1, 0) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [j] = [(j, 0, l)]. We

must have j ≥ 2 and l = 1. Hence (0, 2, 0) = 2(2x′+6λ+1)
3 = j(6λ + 1) = 2x′ = (j, 0, 1). This simplifies to

4x′ + 2(6λ+ 1) = 3j(6λ+ 1) + 6x′. With j ≥ 2 it is easy to tell that the (0, 2, 0) < (j, 0, l). Thus (0, 2, 0) is
a unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [k] = [(j, k, 0)]. We
must have k ≥ 2 and j ≥ 1 be odd. Hence

(0, 0, 2) = 4x′ = j(6λ+ 1) +
k(2x′ + 6λ+ 1)

3
= (j, k, 0)

(12− 2k)x′ = (3j′ + k)(6λ+ 1)

Remembering that 6λ+ 1 < x′ we get (12− 2k)x′ < (3j′ + k)x′, so 4 < j + k. This means that the smallest
values are j = 1 and k = 5. When k = 5, we get that x | 6λ+1. When k ≥ 6, we find that (0, 0, 2) < (j, k, 0).
Thus (0, 0, 2) is a unique factorization.

Therefore ρ2(〈6λ+ 1, 2x
′+6λ+1

3 , 2x′〉) = 3.
Case II:

Suppose y = 6λ + 5 and z = 2x′+2
3 + 2λ + 1 where λ ∈ {1, 2, . . . , bx

′−6
6 c}, gcd(x′, 6λ + 5) = 1, and x′ ≡ 2

(mod 3). So our semigroup is 〈6λ+ 5, 2x
′+6λ+5

3 , 2x′〉. Choose c to be the smallest non-negative integer such

that 6|(x′−c). This bounds c ∈ {2, 5}. Then we can say that bx
′−6
6 c = x′−6−c

6 and 6λ+5 ≤ x′−1−c < x′. We

can eliminate (1, 1, 0) and (2, 0, 0) because 2x′+6λ+5
3 < 2x′+x′

3 < 2x′. Now we can show that a factorization
has length three, (1, 0, 1) = (0, 3, 0).

2x′ + 6λ+ 5 = 3

(
2x′ + 6λ+ 5

3

)
It will be shown that the other 3 factorizations are unique. Let (j, k, l) be the semigroup element j(x) +
k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] = [j] = [(j, 0, 0)]. We

must have j ≥ 3. Hence (0, 1, 1) = 2x′ + 2x′+6λ+5
3 = j(6λ+ 5) = (j, 0, 0). The equation can be simplified to

23x′ = (3j − 1)(6λ+ 5). Since 6λ+ 5 is odd, 23 | 3j − 1. This means that x′ | 6λ+ 5, a contradiction. Thus
(1, 1, 0) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [j] = [(j, 0, l)]. We

must have j ≥ 2 and l = 1. Hence (0, 2, 0) = 2(2x′+6λ+5)
3 = j(6λ + 5) = 2x′ = (j, 0, 1). This simplifies to

4x′ + 2(6λ+ 5) = 3j(6λ+ 5) + 6x′. With j ≥ 2 it is easy to tell that the (0, 2, 0) < (j, 0, l). Thus (0, 2, 0) is
a unique factorization.

21



Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [k] = [(j, k, 0)]. We
must have k ≥ 2 and j ≥ 1 be odd. Hence

(0, 0, 2) = 4x′ = j(6λ+ 5) +
k(2x′ + 6λ+ 5)

3
= (j, k, 0)

(12− 2k)x′ = (3j′ + k)(6λ+ 5)

Remembering that 6λ+ 5 < x′ we get (12− 2k)x′ < (3j′ + k)x′, so 4 < j + k. This means that the smallest
values are j = 1 and k = 5. When k = 5, we get that x | 6λ+5. When k ≥ 6, we find that (0, 0, 2) < (j, k, 0).
Thus (0, 0, 2) is a unique factorization.

Therefore ρ2(〈6λ+ 5, 2x
′+6λ+5

3 , 2x′〉) = 3.
Case III:

Suppose y = 2x′−2
3 + 2λ + 1 and z = 6λ + 1 where gcd(x′, 6λ + 1) = 1, x′ ≡ 1 (mod 3), and λ ≥ bx

′

6 + 1c.
Thus our numerical semigroup is 〈2x′, 2x

′−2
3 + 2λ + 1, 6λ + 1〉. First, we can show that a factorization has

length three, (1, 0, 1) = (0, 3, 0).

2x′ + 6λ+ 1 = 3

(
2x′ − 2

3
+ 2λ+ 1

)
Now it will be shown that the other 5 factorizations are unique. Let (j, k, l) be the semigroup element
j(x) + k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2. Choose c to be the smallest non-

negative integer such that 6|(x′ − c). This bounds c ∈ {1, 4}. Then we can say that bx
′

6 c = x′−c
6 .

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [1] = [l] = [(0, 0, l)]. We

must have l ≥ 3. Hence (1, 1, 0) = 2x′ + 2x′−2
3 + 2λ+ 1 = l(6λ+ 1) = (0, 0, l). Substituting in the smallest

values for l and λ, we will show that (0, 0, l) is still greater than (1, 1, 0).

2x′ +
2x′ − 2

3
+ 2λ+ 1 ≥ l(6λ+ 1)

8x′ ≥ (3l − 1)(6λ+ 5)

8x′ 6≥ 8(x′ + 6− c)

Thus (1, 1, 0) is a unique factorization.
Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] = [2j] = [(j, 0, 0)]. We

must have j ≥ 3. Hence (0, 1, 1) = 2x′−2
3 + 2λ+ 1 + 6λ+ 1 = j2x′ ≤ (j, 0, 0). We will show that x′ | 6λ+ 1

for this to be true.

2x′ − 2

3
+ 2λ+ 1 + 6λ+ 1 = j2x′

2x′ + 24λ+ 4 = 6x′

6λ+ 1 6= jx′

Thus (0, 1, 1) is a unique factorization.
Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [k+ l] = [(0, k, l)]. We

must have k + l ≥ 2 and both be odd numbers, or else the atoms are not minimal. Hence (2, 0, 0) = 4x′ =
k
3 (2x′ − 2) + k(2λ+ 1) + l(6λ+ 1) = (0, k, l). We do not need to consider k = 1 and l = 1, since the length
would be less than 3. Thus we will show and that (2, 0, 0) < (0, k, l) in the second smallest case (and every
other one). Suppose l = 1 and k = 3 and consider the smallest value for λ,

4x′ = 2x′ + 2(6λ+ 1)

x 6≥ x′ + 6− c

Thus (2, 0, 0) is a unique factorization.
Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. We

must have l ≥ 2. Since we know 2y < 2z, then (0, 2, 0) < (j, 0, l). Thus (0, 2, 0) is a unique factorization.
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Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [k] = [(j, k, 0)]. We
must have k ≥ 2 and j ≥ 1 be odd. Hence

(0, 0, 2) = 2(6λ+ 1) = j2x′ +
k

3
(2x′ + 6λ+ 1) = (j, k, 0)

6(6λ+ 1) = 2(3j + k)x′ + k(6λ+ 1)(
3− k

2

)
(6λ+ 1) = (3j + k)x′

We notice that when k ∈ {2, 4}, then gcd(x′, 6λ+ 1) > 1. Also when k > 4, then the equality doesn’t hold.
Thus (0, 0, 2) is a unique factorization.

Therefore ρ2(〈2x′, 2x
′−2
3 + 2λ+ 1, 6λ+ 1〉) = 3.

Case IV:
Suppose y = 2x′+2

3 + 2λ + 1 and z = 6λ + 5 where gcd(x′, 6λ + 5) = 1, x′ ≡ 2 (mod 3), and λ ≥ bx
′+1
6 c.

Thus our numerical semigroup is 〈2x′, 2x
′+2
3 + 2λ + 1, 6λ + 5〉. First, we can show that the factorization

(1, 0, 1) = (0, 3, 0).

2x′ + 6λ+ 5 = 3

(
2x′ + 2

3
+ 2λ+ 1

)
Now it will be shown that the other 5 factorizations are unique. Let (j, k, l) be the semigroup element
j(x) + k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2. Choose c to be the smallest non-

negative integer such that 6|(x′ + 1− c). This bounds c ∈ {0, 3}. Then we can say that bx
′+1
6 c = x′+1−c

6 .
Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [1] = [l] = [(0, 0, l)]. We

must have l ≥ 3. Hence (1, 1, 0) = 2x′ + 2x′+2
3 + 2λ + 1 = l(6λ + 5) = (0, 0, l). Substituting in the smallest

values for l and λ, we will show that (0, 0, l) is still greater than (1, 1, 0).

2x′ +
2x′ + 2

3
+ 2λ+ 1 ≥ l(6λ+ 5)

8x′ ≥ (3l − 1)(6λ+ 5)

8x′ 6≥ 8(x′ + 6− c)

Thus (1, 1, 0) is a unique factorization.
Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] = [2j] = [(j, 0, 0)]. We

must have j ≥ 3. Hence (0, 1, 1) = 2x′+2
3 + 2λ+ 1 + 6λ+ 5 = j2x′ ≤ (j, 0, 0). We will show that x′ | 6λ+ 5

for this to be true.

2x′ + 2

3
+ 2λ+ 1 + 6λ+ 5 = j2x′

2x′ + 24λ+ 20 = 6x′

6λ+ 5 6= jx′

Thus (0, 1, 1) is a unique factorization.
Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [0] = [k+ l] = [(0, k, l)]. We

must have k + l ≥ 2 and both be odd numbers, or else the atoms are not minimal. Hence (2, 0, 0) = 4x′ =
k
3 (2x′ + 2) + k(2λ+ 1) + l(6λ+ 5) = (0, k, l). We do not need to consider k = 1 and l = 1, since the length
would be less than 3. Thus we will show and that (2, 0, 0) < (0, k, l) in the second smallest case (and every
other one). Suppose l = 1 and k = 3 and consider the smallest value for λ,

4x′ = 2x′ + 2(6λ+ 5)

x 6≥ x′ + 6− c

Thus (2, 0, 0) is a unique factorization.
Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [l] = [(j, 0, l)]. We

must have l ≥ 2. Since we know 2y < 2z, then (0, 2, 0) < (j, 0, l). Thus (0, 2, 0) is a unique factorization.
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Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [0] = [k] = [(j, k, 0)]. We
must have k ≥ 2 and j ≥ 1 be odd. Hence

(0, 0, 2) = 2(6λ+ 5) = j2x′ +
k

3
(2x′ + 6λ+ 5) = (j, k, 0)

6(6λ+ 5) = 2(3j + k)x′ + k(6λ+ 5)(
3− k

2

)
(6λ+ 5) = (3j + k)x′

We notice that when k ∈ {2, 4}, then gcd(x′, 6λ+ 5) > 1. Also when k > 4, then the equality doesn’t hold.
Thus (0, 0, 2) is a unique factorization.

Therefore ρ2(〈2x′, 2x
′+2
3 + 2λ+ 1, 6λ+ 5〉) = 3.

Case V:
Suppose y = 2λ+7 and z = 6x′−(2λ+7) where λ ∈ {0, . . . , (b 3x

′−4
2 c−2)}, 3 - (λ+2), and gcd(x′, 2λ+7) = 1.

Thus our numerical semigroup is 〈2x′, 2λ+ 7, 6x′ − (2λ+ 7)〉.
I claim that z > x. We must show that 4x′ > 2λ + 7 for the largest value of λ. Choose c to be the

smallest non-negative integer such that 2|(3x′ − 4 − c). This bounds c ∈ {0, 1}. Then we can say that

b 3x
′−4
2 c = 3x′−4−c

2 . Then 4x′ > 2λ+ 7 simplifies to 4x′ > 3x′ − (1 + c) and since −(1 + c) < 0, z > x. So we
can eliminate the factorization (1, 1, 0). Now, we can show that the factorization (0, 1, 1) = (3, 0, 0).

2λ+ 5 + 6x′ − (2λ+ 5) = 3(2x′)

Now it will be shown that the other 4 factorizations are unique. Let (j, k, l) be the semigroup element
j(x) + k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2λ+ 7.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [8] 6= [0] = [(0, k, 0)] since
2λ+ 7 is odd. Thus (1, 0, 1) is a unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [4] = [6l] = [(0, k, l)]. We
must have 3l ≥ (2λ + 7 + 2), so l ≥ 3. Since x < z, 2x < 3z and hence (2, 0, 0) < (0, 0, 3) ≤ (0, k, l). Thus
(2, 0, 0) is a unique factorization.

Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [2(j + 3l)] = [(j, 0, l)].
We must have j + 3l ≥ 2λ + 7. Consider j = 0, then l ≥ 3 and (0, 2, 0) < (0, 0, 3) ≤ (0, 0, l). Now consider
l = 0, then j ≥ 2λ + 7 and (0, 2, 0) = 2(2λ + 7) < x′(2λ + 7) ≤ (j, 0, 0). Hence (0, 2, 0) < (j, 0, l), a
contradiction. Thus (0, 2, 0) is a unique factorization.

Consider (0, 0, 2) and suppose its longest factorization is (j, k, 0). [(0, 0, 2)] = [12] = [2j] = [(j, k, 0)].
We must have j ≥ 2λ + 7 + 6, so j ≥ 13. Hence (0, 0, 2) = 12x′ − 2(2λ + 7) < 26x′ ≤ (j, k, 0). Thus the
factorization (0, 0, 2) is unique.
Therefore ρ2(〈2x′, 2λ+ 7, 6x′ − (2λ+ 7)〉) = 3.

Case VI:
Suppose y = 2λ + 5 and z = x′ + 2λ + 5 where gcd(x′, 2λ + 5) = 1. Thus our numerical semigroup is
〈2x′, 2λ+ 5, x′ + 2λ+ 5〉. Note that if x′ must be even, or else z would be even. First, we can show that the
factorization (0, 0, 2) = (1, 2, 0).

2(x′ + 2λ+ 5) = 2x′ + 2(2λ+ 5)

Now it will be shown that the other 5 factorizations are unique. Let (j, k, l) be the semigroup element
j(x) + k(y) + l(z), and let [(j, k, l)] = [k + l] be the residue modulo 2λ+ 5.

Consider (1, 1, 0) and suppose its longest factorization is (0, 0, l). [(1, 1, 0)] = [2] = [l] = [(0, 0, l)]. We
must have l ≥ (2λ + 5 + 2). Hence (1, 1, 0) = 2x′ + 2λ + 5 < 2x′ + (2λ + 5)(x′ + 2λ + 7) ≤ (0, 0, l), a
contradiction. Thus (1, 1, 0) is a unique factorization.

Consider (1, 0, 1) and suppose its longest factorization is (0, k, 0). [(1, 0, 1)] = [3] 6= [0] = [(0, k, 0)] since
2λ+ 5 ≥ 5. Thus (1, 0, 1) is a unique factorization.

Consider (0, 1, 1) and suppose its longest factorization is (j, 0, 0). [(0, 1, 1)] = [1] = [2j] = [(j, 0, 0)]. We
must have 2j ≥ (2λ+ 5 + 1). Hence (0, 1, 1) = x′ + 2(2λ+ 5) < x′ + x′(2λ+ 5) ≤ (j, 0, 0). Thus (0, 1, 1) is a
unique factorization.

Consider (2, 0, 0) and suppose its longest factorization is (0, k, l). [(2, 0, 0)] = [4] = [l] = [(0, k, l)]. We
must have l ≥ (2λ + 5 + 4). Hence (2, 0, 0) = 4x′ < 4x′ + (2λ + 5)x′ ≤ (0, k, l). Thus (2, 0, 0) is a unique
factorization.
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Consider (0, 2, 0) and suppose its longest factorization is (j, 0, l). [(0, 2, 0)] = [0] = [2j+ l] = [(j, 0, l)]. We
must have 2j+ l ≥ (2λ+5). Consider j = 0, then (0, 2, 0) = 2(2λ+5) < (2λ+5)(x′+2λ+5) ≤ (0, 0, l). Now
consider l = 0, then (0, 2, 0) = 2(2λ + 5) < x′(2λ + 5) ≤ (j, 0, 0). Hence (0, 2, 0) < (j, 0, l), a contradiction.
Thus (0, 2, 0) is a unique factorization.
Therefore ρ2(〈2x′, 2λ+ 5, x′ + 2λ+ 5〉) = 3.

Corollary 3.28. For case 1, given some x′ = 4 + 3n, the number of possible semigroups will be given by the
formula bn2 c

Corollary 3.29. For case 2, given some x′ = 5 + 3n, the number of possible semigroups will be given by the
formula bn−12 c

Corollary 3.30. For case 5, given an x′, the number of possible semigroups is given by the formula b 3(x
′−2)
2 c

3.4.1 Maximizing ρ2(S) for Non-symmetric semigroups in embdedding dimension 3

Here we analyze non-symmetric semigroups of embedding dimension 3, and show where the maximum ρ2(S)
occurs, and provide a simple formula to calculate the value.

Lemma 3.31. For numerical semigroups of the form S = 〈a, b, ab−a−b〉, where 3 ≤ a < b and gcd(a, b) = 1,
ρ2(S) = a+ b− 4.

Proof. To show that ρ2(S) = a+ b−4, we must first determine all of the possible factorizations for combina-
tions of two generators of numerical semigroups meeting the above conditions, and then show that a+b−4 is
the largest possible factorization. We begin by noting that the factorizations (2, 0, 0) and (1, 1, 0) are unique
for any numerical semigroup, and will not be considered since they give the smallest possible factorization
of 2.
Let (r, s, t) denote the factorization for the semigroup element n = r(a) + s(b) + t(ab − a − b), and let
[(r, s, t)] = [ra− ta] denote the equivalence class of any factorization modulo b.
Looking at the four remaining combinations of two generators, we determine what equivalence class they
belong to in order to find out whether any different combinations can produce the same n as listed below:
[(0, 2, 0)] = [0]
[(0, 1, 1)] = [−a]
[(1, 0, 1)] = [0]
[(0, 0, 2)] = [−2a]
Because [(0, 2, 0)] = [0] = [(1, 0, 1)], we can set each factorization equal to each other to determine whether
the factorization is in fact possible.

2b ≡ (a+ ab− a− b) mod b

2b ≡ (ab− b) mod b

3b ≡ ab mod b

0 ≡ 0 mod b

So now we can infer that the two different combinations can produce the same n in some instances.
We will now look at each of the four factorizations listed above and determine their uniqueness and/or max
lengths.
Factorization 1: (0, 2, 0) = (r, 0, 0), (r, 0, 1)
In the case of (0, 2, 0) = (r, 0, 0), we can solve the congruence involving their equivalence classes to determine
whether the factorization is possible as seen below:

2b ≡ ra mod b

0 ≡ ra mod b

0 ≡ r mod b gcd(a, b) = 1
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This implies that for k ∈ Z+ there should be a solution when r = bk. Upon checking k = 1 we can see that
the result does not hold as we get the equation:

2b = ba

We can observe that 2b < ab given a ≥ 3, so this factorization is not possible.
For (0, 2, 0) = (r, 0, 1), we can again solve the congruence involving their equivalence classes as seen below:

0 ≡ (ra− a) mod b

0 ≡ a(r − 1) mod b

0 ≡ (r − 1) mod b

r ≡ 1 mod b =⇒ r = bk + 1, k ∈ Z+

Plugging in the first possible value for r into our equation yields:

2b = (b+ 1)a+ ab− a− b
3b = 2ab

Since a ≥ 3 we can see the equation has no solutions and thus the factorization of (0, 2, 0) is unique.
Factorization 2: (0, 1, 1) = (r, 0, 0)
For (0, 1, 1) = (r, 0, 0) we obtain the equation:

b+ ab− a− b = ar

a(b− 1) = ar

r = b− 1

We can see that this factorization is possible for b− 1 multiples of the first generator.
Factorization 3: (1, 0, 1) = (0, s, 0)
Equating the two factorizations we get:

a+ ab− a− b = sb

ab− b = sb

(a− 1) = s

So when s = (a− 1) we have a possible factorization of length (a− 1).
Factorization 4: (0, 0, 2) = (r, 0, 0)
Using the equivalence classes mod b for the factorization we can set up a congruence to obtain:

−2a ≡ ra mod b

−2 ≡ r mod b

r + 2 ≡ 0 mod b

We can see that r = bk+ 2, k ∈ Z+, and we will try plugging in the first possible value into the factorization
and equate the two to get:

2ab− 2a− 2b = (bk − 2)a

2ab− 2b = abk

ab(2− k) = 2b

We see that the only possible value of k is k = 1, and since a ≥ 3 the equation has no solution and thus this
is not a factorization of (0, 0, 2).
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For (0, 0, 2) = (0, s, 0), we equate the two factorizations and then compare their equivalence classes modulo
a as seen below:

2ab− 2a− 2b = sb

2ab− 2a = sb+ 2b

2a(b− 1) ≡ b(s+ 2) mod a

0 ≡ b(s+ 2) mod a

0 ≡ (s+ 2) mod a

This implies that s = ak − 2, k ∈ Z+, and by plugging in s = ak − 2 when we equate factorizations we get:

2ab− 2a− 2b = (ak − 2)b

2ab− 2a = abk

ab(2− k) = 2a

It is obvious that the only possible value of k is k = 1, and since 3 ≤ a < b, we can see that the equation
has no solutions and so this factorization cannot occur.
For (0, 0, 2) = (r, s, 0) we once again compare the equivalence classes of the factorizations modulo b to obtain:

−2a ≡ ra mod b

(r + 2) ≡ 0 mod b

This implies that r = bk− 2, k ∈ Z+, and plugging our value for r into the factorization yields the equation:

2ab− 2a− 2b = (bk − 2)a+ sb

2ab− 2b = abk + sb

ab(2− k) = b(s+ 2)

Because k can only equal 1, we see that our s+ 2 must equal a, and therefore s = a− 2. So in order for our
factorization to occur, we need r = b− 2 and s = a− 2, which gives us a length of a+ b− 4.
To show that this is the longest length we merely need to show that it is greater than or equal to b − 1,
which can be demonstrated by the following inequality:

b+ a− 4 ≥ b− 1

a ≥ 3

We can see this is consistent with our condition stated earlier in the proof, and therefore ρ2(S) = a+ b− 4
For all S = 〈a, b, ab− a− b〉.

Theorem 3.32. Let S = 〈a, b〉 be a numerical semigroup such that a and b are coprime and a ≥ 3. Let c
be a natural such that c /∈ 〈a, b〉 (with c > b). Let T (S) = 〈a, b, c〉, then we have that ρ2(S) ≤ a+ b− 4, and
equality can be achieved when c is the Frobenius number of 〈a, b〉.

Proof. Let t be one of the following 2a, a+ b, a+ c, 2b, b+ c. Then we have L(t) ≤ a+ b− 4. To see this we
use the bound L(t) ≤ t

a .

t = 2a : L(t) ≤ 2.

t = a+ b : L(t) ≤ 1 + b/a.

t = a+ c : L(t) ≤ (a + c)/a, but note that c /∈ 〈a, b〉 implies that c ≤ ab − a − b, so this implies L(t) ≤ b − b
a ,

but this is less than a+ b− 4.

t = 2b : L(t) ≤ 2b
a ≤

2b
3 but this is less or equal to a+ b− 4.

t = b+ c : L(t) ≤ b+c
a ≤

b+ab−a−b
a = b− 1 which is less or equal to a+ b− 4.
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Hence, it remains to prove that L(2c) ≤ a+ b− 4 and that equality can be obtained. First of all note that
if we let c = ab − a − b (the Frobenius number of 〈a, b〉), then we have 2c = (b − 2)a + (a − 2)b, so we
see that a + b − 4 can be obtained. To show this is the maximum let c be any natural not in 〈a, b〉. Since
〈a, b〉 is a symmetric numerical semigroup, we have that c is of the from ab− a− b− (t1a + t2b) with t1, t2
natural numbers (i.e, the Frobenius number minus an element in the monoid). Now say 2c = Aa+Bb where
A+B = L(2c). We have the following:

2(ab− a− b− t1a− t2b) = Aa+Bb (10)

looking at the equation modulo a:

−2b− 2t2b ≡ Bb (mod a) =⇒ −2− 2t2 ≡ B (mod a)

ergo, B + 2 + 2t2 = ma for m a natural number. Multiplying by b and moving terms around we obtain
Bb+ 2t2b = mab− 2b. Plugging into (1):

2ab−2a−2b−2t1a = Aa+Bb+2t2b =⇒ 2ab−2a−2b−2t1a = Aa+mab−2b =⇒ 2ab−2a−2t1a = Aa+mab

hence, −2 − 2t1 = A + b(m − 2). If m ≥ 2 we see that the RHS is positive and the LHS is negative, a
contradiction. Also, m = 0 is not possible. Note m = 1 would give: B + 2t2 = a− 2. Plugging back into (1)
and solving we get A = b− 2− 2t1. Hence, A+B = a+ b− 4− 2t1 − 2t2 ≤ a+ b− 4, just as desired.

In analyzing data for embedding dimensions 4 and 5, the addition of the frobenius number as the last
generator of the semigroup continued to produce the maximum value for ρ2(S), although the addition of
more generators seems to produce less of an obvious pattern. Because the frobenius number plus any
generator in the semigroup produces a value which can be expressed in terms of the other generators in
the semigroup, I conjecture that this will always be the case for Non-Symmetric semigroups regardless of
embedding dimension. Note that the maximum value of ρ2(S) is not necessarily unique.

Conjecture 3.33. Let S = 〈n1, n2, . . . , nx−1〉, where n1 < n2 < . . . < nx−1 < nx and gcd(ni, nj) = 1, i 6=
j, 1 ≤ i, j ≤ x. Then for T = 〈n1, n2, . . . , nx−1, nx〉, ρ2(T ) is maximal when nx = F (S).

3.5 ρk for Modified General Arithmetic sequences

Now we will work on the numerical semigroup S′ ⊆ S where S is generated by a generalized arithmetic
sequence a, ah + d, ..., ah + xd where 1 ≤ n ≤ x − 1. Notice that if you were to remove either the first or
the last generators, then we would just be changing arithmetic sequences which is not very interesting. S′ is
the semigroup formed by removing one of the middle generators, i.e. S′ = 〈a, ah+ d, . . . , ah+ (n− 1)d, ah+
(n + 1)d, . . . , ah + xd〉 where 1 ≤ n ≤ x − 1. In this section we will show that when we remove a middle
generator ρk(S′) will either be the same or change in a simple manner. Note that we impose the condition
1 < x < a , otherwise we get relations on the generators, also we suppose that gcd(a, d) = 1, otherwise we
can factor their common divisor.

Say we have an element t that can be written as k atoms. Say we have N copies of a, and (k−N) copies
of the other atoms. Hence, we can write

t = Na+ (k −N)ah+

(
k−N∑
i=1

βi

)
d

Let (A0, A1, ..., Ax) be it’s longest factorization. Then we have:

t = A0a+A1(ah+ d) + ...+Ax(ah+ xd)

let k1 = A0 + h
∑x
i=1Ai and let k2 =

∑x
i=1 iAi. Then we have,

t = k1a+ k2d

Looking at the equation modulo d, we have that

Na+ (k −N)ah ≡ k1a (mod d)
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canceling a, we obtain that k1 = N + (k −N)h+ sd for some s ∈ Z. Then note that

k1 = L(t) + (h− 1)

x∑
i=1

Ai

this implies that

L(t) = k1 − (h− 1)

x∑
i=1

Ai = N + (k −N)h+ sd− (h− 1)

x∑
i=1

Ai = kh+ sd+ (1− h)(N +

x∑
i=1

Ai) (11)

Lemma 3.34. Let a ≤ kx and define n = a
⌊
kx
a

⌋
. Then k ≤ n.

Proof. We do it by cases:

Case k ≤ kx− a : In this case the conclusion follows trivially since k < kx − a < a(kxa − 1) ≤ a
⌊
kx
a

⌋
, where the last

inequality always holds since kx ≤ a
⌊
kx
a

⌋
+ a is equivalent to it.

Case k > kx− a : Proceed by contradiction and say that n = a
⌊
kx
a

⌋
< k. We have that a ≤ n since a ≤ kx, so we have

k ≥ a. Also we have that k > kx− a, so a > k(x− 1) ≥ k. Ergo, k ≥ a > k which is a contradiction.

Lemma 3.35. Assume that a > kx, then

kh− (h− 1)(N +

x∑
i=1

Ai) ≤ (h− 1)

⌊
−k
x

⌋
+ kh

Proof. It is enough to show

x(N +

x∑
i=1

Ai) ≥ k

since this is equivalent to −N −
∑x
i=1Ai ≤

⌊−k
x

⌋
and multiplying by (h− 1) and adding kh gives the result.

Recall from above that k2 =
∑x
i=1 iAi and it is also equal to

∑k−N
i=1 βi − sa. We also have,

k −N ≤
k−N∑
i=1

βi =⇒ k −N − sa ≤
k−N∑
i=1

βi − sa

hence,

k −N − sa ≤
x∑
i=1

iAi =⇒ k ≤
x∑
i=1

iAi + sa+N

since s ≤ 0 we have:

k ≤
x∑
i=1

iAi +N ≤ x(

x∑
i=1

Ai +N)

Now we are ready for our theorem:
Theorem 3.2 is used for reference in Theorem 3.36.

Theorem 3.36. Let S and S′ be defined as above. Then ρk(S) = ρk(S′) except if kx ≡ 1 (mod a) and
n = x− 1, then

ρk(S) = (k − 1)h+

(
kx− 1

a

)
d+ 1.
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Proof. Most of the work has already been done. We will use the conditions on k to create bounds for s, and
apply them to equation (10).
Let a ≤ kx. Note that equation (10) can be improved to:

L(t) ≤ kh+ sd

we also have that

k2 =

(
k−N∑
i=1

βi

)
− sa

Note that k2 ≥ 0, so we have that: (
k−N∑
i=1

βi

)
≥ sa

since βi ≤ x we have:

sa ≤ kx =⇒ s ≤
⌊
kx

a

⌋
Hence,

L(t) ≤ kh+

⌊
kx

a

⌋
d

In our subcases for a ≤ kx we will consider the element: kah + md where m is the greatest integer
less than or equal to kx which is also a multiple of a (i.e, m = abkxa c). From Lemma 3.34 we know that
k ≤ m ≤ kx. Now choose c to be the smallest non-negative integer such that a | kx − c. Then we can say
that ⌊

kx

a

⌋
=
kx− c
a

and furthermore m = kx− c. We will split this up into 4 cases. c = 0, c = 1, 2 ≤ c ≤ k − 2, and c = x− 1.
It is sufficient to show that if we can write m in terms of any k numbers 1 ≤ ij ≤ x such that ij 6= n (for

j = 1, 2, . . . , k), then ρk will not change.
Suppose

∑
ij = m. Then let

t = (ah+ i1d) + ...+ (ah+ ikd) = kah+md = a(kh+
m

a
d) = a

(
kh+

⌊
kx

a

⌋
d

)
Hence, we see that ρk(S) = kh+

⌊
kx
a

⌋
d.

Case c = 0
Then m = kx and n < x so, we are done.

Case c = 1
Then m = kx − 1, and also a | kx − 1. One factorization is m = (k − 1)x + (x− 1). However, I claim that
this is the only factorization of m. Suppose n = x−1. If one number is below x−1, we reach

∑
ij < kx−1.

If all are above x− 1, we get kx > kx− 1. Thus consider

t = k(ah+ xd) = a(kh) + (kx)d = a(k − 1)h+ (kx− 1)d+ ah+ d = a

(
(k − 1)h+

d(kx− 1)

a

)
+ (ah+ d)

Whence, in this case we see that ρ2(S) = (k − 1)h+
(
kx−1
a

)
d+ 1.

Case 2 ≤ c ≤ x− 2
Thus m = kx− c. Consider the following factorization

m = (x− l1) + (x− l2) + · · ·+ (x− lk)

where c =
∑
lj and b ck c ≤ l1 ≤ · · · ≤ lk ≤ x− 2. If n = x− li, then we will rewrite using

(x− (li − 2)) + (x+ li) = 2(x− (li − 1)) or (x− (li + 2)) + (x+ li) = 2(x− (li + 1)).

30



Hence, we have guaranteed a factorization for m, so ρk remains unchanged.
Case c = kx− 1

Then m = k, and also a | k. So k = pa for some p ∈ Z+. We notice that

k(ah+ xd) = a

(
kh+

kx

a
d

)
.

Hence, regardless of n, ρk remains unchanged.
Assume now that a > kx. From above we see that s ≤ 0. Then,

L(t) = N + (k −N)h+ sd− (h− 1)

x∑
i=1

Ai ≤ kh− (h− 1)(N +

x∑
i=1

Ai) ≤ (h− 1)

⌊
−k
x

⌋
+ kh

the last inequality follows from Lemma 3.35. Now to show that this is attainable consider the following two
constructions which arise from the fact that⌊

−k
x

⌋
=

{
−
⌊
k
x

⌋
if x | k

−
⌊
k
x

⌋
− 1 if x - k

Case x | k: Let n =
⌊
k
x

⌋
. Then consider

t = k(ah+ d) = n(ah+ xd) + (k − n)ha

so L(t) ≥ n+ (k − n)h = kh+ (h− 1)(−n) = (h− 1)
⌊−k
x

⌋
+ kh, just as desired.

Case x - k: Write k = n1x+ n2 where 0 < n2 < x. Note that now
⌊−k
x

⌋
= −n1 −

⌊−n2

x

⌋
= −n1 − 1, so the length

of the factorization in this case should be k+ (h− 1)(k−n1− 1). We write k(ah+ d) = n1(ah+ xd) +
(ah+n2d) + (k−n1− 1)ha. This factorization has length (n1 + 1 + (k−n1− 1)h = (h− 1)

⌊−k
x

⌋
+ kh,

as desired.

Lemma 3.37. Let A,B be sets of positive integers, with gcd(A) = 1 = gcd(B) and A ⊆ B. Then ρk(〈A〉) ≤
ρk(〈B〉)

Proof. Let A,B be sets of positive integers, with gcd(A) = 1 = gcd(B) and A ⊆ B. Consider the two
numerical semigroups A′ = 〈A〉 and B′ = 〈B〉. Note that A′ ⊆ B′. I claim that ρk(A′) ≤ ρk(B′). Suppose
we have s ∈ A′, such that `A(s) ≤ k and LA(s) = ρ2(A′).

Any minimum-length factorization of s in A′, is a factorization in B′ as well; hence `B(s) ≤ `A(s) ≤ k.
Thus if s was considered in computing ρk(A′), then s is also considered in computing ρk(B′). Now, consider
a factorization of s in A′ of maximum length. This is a factorization of s in B′ as well; hence LB(s) ≥
LA(s) = ρ2(A′).

Theorem 3.38. Let S = 〈a, a+ 1, . . . , a+ x〉. Suppose S′ = 〈a, a+ 1, a+ x− 1, a+ x〉, then ρk(S) = ρk(S′)
except when x+ 2 ≤ a ≤ 2x− 6.

Proof. Let S = 〈a, a+ 1, . . . , a+ x〉 and S′ = 〈a, a+ 1, a+ x− 1, a+ x〉.
Let a ≤ 2x. From Theorem 3.2 ρ2(S) = 3 and by Lemma 3.37 ρ2(S) ≤ ρ2(S) = 3. Hence we only need to

consider max factorization lengths of 3. Consider the pairwise factorizations (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0),
(0, 1, 0, 1), (0, 0, 1, 1), (0, 2, 0, 0), (0, 0, 2, 0), and (0, 0, 0, 2). We can see that (1, 0, 0, 1) = (0, 1, 1, 0) because
the first two atoms and the last two atoms differ by one. By comparing these pairwise factorizations to
factorizations of length three we will find that some factorizations will work for specific values of a. All
values for a not given by these factorizations must give ρ2(S′) = 2.

Case: (1, 0, 1, 0) = 2a+ x− 1
The only possible factorization of length three is (0, 3, 0, 0). This leads to a = x− 4 which is a contradiction.
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Case: (0, 1, 0, 1) = 2a+ x+ 1
Possible factorizations of length three include: (3, 0, 0, 0), (2, 0, 1, 0), (1, 0, 2, 0), and (0, 0, 3, 0). From these
factorizations we get a = (x+ 1), (2), (3−x), and (4− 2x), respectively. All but the first are contradictions,
so we add a = x+ 1 to our set that gives ρ2(S′) = 3.

Case: (0, 0, 1, 1) = 2a+ 2x− 1
Possible factorizations of length three include: (3, 0, 0, 0), (2, 1, 0, 0), (1, 2, 0, 0), and (0, 3, 0, 0). From these
factorizations we get a = (2x− 1), (2x− 2), (2x− 3), and (2x− 4), respectively. All values are valid so our
set increases to a ∈ {x+ 1, 2x− 4, 2x− 3, 2x− 2, 2x− 1}

Case: (0, 2, 0, 0) = 2a+ 2
Possible factorizations of length three include: (3, 0, 0, 0) and (2, 0, 1, 0). From these factorizations we get
a = 2 and (3− x). Both are contradictions.

Case: (0, 0, 2, 0) = 2a+ 2x− 2
Possible factorizations of length three include:

(3, 0, 0, 0), (2, 1, 0, 0), (1, 2, 0, 0), (0, 3, 0, 0), (1, 1, 0, 1), (2, 0, 0, 1), and (0, 2, 0, 1)

. The first four factorizations return the values a = (2x− 2), (2x− 3), (2x− 4), and (2x− 5), respectively.
These are all valid, but we need only add a = 2x−5 to our set. The last three factorizations give contradiction
values a = (x−3), (x−2), and (x−4), respectively. Now our set is a ∈ {x+1, 2x−5, 2x−4, 2x−3, 2x−2, 2x−1}

Case: (0, 0, 0, 2) = 2a+ 2x
Possible factorizations of length three include:

(3, 0, 0, 0), (2, 1, 0, 0), (1, 2, 0, 0), (0, 3, 0, 0), (2, 0, 1, 0), (1, 1, 1, 0), (1, 0, 2, 0), (0, 2, 1, 0), (0, 1, 2, 0), (0, 0, 3, 0).

The first five factorizations return the values a = (2x), (2x− 1), (2x− 2), (2x− 3), and (x+ 1), respectively.
These values are all valid, although we only need to add a = 2x to our set. The last five factorizations return
contradiction values a = (x), (2), (x− 1), (1), and (3− x), respectively.

Therefore, when a ∈ {x + 1} ∪ {2x− 5, . . . , 2x}, ρ2(S′) = 3 and stays the same. However, it changes to
ρ2(S′) = 2 when x+ 2 ≤ a ≤ 2x− 6.

Now let a > 2x. Since ρ2(S) = 2, ρ2(S′) = 2 by Lemma 3.37.

4 Delta Sets of Subsets of Arithmetic Progressions

Let T = {a, a+ x, . . . , a+ tx} with a, x, t ≥ 1. We want T to minimally generate a numerical semigroup, so
we require gcd(a, x) = 1 and a > t. The delta set for 〈T 〉 was computed in the following theorem from “On
Delta Sets of Numerical Monoids,” Chapman &al. [2, Theorem 3.9]).

Theorem 4.1. Let T = {a, a+ x, . . . , a+ tx} with a, x, t ≥ 1 and gcd(a, x) = 1. Then ∆(〈T 〉) = {x}.

Now, for U ⊂ T with #U ≥ 2, we wish to characterize ∆(〈U〉). This has the potential to be very useful
because all generating sets can be written as subsets of arithmetic progressions. In theory, therefore, our
work could be extend to classify all semigroups of all embedding dimensions with delta set of size one.

For simplicity, we will always assume that T and U minimally generate 〈T 〉 and 〈U〉, respectively. If
U = {a + r0x, . . . , a + rkx}, we assume r0 = 0 and rk = t. If we have r0 6= 0 or rk 6= t, then we can let
b = a + r0x and t′ = rk − r0. Write T ′ = {b, b + x, . . . , b + t′x}. Then T ′ is an arithmetic progression, and
we have U ⊂ T with b, b+ t′x ∈ U .

Further, we assume that we have gcd(r1, . . . , rk) = 1. Otherwise, let α = gcd(r1, . . . , rk) and T ′ =
{a, a+ (αx), . . . , a+ (t/α)(αx)}. Then T ′ is an arithmetic progression, and we still have U ⊂ T ′.

Clearly for t < 2, U cannot be a numerical semigroup. The case where t = 2 is quite simple— then U is
just another arithmetic progression. However, for larger t, characterizing the delta set becomes much more
complicated.

We have shown explicitly that removing one generator for t ≥ 3 or two generators for t ≥ 5 has no effect
on the delta set (Theorems 4.15 and 4.21, respectively). In fact, we can describe exactly which generators
we have to remove in order to change the length sets at all, for any t and the removal of any number of
generators. However, we do not have a general characterization of the delta set for the general case.
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So far, we have not found any set U with a+x ∈ U such that ∆(〈U〉) 6= {x}. Therefore, we have focused
on describing the situation when we have U ∩ {a+ x, . . . , a+ (q − 1)x} = ∅ for some q ≤ t. We looked at it
from two perspectives:

(i) U = {a, a+ qx, a+ (q + 1)x, . . . , a+ tx}, and

(ii) U = {a, a+ qx, a+ tx}.

We discuss case (i) in this section and case (ii) in Section 5. Clearly these are the two extremes; we hope to
be make some progress on the case in which some of the generators between a + qx and a + tx are present
but not all.

4.1 Sliding and Golden Sets

Suppose that we have a numerical semigroup S = 〈n1, . . . , nk〉 and some element y ∈ S. If we have

y =

k∑
i=1

cini,

then c = (c1, . . . , ck) is a factorization of y. The length of this factorization is

|c| =
k∑
i=1

ci.

We define ϕ : Nt+1 → S as follows:

ϕ(c) =

t∑
i=0

cini.

When we’re looking at arithmetic progressions, we can get factorizations of equal lengths by sliding
numbers together or apart. For factorization c, we can define a sliding as c′ = c−ei+ei+1−ej +ej−1, which
slides one atom from i to i+ 1, and also one atom from j to j − 1. This satisfies ϕ(c′) = ϕ(c) and |c′| = |c|.

For example, consider 2a+ 4x, where t = 4. We can represent this element in the following two forms:

(1, 0, 0, 0, 1) = (0, 1, 0, 1, 0).

We can turn the first factorization into the second by sliding one copy of a up one space and sliding one copy
of a + 4x down one space. Note that this works only with arithmetic sequences because distances between
generators are the same. That is, when we replace a with a + x, we gain x, and when we replace a + 4x
with a + 3x we lose x. If we remove certain blocks of generators, however, we lose the ability to do this if
the blocks are close to the edges, as in the following example.

Example 4.2. Let T = {5, 8, 11, 14, 17} and U = {5, 8, 11, 17} (i.e., a = 5, x = 3, t = 4, removed a + 3x).
It is obvious that we have L〈U〉(y) ⊆ L〈T 〉(y) for all y ∈ 〈U〉. In fact, the length sets are identical for all
elements of 〈U〉 except those which are congruent to 14 (mod 17). If we do have y ≡ 14 (mod 17), however,
L〈T 〉(y) \ L〈U〉(y) = {minL〈T 〉(y)}. For example, if y = 14 + 2 ∗ 17, then we have

L〈T 〉(y) = {3, 6, 9}
L〈U〉(y) = {6, 9}.

Thus the delta set remains exactly the same.
In terms of sliding, we’re looking at the following type of factorization:

(0, . . . , 0, 1, c). (12)

Since we’ve removed a+ (t− 1)x, we need to slide our single copy of a+ (t− 1)x out of that slot (marked in
red) if we want to find a factorization in T of equal length. With a factorization of any other form, we can
do this without any problems. However, if the factorization is of the form in (12), we can’t slide a+ (t− 1)x
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anywhere. If we try sliding it down, we need to slide something else up. But the only other atoms present
are already in the a + tx slot, so they can’t slide up. If we try to slide a + (t − 1)x up, however, we can
only move it up one space. This is problematic because the only option available is to slide a copy of a+ tx
down one space into the a + (t − 1)x slot. Therefore, the factorization in (12) is the only factorization of
that length.

We don’t run into this problem with other types of factorizations. If we have nonzero coefficients in any
other slot, we can rearrange things via sliding. Also, if we have anything other that 1 in the a + (t − 1)x
slot, we can split it up and slide some copies up and others down (see Lemma 4.7). So this particular type
of factorization is the only problematic one when we’ve removed a+ (t− 1)x.

The issues discussed in Example 4.2 can be extended to deal with the removal of more generators. For
example, take 77 in T = {7, 16, 25, 34, 43, 52} and U = {7, 16, 43, 52}. It has a factorization of (11, 0, 0, 0, 0, 0),
so it is present in 〈U〉. However, in 〈T 〉 we also have the factorizations

(0, 0, 0, 1, 1, 0) = (0, 0, 1, 0, 0, 1).

This factorization can’t be formed by sliding in 〈U〉 because it’s close to the edge (the righthand parenthesis)
and we’ve removed a block of generators from that area:

(0, 0, 0, 1, 1, 0) = (0, 0, 1, 0, 0, 1). (∗)

We can’t slide far enough to get out of the block of missing generators because we run into the edge.
Suppose that we’re removing 4 generators (not a or a + tx). Then the only problematic type of factor-

ization can be written as follows:

(0, 0, 0, 1, 1, 0, 0, 0, 0, . . . , 0) (13)

(0, 0, 1, 0, 0, 1, 0, 0, 0, . . . , 0) (14)

(0, 1, 0, 0, 0, 0, 1, 0, 0, . . . , 0) (15)

(1, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0). (16)

(Note that if we reverse each of these vectors, we see that we run into the same issue on the other side of
the semigroup.) Therefore, if we assume that the length set will change when we remove four generators, we
have certain restrictions on what those generators can be. We need to remove a + 3x or a + 4x if we want
to eliminate factorization (13). Similarly, we need to remove a+ 2x or a+ 5x, a+ x or a+ 6x, and a+ 7x
(since we’re not removing a). Note that some of these can be reduced; for example, we already know that
removing a + x by itself alters length sets. We can also do this from the back end of the semigroup. For
instance, we could remove a+ (t− 2)x, a+ (t− 4)x, a+ (t− 6)x, and a+ (t− 7)x to change length sets.

The definitions in the following section will help us describe the issues we’ve run into in the preceding
examples more explicitly.

Definition 4.3. A happy set is a set G ⊂ Z+ such that for i ∈ [1,maxG− 1], G contains i or max(G)− i.

Definition 4.4. A golden set is a happy set G for which max(G) is odd. We call G minimal if no proper
subset of G is golden. The index of a golden set is a positive integer i(G) = N such that we have 2N − 1 =
max(G). Note that we have N ≤ #G, and equality is attained if G is minimal.

Definition 4.5. A reflected golden set with respect to a positive integer t is a set H for which there is a
golden set G such that H = {t− g : g ∈ G}.

Lemma 4.6. A set G is golden if and only if there is a positive integer N for which the following hold:

(i) 2N − 1 = maxG, and

(ii) for i ∈ [1, N − 1], G contains i or 2N − 1− i.

When we say that we have removed a golden set or a reflected golden set from T to form U , we mean
that some subset of T \ U is golden or reflected golden. Essentially, golden sets are sets of generators where
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the sliding technique breaks down, as in (∗). Of course, we have to remember that you can remove other
generators in addition to these. This is simply a minimal process for changing length sets.

The following table includes all minimal golden sets with index at most 6.

Index Elements of G
1 1
2 2, 3
3 2, 4, 5

3, 4, 5
4 2, 4, 6, 7

3, 5, 6, 7
4, 5, 6, 7

5 2, 4, 6, 8, 9
2, 5, 6, 8, 9
3, 4, 7, 8, 9
3, 5, 7, 8, 9
4, 6, 7, 8, 9
5, 6, 7, 8, 9

Index Elements of G
6 2, 4, 6, 8, 10, 11

2, 5, 7, 8, 10, 11
2, 6, 7, 8, 10, 11
3, 4, 6, 9, 10, 11
3, 5, 7, 9, 10, 11
3, 6, 7, 9, 10, 11
4, 5, 8, 9, 10, 11
4, 6, 8, 9, 10, 11
5, 7, 8, 9, 10, 11
6, 7, 8, 9, 10, 11

4.2 Length Sets

I’ve shown explicitly that when we remove no more than three generators, the length sets remain exactly the
same unless we remove a golden or reflected golden set (of course, we exclude elements which are no longer
in the semigroup; for example, if T \ U = {a + 2x}, then L〈U〉(a + 2x) = ∅ 6= L〈T 〉(a + 2x)). These proofs
give an idea of the basic technique used in the proof of the main theorem of this section. In Theorem 4.11,
I demonstrate the same thing for the removal of any number of generators.

The next two lemmas assume that we have #(T \ U) = 1. They explicitly characterize the elements of
〈U〉 whose length sets in 〈T 〉 and 〈U〉 are not identical. In doing so, they show that if such elements exist
then we have T \ U ⊂ {a + x, a + (t − 1)x}. That is, the only way to change length sets by removing one
generator is to remove the golden set of index 1 or its reflection.

Lemma 4.7. Suppose that we have T \ U = {a+ nx} for 1 ≤ n ≤ t− 1. Given y ∈ 〈U〉 and a factorization
c of y in 〈T 〉, if we have cn 6= 1, then there is a factorization of y in 〈U〉 with the same length.

Proof. Let r be the length of the factorization. Clearly n = 0, n = t, and cn = 0 are trivial, so assume
0 < n < t and cn > 1. Then we have cn ∈ 〈2, 3〉, so we can write cn = 2u+ 3v. If n 6= 1, let

c′ = c+ v · en−2 + u · en−1 − (2u+ 3v) · en + (u+ 2v) · en+1.

If n = 1, then set
c′ = c+ (u+ 2v) · e0 − (2u+ 3v) · e1 + u · e2 + v · e3.

Then c′ is a factorization of y in 〈U〉 with |c′| = r.

Lemma 4.8. Let T and U be as above (and assume once again that we have 1 ≤ n ≤ t− 1). Suppose that
we have y ∈ 〈U〉 and that we can write

y =

t∑
i=0

ci(a+ ix)

with cn = 1. Then there is a factorization of y in 〈U〉 with the same length unless one of the following
conditions holds:

(i) n = 1 and y = c0(a) + (a+ x), or

(ii) n = t− 1 and y = (a+ nx) + ct(a+ tx).
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Proof. Let r = |c|. Since we have a + nx 6∈ 〈U〉, we can find k ∈ {0, . . . , t} with k 6= n and ck > 0. If
k 6= n− 1 and k 6= t, then set

c′ = c− ek + ek+1 + en−1 − en.

If k = n− 1 or k = t, then set
c′ = c+ ek−1 − ek − en + en+1.

Then c′ is a factorization of y in 〈U〉 whose length is r. Note that this method does not work for (n, k) ∈
{(1, 0), (t− 1, t)}, but those are precisely the cases excluded in the statement of the lemma.

Now we will demonstrate that if we remove 2 or 3 generators but no golden or reflected golden sets, then
no length sets change (except those which become empty, as stated in the first paragraph of this subsection).

Lemma 4.9. Suppose that we have T \U = {a+mx, a+ nx} with 0 < m < n < t. Assume that the satisfy
none of the following conditions:

(i) m = 1,

(ii) n = t− 1,

(iii) {m,n} = {2, 3}, or

(iv) {m,n} = {t− 2, t− 3}.

Then the length sets will not change for any element of U .

Proof. Pick y ∈ 〈U〉 and r ∈ L〈T 〉(y). Let c be a factorization of y with length r. It is sufficient to show
that there is a factorization of y in 〈U〉 of length r. Let T ′ = U ∪ {a+ nx}. Then we have already shown in
Lemmas 4.7 and 4.8 show that there is a factorization in 〈T ′〉 of length r. This allows us to assume that we
have cm = 0. Clearly the case in which we have cn = 0 is trivial, so assume that we have cn > 0.

First suppose that we have cn > 1; then write cn = 2u+ 3v. If we have n−m > 1, let

c′ = c+ (u+ 2v) · en−1 − (2u+ 3v) · en + u · en+1 + v · en+2.

If we have n−m = 1, then set

c′ = c+ (u+ v) · en−2 − (2u+ 3v) · en + 2v · en+1 + u · en+2.

Then we have a factorization of length r.
Now suppose that we have cn = 1. Since we are working with a minimal generating set, we have

a + nx 6∈ 〈U〉. Therefore, we can find some k ∈ {0, . . . , t} \ {m,n} with ck > 0. We have a few different
cases, but we will show that regardless of what k is, we can rearrange factors in a such a way that we no
longer use a+ nk.

Suppose that we have n 6= m+ 1. If we have either k = m+ 1 or k = n+ 1, then set

c′ = c+ ek−2 − ek − en + en+2

(note that we have k > m ≥ 2 and n ≤ t − 2). Assume now that we have k 6= m + 1 and k 6= n + 1. If we
have k > 0, then set

c′ = c+ ek−1 − ek − en + en+1.

If we have k = 0, then set
c′ = c− e0 + e1 + en−1 − en.

Therefore, if we have n 6= m+ 1, then we have found a factorization of y in U of length r.
Suppose now that we have n = m+1. Then, by the assumptions of the lemma, we have 3 ≤ m < n ≤ t−3.

Since we know n ≤ t− 3, if we have k > n with k 6= n+ 1 then we can set

c′ = c− en + en+1 + ek+1 − ek.
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If we have k = n+ 1, then set
c′ = c+ en−2 − en − ek + ek+2

(recall that we have k + 2 = n+ 3 ≤ t). If we have 0 < k < m, set

c′ = c+ ek−1 − ek − en + en+1.

Finally, we have the case in which we have n = m+ 1 and k = 0. Then set

c′ = c− e0 + e2 + en−2 − en

(note that we know m > 2).
Now we have shown that wherever k, m, and n fall, we can slide factors around to get a factorization of

the same length unless m and n are too close to the edge of the semigroup. The cases where they are too
close are precisely those produced by removing golden and reflected golden sets.

Lemma 4.10. Suppose that we have T \ U = {a+mx, a+ nx, a+ qx}, with 0 < m < n < q < t and t ≥ 6.
Assume that none of the following conditions hold:

(i) m = 1 or q = t− 1,

(ii) {2, 3} ⊂ {m,n, q} or {t− 2, t− 3} ⊂ {m,n, q},

(iii) {m,n, q} = {2, 4, 5} or{t− 2, t− 4, t− 5}, or

(iv) {m,n, q} = {3, 4, 5} or{t− 3, t− 4, t− 5}.

Then for any y ∈ 〈U〉, we have L〈U〉(y) = L〈T 〉(y).

Proof. Let T ′ = U ∪ {a + qx}. Then T ′ must satisfy the conditions in Lemma 4.9, so all of its length sets
are the same as in 〈T 〉. Therefore, if we pick y ∈ 〈U〉 with

y =

t∑
i=0

ci(a+ ix),

we can assume without loss of generality that we have cm = cn = 0. Suppose that we have cq > 1, and write
cq = 2u+3v. Then we can use exactly the same sliding technique as in Lemma 4.9 unless we have q = m+2.
In this case, by condition (ii) in the statement of the lemma, we have q ≤ t− 3. This allows us to set

c′ = c+ (u+ v) · eq−3 − (2u+ 3v) · eq + v · eq+1 + v · eq+2 + u · eq+3.

Thus if we have cq 6= 1, then we are done.
Suppose that we have cq = 1. Then we can always slide factors around to produce a factorization of y in

〈U〉 of the appropriate length. The following table assigns a value α based on k, m, n, and q:

k = 0 k = m+ 1 k = n+ 1 k = q + 1 n = m+ 1 q = n+ 1 q = n+ 2 m = 2 α
F F F F ek−1 + en+1

T F ek+1 + en−1
T T F ek+2 + en−2
T T T ek+3 + en−3

T ek−2 + en+2

T F ek−2 + en+2

T T F ek+1 + en−1
T T T ek−3 + en+3

T F ek+1 + en−1
T F T ek−3 + en+3

T T T ek−4 + en+4

Now set c′ = c − en − ek + α; then c′ is a factorization of y in 〈U〉 of the correct length, completing the
proof.
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Finally, we have the general case.

Theorem 4.11. Let T = {a, a + x, . . . , a + tx}, and let U ⊂ T with a, a + tx ∈ U . Set M = #(T \ U).
If there exists some y ∈ 〈U〉 with L〈U〉(y) 6= L〈S〉(y), then some subset of T \ U is either a golden set with
index at most M or the reflection of such a set with respect to t.

Proof. We will induct on M . We’ve already finished the base case (i.e., if we remove one generator, the length
sets will not change unless we remove a+ x or a+ (t− 1)x). Suppose that the proposition holds whenever
we remove at most K− 1 generators. Now suppose that we have #(T \U) = K, and set j0 = minT \U . Let
T ′ = U ∪{a+ j0x}. By the inductive hypothesis, if there is any y ∈ 〈T ′〉 with L〈〉〈T ′〉(y) 6= L〈T 〉(y), then we
can find a golden or reflected set G with G ⊂ (T \T ′) ⊂ (T \U). Suppose that we have L〈〉〈T ′〉(y) = L〈T 〉(y)
for all y ∈ 〈T ′〉.

Consider any y ∈ 〈U〉 and a factorization u = (u0, . . . , ut) of y with length r ∈ L〈〉〈T ′〉(y) (where if
a+ ix 6∈ T ′ then we require ui = 0; allowing factorizations in 〈T ′〉 and 〈U〉 to have t+ 1 slots makes notation
significantly less complicated). Assume that we have removed no golden sets and no reflections of golden sets.
We aim to show that we must have r ∈ L〈U〉(y). Then we will have L〈U〉(y) = L〈〉〈T ′〉(y) = L〈T 〉(y) = {x}
for all y ∈ 〈U〉.

In order to do this, we need to address a number of different cases. Let c = uj0 . First, we will reduce
(via sliding) to the case in which we have c ∈ {0, 1}. Clearly if c = 0 then we know r ∈ L〈U〉(y), so we are
done. If we have c = 1, then we can find some k 6= j0 such that uk 6= 0. If we have k < j0, then we can
show without too much difficulty that have r ∈ L〈U〉(y). If we have k > j0, then we will need to consider
the value of uk. We will argue that if uk = 1, then we can restrict k to a particular range, or else we would
have y 6∈ U . Once we have this restrictions, we can show r ∈ L〈U〉(y). Finally, if we have uk > 1, we will
show that we can slide factors around until we have a factorization in 〈U〉, demonstrating that we must have
r ∈ L〈U〉(y).

First, write c = 2v + w, with v ∈ N and w ∈ {0, 1}. Assume 2j0 − 1 ≤ t. Since we haven’t removed
a golden set with index j0, we can find i ∈ {1, . . . , j0 − 1} with a + (j0 + i)x ∈ U . Then, if we let
u′ = u+ vej0−i − 2vej0 + vej0+i, u

′ is a factorization of y in 〈U〉 of length r. If we have 2j0 − 1 > t, then set
u′ = u+ vej0+1−t − 2vej0 + vet−1 (note that a+ (t− 1)x must be in U because {1} is golden). Thus we are
left with only w copies of a+ j0x. If w = 0, then we are done because we have shown r ∈ L〈U〉(y).

If w = 1, we have to consider which other atoms are in use (since we have y ∈ 〈U〉, we cannot have
y = a+ j0x). Suppose first that we can find k ∈ {0, . . . , j0−2} with uk > 0. Then u−ek +ek+1 +ej0−1−ej0
is a factorization in 〈U〉 of length r. If we have uj0−1 > 0 and uj = 0 for j < j0−1, then find i ∈ {1, . . . , j0−1}
with a+ (j0 + i)x ∈ U (as in the paragraph above) and set u′ = u+ ej0−1−i − ej0−1 − ej0 + ej0+i. Finally,
we are left with the case in we have c = 1 and uj = 0 for j < j0.

If this is the case, then we must be able to find k ∈ {j0 + 1, . . . , t} with uk > 0. First suppose that we
have ck = 1. If we have y = (a + j0x) + (a + kx) for k < t − 2j0 and r 6∈ L〈U〉(y), then we claim that we
have y 6∈ 〈U〉, yielding a contradiction. Assume that we do have y = (a+ j0x) + (a+ kx) with k < t− 2j0.
Then we can write 2a + (j0 + k)x = na + βx, which implies (n − 2)a = (j0 + k − β)x. If we have n = 1,
then we must have x = 1 since we know gcd(a, x) = 1. But then we have a = β − (j0 + k) < t (since n = 1,
a + βx is an atom), which is a contradiction because we wouldn’t have a minimal generating set. If n = 2
then we have 2 ∈ L〈U〉(y), and we’re done. For n > 2, we must have a | (j0 + k − β). However, we know
j0 + k − β < t− j0 − β < t < a, which is a contradiction. Therefore, we have finished the case in which we
have k < t− 2j0.

Now assume that we have k ≥ t − 2j0. If we can find i ∈ {1, . . . , j0} with a + (i + k)x ∈ U , then
u + ej0−i − ej0 − ek + ek+i is a factorization in 〈U〉 of length r. If we cannot find such an i, then we must
have removed the reflection of a golden set with index b(t − k)/2c, which is a contradiction. Therefore, we
have shown r ∈ L〈U〉(y) for ck = 1.

Now suppose that we have uk > 1. We claim that if we have not removed any golden sets or their
reflections, then we can find d ∈ Z+ and l ∈ {0, 1} such that u + el − ej0 + ek−d − 2ek + ek+d+j0−l is a
factorization of y in 〈U〉.

Set N0 = k + dj0/2e and assume that we have 2N0 − 1 ≤ t. Then we can find i ∈ {0, . . . , N0 − 1}
such that U contains a + ix and a + (2N0 − 1 − i)x. Then for l ∈ {0, 1} (depending on the parity of j),
u+ el − ej0 + ei − 2ek + e2N0−1−i is a factorization of y in 〈U〉 of length r.
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Now assume that we have 2N0−1 > t. Then we claim that we can repeat the process from the preceding
paragraph because we haven’t removed a reflection of a golden set. Set N1 = t − k + 1 − dj0/2e; it follows
that we have t + 1− 2N1 > 0. Then we can find i ∈ {0, . . . , N1 − 1} such that U contains a + (t− i)x and
a+ (t+ 1− 2N1 + i)x. Then for l ∈ {0, 1}, u+ el − ej0 + et−i − 2ek + et+1−2N1+i is a factorization of y in
〈U〉 of length r.

Theorem 4.11 helps us characterize ∆(〈U〉) in two situations:

(i) if #(T \ U) is relatively small, or

(ii) if we remove generators of the form a+ ix with i close to t/2.

For example, if we remove generators from the middle of T (meaning close to t/2), we can remove approx-
imately one third of all generators without changing any length sets, as stated explicitly in the following
corollary. However, this theorem is significantly less useful when we remove large numbers of generators and
when we remove generators from the edges of the semigroup (i.e., near a or a+ tx).

Corollary 4.12. Suppose that for some M ∈ Z+ we have

U = 〈a, a+ x, . . . , a+ ix, a+ (i+M + 1)x, . . . , a+ tx〉.

If we have M < min{i+ 1, t− (i+M + 1)}, then we do not change the length set of any element.

4.3 Golden Sets and Delta Sets

Now we will move on to discuss when delta sets change. If ∆(〈U〉) 6= {x}, then there must be some
y ∈ 〈U〉 with L〈U〉(y) 6= L〈T 〉(y). Therefore, we have removed a golden set or its reflection. However, this
is not a complete characterization because removing a golden set is not sufficient to guarantee that we have
∆(〈U〉) 6= {x}.

We will begin with an easy lemma which will be uesful when length sets do change. When we remove
golden sets, we do lose elements from length sets, but we only lose extremal elements (i.e., the minimum or
maximum). If this is true, then the delta set cannot change.

Lemma 4.13. Let S1 = {n1, . . . , nk} be a minimal generating set for 〈S1〉 with ∆(〈S1〉) = {d}. If we have
S2 ⊂ S1 and

L〈S1〉(y) \ L〈S2〉(y) ⊂ {min(L〈S1〉(y)),max(L〈S1〉(y))}

for some y ∈ 〈S2〉, then we have ∆〈S2〉(y) ⊂ {x}.

Proof. It is clear that we have L〈S2〉(y) ⊂ L〈S1〉(y). If ∆〈S1〉(y) is nonempty, then we can write

L〈S1〉(y) = {r0 + ix : 0 ≤ i ≤ k}

for some k ∈ N and r0 = min(L〈S1〉(y)). We have assumed that the only elements which might not be in
L〈S2〉(y) are r0 and r0 + kx. Therefore, if ∆〈S2

(y) 6= ∅, then we have

L〈S2〉(y) = {r0 + ix : α ≤ i ≤ β}

for some (α, β) ∈ {(0, k), (0, k − 1), (1, k), (1, k − 1)}, and we are done.

Theorem 4.14 assumes t = 4 and T \ U = {a+ 3x}. We show explicitly how we can rearrange factors to
make up for the loss of a+ 3x. It is inefficient, but it is more concrete than the more general proofs.

Theorem 4.14. Suppose that we have U = {a, a+ x, a+ 2x, a+ 4x}. Then ∆(〈U〉) = {x}.

Proof. Set T = U ∪ {a + 3x}. We know ∆(〈T 〉) = {x} (Theorem 4.1). Pick y ∈ 〈T 〉 and r ∈ L〈T 〉(y). We
aim to show

L〈T 〉(y) \ L〈U〉(y) ⊂ {min(L〈T 〉(y))}.

Let c be a factorization of y in 〈T 〉 with |c| = r. We will show that unless we have c = (0, 0, 0, 1, c4), we
can find a factorization d with |d| = r and d3 = 0. Obviously the case in which we have c3 = 0 is trivial.
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Consider the case in which we have c3 > 1. Then we have c3 ∈ 〈2, 3〉, so we can write c3 = 2u + 3v for
non-negative integers u and v. Then set

d = c+ v · e1 + u · e2 − (2u+ 3v) · e3 + (u+ 2v) · e4,

and we are done. Thus if c3 6= 1 then we can easily construct a factorization in 〈U〉 of length r.
Now suppose that we have c3 = 1. If we have c0 > 0, then the factorization

d = c− e0 + e1 + e2 − e3

has length r. Suppose that we have c0 = 0. If we have c1 > 0, then we can write

d = c+ e0 − e1 − e3 + e4,

and we are done. Now assume that we have c0 = c1 = 0. If we have c2 > 0, then

d = c+ e1 − e2 − e3 + e4

is a factorization with length r. Thus we have shown that we must have r ∈ L〈U〉(y) except when we
have c = (0, 0, 0, 1, c4). If we have y 6≡ (a + 3x) (mod a + 4x), then we are done. Suppose that we have
c = (0, 0, 0, 1, c4); then it suffices to show that we have 1 + c4 = minL〈T 〉(y).

Assume for the sake of contradiction that we can find some q ∈ L〈T 〉(y) with q < 1 + c4. Then find a
factorization z with length q. But then we have q ≤ c4, which implies

y ≤ q(a+ 4x) ≤ c4(a+ 4x) < y,

yielding a contradiction. Therefore, we must have 1 + c4 = minL〈T 〉(y).
Now, we have

L〈T 〉(y) \ L〈U〉(y) ⊂ {min(L〈T 〉(y))}

for all y ∈ 〈T 〉, which implies ∆〈U〉(y) = ∆〈T 〉(y) ⊂ {x}. It follows that we have ∆(〈U〉) = {x}.

Now we will address the case in which we remove exactly one generator.

Theorem 4.15. Let T = {a, a + x, . . . , a + tx} with gcd(a, x) = 1 and t ≥ 3. If U = T \ {a + nx} for
n ∈ [0, t], then ∆(〈U〉) = {x}.

Proof. If n = 0, let b = a + x. Then we have U = {b, b + x, . . . , b + (t − 1)x}, which is an arithmetic
progression. Clearly U is also an arithmetic progression if we have n = t. In either case, we must have
∆(〈U〉) = {x} by Theorem 4.1.

Assume that we have 1 ≤ n ≤ t − 1. Choose any y ∈ 〈T 〉 and r ∈ L〈T 〉(y). We aim to show that if we
have y ∈ U and r 6∈ L〈U〉(y), then we must have r ∈ {min(L〈T 〉(y)),max(L〈T 〉(y))}.

Let c = (c0, . . . , ct) be a factorization of y in 〈T 〉 with |c| = r. Suppose that we have cn 6= 1. Then we
can apply Lemma 4.7 to demonstrate that we have r ∈ L〈U〉(y). Suppose cn = 1 and neither of the following
conditions hold:

(i) n = 1 and y = c0(a) + (a+ x), or

(ii) n = t− 1 and y = (a+ nx) + ct(a+ tx).

Then we can apply Lemma 4.8, and we have again shown r ∈ L〈T 〉(y). Therefore, are doen unless one of the
two conditions listed above is true.

First consider condition (i). We want to show c0 + 1 = maxL〈T 〉(y). Suppose that we can find a
factorization q with |q| > c0 + 1. Then we can write y = |q|a+ λx for λ ≥ 0. Then we have

|q|a+ λx = (c0 + 1)a+ x,

which implies
0 ≤ (|q| − (c0 + 1))a = (1− λ)x.
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However, we know gcd(a, x) = 1, so we have a|(1− λ), which implies a ≤ 1. This is impossible, however, as
we are working with a minimal generating set. Therefore, we must have c0 + 1 = maxL〈T 〉(y).

Now suppose that condition (ii) holds. As with condition (i), if suffices to show that we have ct + 1 =
minL〈S〉(y). Suppose that we can find a factorization q of y with |q| < ct + 1; then we have |q| ≤ ct. Then
we have

y ≤ |q|(a+ tx) ≤ ct(a+ tx) < y,

which is clearly false. Therefore, we have ct + 1 = minL〈S〉(y). Thus we have demonstrated that if we have
r 6∈ L〈U〉(y), then we must have r ∈ {min(L〈T 〉(y)),max(L〈T 〉(y))}.

Now we can apply Lemma 4.13, so we have ∆〈U〉(y) ⊂ {x} for all y ∈ 〈U〉, which implies ∆(〈U〉) =
{x}.

Next we will move on to the case in which we remove two generators. Let T \U = {a+mx, a+nx} with
1 ≤ m < n ≤ t− 1. We have shown in Theorem 4.11 that if we do not have

(m,n) ∈ {(1, n), (m, t− 1), (2, 3), (t− 3, t− 2)},

then the length sets must stay the same, so we have ∆(〈U〉) = {x}. Now, we will consider the various ways
to remove golden sets in a series of lemmas.

Lemma 4.16. Let T = {a, a + x, . . . , a + tx} (with t ≥ 5) and U ⊂ T with T \ U = {a + x, a + nx} for
2 ≤ n ≤ t− 2. Then ∆(〈U〉) = {x}.

Proof. Let T ′ = U ∪ {a + nx}; then we know ∆(〈T ′〉) = {x} by Theorem 4.15. Pick any y in U and
r ∈ L〈T 〉(y). Choose a factorization c in T . We will first demonstrate that if we have r 6∈ L〈T 〉(y), then we
must have cn = 1 and ci = 0 for i 6∈ {0, n}.

Clearly if we have cn = 0, then we have r ∈ L〈U〉(y), and we are done. Now suppose that we have cn > 1.
Write cn = 2u+ 3v. If n 6= 2, then set

d = c+ (u+ 2v) · en−1 − (2u+ 3v) · en + u · en+1 + v · en+2.

If n = 2, then set
d = c+ (u+ v) · e0 − (2u+ 3v) · e2 + 2v · e3 + u · e4.

Then d is a factorization of y in U with |d| = r. Thus we are finished except when we have cn = 1.
If we do have y ∈ U and cn = 1, then we can pick k ∈ {0, . . . , t} \ {1, n} with ck > 0. Suppose that we

can find such a k in [3, t] \ {n, n+ 1}; then set

d = c+ ek−1 − ek − en + en+1.

Now consider the case in which we have ck = 0 for k 6∈ {0, 2, n, n + 1}. If we have either c2 > 0 and n 6= 3
or cn+1 > 0 and n 6= 2, set

d = c− ek + ek+1 + en−1 − en.
If we have either c2 > 0 and n = 3 or cn+1 > 0 and n = 2, then set

d = c+ e0 − e2 − e3 + e5.

Thus we have found a factorization d of y in 〈U〉 with |d| = r, except in the case where cn = 1 and ck = 0
for k 6∈ {0, n}.

In this last case, we will demonstrate as in the proof of Theorem 4.15 that we must have c0 + 1 =
maxL〈T ′〉(y). By the same reasoning used in that proof, we will have shown ∆(〈U〉) = ∆(〈T ′〉) = {x}.

Assume that there is some r′ ∈ L〈T ′〉(y) such that r′ > r = c0 + 1. Then we can write

c0a+ (a+ nx) = y = r′a+ βx

for some β ∈ N, which implies
(r′ − c0 − 1)a = (n− β)x.

We know gcd(x, a) = 1, so we have a | n − β. But then we have a ≤ n − β ≤ n, which contradicts the
minimality of the generating set. Therefore, we have c0 + 1 = maxL〈T ′〉(y), and the proof follows as in
Theorem 4.15.
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Lemma 4.17. Let T = {a, a+ x, . . . , a+ tx} (with t ≥ 5) and U ⊂ T with T \ U = {a+mx, a+ (t− 1)x}
for 2 ≤ m ≤ t− 2. Then ∆(〈U〉) = {x}.

Proof. Let T ′ = U ∪ {a + mx}; then we know ∆(〈T ′〉) = {x} by Theorem 4.15. Pick any y in U and
r ∈ L〈T 〉(y). Choose a factorization c in T . We will first demonstrate that if we have r 6∈ L〈T 〉(y), then we
must have cm = 1 and ci = 0 for i 6∈ {m, t}.

Clearly if we have cm = 0, then we have r ∈ L〈U〉(y), and we are done. Now suppose that we have
cm > 1. Write cm = 2u+ 3v. If m 6= t− 2, then set

d = c+ v · em−2 + u · em−1 − (2u+ 3v) · em + (u+ 2v) · em+1.

If m = t− 2, then set

d = c+ u · em−2 + 2v · em−1 − (2u+ 3v) · em + (u+ v) · em+2.

Then d is a factorization of y in 〈U〉 with |d| = r.
Assume that we have cm = 1. Since we picked y ∈ U , we can find k ∈ [0, t] \ {m, t − 1} with ck > 0. If

we have k ∈ [0, t− 3] \ {m− 1,m}, set

d = c− ek + ek+1 + em−1 − em,

and we are done. Suppose that we have either ct−2 > 0 and m 6= t− 3 or cm−1 > 0 and m 6= t− 2. Then set

d = c+ ek−1 − ek − em + em+1.

If we have either ct−2 > 0 and m = t− 3 or cm−1 > 0 and m = t− 2, then set

d = c+ et−5 − et−3 − et−2 + et.

Thus we have found a factorization d of y in 〈U〉 with |d| = r, except in the case where cm = 1 and ck = 0
for k 6∈ {m, t}.

Suppose that we do have y = (a+mx) + ct(a+ tx). If we have m 6= t− 3, then set

d = c− em + em+2 + et−2 − et,

and we have r ∈ L〈U〉(y). Now suppose that we have m = t− 3. As in the proof of Lemma 4.16, it suffices
to show that we have ct + 1 = minL〈T ′〉(y). Assume that we can find some r′ ∈ L〈T ′〉(y) with r′ < ct + 1.
Let z be a factorization of y with |z| = r′. If zt = r′, then we have

y = r′(a+ tx) = (a+mx) + ct(a+ tx),

which implies
(r′ − ct)(a+ tx) = a+mx > 0.

But then we must have 0 < r′ − ct < 1, which is is impossible since we are dealing only with integers.
Therefore, we must have zt ≤ r′ − 1. But this means that we have

y ≤ (r′ − zt)(a+mx) + zt(a+ tx) ≤ (a+mx) + (r′ − 1)(z + tx) < (a+mx) + ct(a+ tx) = y,

which is a contradiction (note that here we use the fact that a+mx = a+ (t−2)x is the largest generator in
〈T ′〉 other than a+ tx). We have now demonstrated that we must have ct + 1 = minL〈T ′〉(y), which implies
∆(〈U〉) = {x}.

Lemma 4.18. Let T = {a, a + x, . . . , a + tx} (with t ≥ 5) and U ⊂ T with T \ U = {a + x, a + (t − 1)x}.
Then ∆(〈U〉) = {x}.
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Proof. Set T ′ = U ∪ {a+ x}; then we have ∆(〈T ′〉) = {x} by Theorem 4.15. Pick y ∈ 〈T ′〉 and r ∈ L〈T ′〉(y).
We aim to show that if we have y ∈ 〈U〉 and r 6∈ L〈U〉(y), then we must have r ∈ {minL〈T ′〉(y),maxL〈T ′〉(y)}.
Let c be a factorization of y in 〈T ′〉 with |c| = r. If c1 = 0, then we are done. Suppose that we have c1 > 1.
Then write c1 = 2u+ 3v and set

d = c+ (u+ 2v) · e0 − (2u+ 3v) · e1 + u · e2 + v · e3

(note that we have t− 1 ≥ 4). Now d is a factorization of y in 〈U〉 with |d| = r.
Assume that we have c1 = 1. If we have y ∈ 〈U〉, then we can find some k ∈ {0} ∪ [2, t] with ck > 0. If

we can find k ∈ [2, t− 3] ∪ {t− 1} with ck > 0, then set

d = c+ e0 − e1 − ek + ek+1,

and we are done. If we have ct−2 > 0, then set

d = c− e1 + e2 + et−3 − et−2,

and we have produced a factorization of y in 〈U〉 with length r. If we have ct > 0, then set

d = c− e1 + e3 + et−2 − et

(which we can do since t− 1 ≥ 4).
Now we are left with the case in which we have c = (c0, 1, 0, . . . , 0). In this case, we claim that we have

c0 + 1 = maxL〈T ′〉(y). Suppose that we can find r′ ∈ L〈T ′〉(y) with r′ > c0 + 1. Then we can find λ ∈ N
with y = r′a+ λx, so we have

(r′ − c0 − 1)a = (1− λ)x.

But we know gcd(a, x) = 1 and a > 1 ≥ 1 − λ, so this is impossible. Therefore, if we have y ∈ 〈U〉 and
r 6∈ L〈U〉(y), then we must have r = maxL〈T ′〉(y). It follows that ∆(〈U〉) = {x}.

Lemma 4.19. Let T = {a, a + x, . . . , a + tx} with t ≥ 5 and U ⊂ T with T \ U = {a + 2x, a + 3x}. Then
we have ∆(〈U〉) = {x}.

Proof. We will show that if we have y ∈ 〈U〉 with L〈T 〉(y) 6= L〈U〉(y), then we have L〈T 〉(y) \ L〈U〉(y) ⊂
{minL〈T 〉(y)}. This implies ∆〈U〉(y) ⊂ ∆〈T 〉(y) for all y ∈ 〈U〉 and hence ∆(〈U〉) = {x}.

Pick y ∈ 〈T 〉 and r ∈ L〈T 〉(y). Let c be a factorization of y in 〈T 〉 with |c| = r. We will show via sliding
that we must have r ∈ L〈U〉(y) unless we have

(i) c ∈ {(0, 1, 1, 0, . . . , 0), (1, 0, 0, 1, 0, . . . , 0)}, or

(ii) t = 5 and c ∈ {(0, 0, 0, 1, 1, 0), (0, 0, 1, 0, 0, 1)}.

Suppose that we have c2 > 1, and write c2 = 2u2 + 3v2. Then set

d = c+ u2 · e0 + 2v2 · e1 − (2u2 + 3v2) · e2 + (u2 + v2) · e4,

so d is a factorization of y with d2 = 0 and |d| = r.
Suppose that we have c2 = 1. If we have y ∈ U , then we can pick k ∈ {0, 1, 3, 4, . . . , t} with ck > 0. If we

have k ∈ {0, 3, . . . , t− 1}, set
d = c+ e1 − e2 − ek + ek+1.

If we have k = 1 or k = t, set
d = c+ ek−1 − ek − e2 + e3.

Now, regardless of k, d is a factorization of y such that |d| = r and d2 = 0.
If d3 = 0, then we are done because we have r ∈ L〈U〉(y). Suppose that we have d3 > 1; then write

d3 = 2u3 + 3u3. Set
f = d+ (u3 + v3) · e1 − (2u3 + 3v3) · e3 + 2v3 · e4 + u3 · e5,

so f is a factorization of y in 〈U〉 with |f | = r.
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Finally, we are left with the case in which we have d2 = 0 and d3 = 1. If we have y ∈ U , then we can
pick k ∈ {0, 1} ∪ [4, t] with dk > 0. Suppose that we can find such a k with k 6= 0 and k 6= 4. Then set

f = d− e3 + e4 + ek−1 − ek.

Suppose that we have t 6= 5 and k = 4; then set

f = d+ e1 − e3 − e4 + e6.

If we have t = 5 and d4 > 1, set
f = d+ e1 − e3 − e4 + 2e5.

Suppose that we have t = 5 and d4 = 1. If we have d0 > 0, set

f = d− e0 + 2e1 − e3 − e4 + e5.

If we have t = 5, d4 = 1, and d0 = 0, then condition (ii) must hold (stated explicitly in the beginning of the
proof). We will address this case momentarily.

Now suppose that we have dk = 0 for k 6∈ {0, 3}. If we have d0 = 0, then y 6∈ 〈U〉. If we have d0 ≥ 2, set

f = d− 2e0 + 3e1 − e3,

so we have r ∈ L〈U〉(y). Now the only other case is when we have d = (1, 0, 0, 1, 0, . . . , 0), which is just
condition (i).

Now we must address the cases in which conditions (i) and (ii) hold. Note that in each of the conditions,
we consider two factorizations whose length and image under ϕ are identical. In condition (i), for example,
if we have c = (0, 1, 1, 0, . . . , 0), then we will have d = (1, 0, 0, 1, 0, . . . , 0).

In either condition, we have |d| = 2 and y = 2a + µx for some µ ∈ {3, 7}. We wish to show that we
must have 2 = minL〈T 〉(y). Suppose that we have 1 ∈ L〈T 〉(y). Then we can write a + λx = 2a + µx for
some λ ∈ N, which implies a = (λ − µ)x. We know gcd(a, x) = 1, so we must have x = 1. But then we
have a = λ − µ < λ ≤ t, which contradicts the minimality of the generating set. Therefore, we must have
r = minL〈T 〉(y).

Thus we have demonstrated that given any y ∈ 〈U〉, we must have L〈T 〉(y) \ L〈U〉(y) ⊂ {minL〈T 〉(y)}.
It follows that ∆(〈U〉) = ∆(〈T 〉) = {x}.

Lemma 4.20. Let T = {a, a+x, . . . , a+ tx} with t ≥ 5 and U ⊂ T with T \U = {a+ (t− 2)x, a+ (t− 3)x}.
Then we have ∆(〈U〉) = {x}.

Proof. First, note that if we have t = 5 then {t − 2, t − 3} = {2, 3}, so we can apply Lemma 4.19. Now
assume that we have t ≥ 6. We will take the same approach used in the proof of Lemma 4.19.

Pick y ∈ 〈T 〉 and r ∈ L〈T 〉(y). Let c be a factorization of y in 〈T 〉 with |c| = r. If ct−3 = 0, set d = c. If
ct−3 > 1, write ct−3 = 2ut−3 + 3vt−3 and set

d = c+ ut−3 · et−5 + 2vt−3 · et−4 − (2ut−3 + 3vt−3) · et−3 + (ut−3 + vt−3) · et−1.

If we have y ∈ 〈U〉 and ct−3 = 1, pick k ∈ {0, . . . , t − 4, t − 2, t − 1, t} with ck > 0. If we have k ∈
{0, . . . , t− 5, t− 2, t− 1}, set

d = c− ek + ek+1 + et−4 − et−3.

If we have k ∈ {t− 4, t}, set
d = c+ ek−1 − ek − et−3 + et−2.

Now d is a factorization of y with ct−3 = 0 and |d| = r. If dt−2 = 0, set f = d. If dt−2 > 1, write
dt−2 = 2ut−2 + 3vt−2 and set

f = d+ (ut−2 + vt−2) · et−4 − (2ut−2 + 3vt−2) · et−2 + 2vt−2 · et−1 + ut−2 · et.

Thus f is a factorization of y in 〈Urangle with length r.
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Now assume that we have dt−2 = 1. If we have y ∈ 〈U〉, then we can pick k ∈ {0, . . . , t− 4, t− 1, t} with
dk > 0. If we can find such a k in {1, . . . , t− 4, t}, then set

f = d+ ek−1 − ek − et−2 + et−1.

If we have d0 > 0, set
f = d− e0 + e2 + et−4 − et−2

(note that we have assumed t ≥ 6, so 2 < t− 3). Now we are left with the case in which we have dt−2 = 1
and dk = 0 for k 6∈ {t− 2, t− 1}.

If we have y ∈ 〈U〉, then we know dt−1 > 0. If dt−1 > 1, set

f = d+ et−4 − et−2 − 2et−1 + et,

and we have produced a factorization of y in 〈U〉 with length r. Therefore, we have only to deal with the
factorization d = (0, . . . , 0, 1, 1, 0).

In this case, we have y = 2a+(2t−3)x and r = 2. We claim that we must have 2 = minL〈T 〉(y). Suppose
that we have 1 ∈ L〈T 〉(y). Then we can find some λ ≤ t with y = a+ λx. But it follows that

a = (λ− 2t+ 3)x.

As in the proof of Lemma 4.19, we must have x = 1 and hence a ≤ λ − 2t + 3 ≤ λ − 9 < t, yielding a
contradiction. Therefore, if we have y ∈ 〈U〉 and r 6∈ L〈U〉(y), then we have r = minL〈T 〉(y). It follows that
∆(〈U〉) = {x}.

Theorem 4.21. Let T = {a, a+x, . . . , a+tx} with t ≥ 5 and U ⊂ T with #(T \U) = 2. Then ∆(〈U〉) = {x}.

Proof. If we have {a, a+ tx}∩ (T \U) 6= ∅, then we can apply Theorem 4.15. Otherwise, write {a+mx, a+
nx} = T \ U and consult the following table to find the correct lemma:

m = 1 n = t− 1 Lemma 4.18
m = 1 n < t− 1 Lemma 4.16
m > 1 n = t− 1 Lemma 4.17
m = 2 n = 3 Lemma 4.19

m = t− 2 n = t− 3 Lemma 4.20
otherwise Lemma 4.9

We can now totally characterize delta sets for t ≤ 4. Let St = 〈a, a+ x, . . . , a+ tx〉.
For S2, removing a or a + 2x leaves us with an arithmetic progression of step size x, so the delta set is

just {x}. If we remove a+x, then we have an arithmetic progression of step size 2x, so the delta set is {2x}.
For S3, removing a single generator cannot change the delta set. Now suppose that we remove two

generators. Removing a or +3x reduces to the case described directly above. If we retain both a and a+ 3x,
then we must have removed the other two, so we are left with an arithmetic progression of step size 3x and
a delta set of {3x}.

For S4, removing one generator cannot change the delta set. Now suppose that we remove two generators.
If we remove either a or a + 4x, see above paragraph. Suppose that we keep both a and a + 4x; then we
also keep one from the middle. If we keep a+ 2x, then we are left with a delta set of {2x} because it is an
arithmetic progression. If we keep a+ x or a+ 3x, then we can apply the results discussed in Section 5. In
these two cases, the delta set can only change for small a. We have not determined whether the value of x
affects the delta set in this situation.
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4.4 The Goldmember Conjecture

The ultimate goal is to characterize exactly which golden sets will result in a delta set of more than one
element. We have not managed to do this. However, it appears that we need to remove a large number of
generators in order to change the delta set. We would like to someday show something like the following
conjecture (although it probably needs tweaking).

Conjecture 4.22 (The Goldmember Conjecture). If T and U are define as above, the ∆(〈U〉) 6= {x} only
if some subset of T \ U is a golden set of index bt/2c or the reflection of such a set.

The following conjecture is a result of Conjecture 4.22, but it may be simpler to prove.

Conjecture 4.23. If we have #(T \ U) < bt/2c, then we have ∆(〈U〉) = {x}.

Here are some notes on a possible method of proof for Conjecture 4.23. They are based on the proof
in [2] that the delta set for a semigroup generated by an arithmetic progression contains exactly one element.
However, there are parts of that proof which will certainly no longer work when we begin to remove generators
(namely, the bounds he establishes on ` and L).

Induct on t. As in Scott’s paper [2], let U ′ be U with a+ tx removed and U ′′ be U with a removed.
We claim that for m ∈ U , we have the following:

(i) L〈U〉(m) = L〈U ′〉(m) if m ∈ U ′ \ U ′′,

(ii) L〈U〉(m) = L〈U ′′〉(m) if m ∈ U ′′ \ U ′, and

(iii) L〈U〉(m) = L〈U ′〉(m) ∪ L〈U ′′〉(m) if m ∈ U ′ ∩ U ′′.

This can be shown via sliding, as in [2], Proposition 3.2, Corollary 3.3. The only thing that changes is where
we slide copies of a and a+ tx. In the paper, they simply slide up or down one space. We can’t necessarily
do this, but we can slide if we have M < t/2 because we can find i ∈ {1, . . . , t/2} such that both a+ ix and
a+ (t− i)x are still in U . The rest of Scott’s proof still holds.

We know that U ′ and U ′′ are arithmetic sequences up through the (t−1)th term with M terms removed.
But we know b(t − 1)/2c = bt/2c > M , so by the inductive hypothesis we have ∆(U ′) = ∆(U ′′) = {x}.
Then we are done unless we have m ∈ U ′ ∩ U ′′. As in Scott’s paper, it suffices to show that if we have
L〈U ′〉(m) ∩ L〈U ′′〉(m) = ∅, then we have minL〈U ′〉(m) = maxL〈U ′′〉(m) + x.

Set w = maxL〈U ′′〉(m). Suppose that we have w + x 6∈ L〈U ′〉(m). But we know w + x ∈ L〈S〉(m), so we
can write y = b1(a+ jx) + b2(a+ (j + 1)x) for j ∈ {0, . . . , t− 1}, with b1 + b2 = w + x.

Now we have a factorization with length in the middle of the delta set. We can show that we must have
j ≤M − 1 or j ≥ t−M , or else we can slide to find a factorization of equal length in U . My goal is to show
that if j is that close to the edge of the semigroup, the factorization length must be close to the edge of the
delta set, yielding a contradiction.

4.5 Removing Blocks of Generators

It seems that the most reliable way to change delta sets is to remove a block of generators from the beginning
of the semigroup— that is, to have {a+x, . . . , a+ kx} ⊂ T \U for some k. In this section, we examine what
happens when we remove this type of block. As it turns out, as long as a is large enough, removing such a
block has no effect on the delta set.

In the proof, we use induction. The basic idea is that we can write any factorization either without a+qx
or with only a, a + qx, and a + (q + 1)x. In the latter case, if the coefficients for a + qx and a + (q + 1)x
are large enough, we can rewrite them in terms of a and a pair of generators a + mx and a + nx in U ,
with gcd(m,n) = 1 (thus the bound arises from the semigroups of the form 〈m,n〉 with a+mx, a+ nx ∈ U
and m,n ≥ q + 1). If the coefficients for a + qx and a + (q + 1)x are too small to be rewritten in such a
manner, then they must also be too small to be rewritten using more copies of a, so this must be the longest
factorization of this element.

What is particularly interesting about the presence of Frobenius numbers in this theorem is that we also
found that for a ≥ (t − 1)t = F (〈t, t + 1〉) + 1, we have ∆(〈a, a + qx, a + tx〉) = {x}. We are hoping to be
able to find a similar pattern to character semigroups between 〈a, a+ qx, . . . , a+ tx〉 and 〈a, a+ qx, a+ tx〉.
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Theorem 4.24. Let T = {a, a+ x, . . . , a+ tx} and Uq = {a, a+ (q + 1)x, . . . , a+ tx} with t ≥ q + 2. Set

Fq = N \
⋃

m,n∈[q+1,t]
gcd(m,n)=1

〈m,n〉.

If max(Fq) < a, then ∆(〈Uq〉) = {x}.

Proof. Let P (q) be the proposition that we have ∆(〈Uq〉) = {x}. Note that we have #(T \ U1) = 1, so
Theorem 4.15 tells us that P (1) is true. Now suppose that P (q − 1) is true for some q ∈ Z+. We know

Fq−1 = N \

Fq

⋃
n∈[q+1,t]

〈q, n〉

 ,

so it follows that we have Fq−1 ⊂ Fq and hence max(Fq−1) ≤ max(Fq) < a. Therefore, the inductive
hypothesis states that we have ∆(〈Uq−1〉) = {x}.

Pick any y ∈ 〈Uq−1〉 and r ∈ L〈Uq−1〉(y). Let z be a factorization of y with |z| = r. If zq = 0, then we
are done. Suppose zq > 0. For q + 2 ≤ i ≤ t, set αi = min(zq, zi). Then set

z(0) = z − αt · eq + αt · eq+1 + αt · et−1 − αt · et,

and for 1 ≤ n ≤ t− q − 2, set

z(n) = z(n−1) − αt−n · eq + αt−n · eq+1 + αt−n · et−n−1 − αt−n · et−n.

Let u = z(t−q−2). If we have uq = 0, then r ∈ L〈Uq〉(y). Suppose that we have uq > 0; then we have
ui = 0 for i ∈ [q + 2, t]. We will now argue that if this is the case, then we have either r ∈ L〈Uq〉(y) or
r = maxL〈Uq−1〉(y).

Suppose that we have r 6= maxL〈Uq−1〉(y). Then we can find r′ > r with y = r′a + λx for some λ ∈ N.
It follows that we have

(r′ − r)a = (quq + (q + 1)uq+1 − λ)x.

Since we know gcd(a, x) = 1, a must divide quq + (q+ 1)uq+1− λ. Therefore, we must have max(Fq) < a ≤
quq + (q+ 1)uq+1, so we can find m,n ∈ [q+ 1, t] with quq + (q+ 1)uq+1 ∈ 〈m,n〉. Write quq + (q+ 1)uq+1 =
µ1m+ µ2n. We claim that we must have uq + uq+1 ≥ µ1 + µ2. Otherwise, we would have

µ1m+ µ2n ≥ (µ1 + µ2)(q + 1) > (uq + uq+1)(q + 1) ≥ quq + (q + 1)uq+1,

which is clearly false.
Now set ν = uq + uq+1 − µ1 − µ2 ≥ 0. Then we have

(u0+ν)a+µ1(a+mx)+µ2(a+nx) = (u0+uq+uq+1)a+(µ1m+µ2n)x = u0a+uq(a+qx)+uq+1(a+(q+1)x) = y.

Furthermore, we have u0 + ν + µ1 + µ2 = u0 + uq + uq+1 = r, so we have shown that we must have
r ∈ L〈Uq〉(y). Therefore, we have demonstrated that we must have ∆〈Uq〉(y) ⊂ ∆〈Uq−1〉 for all y ∈ 〈Uq〉, so
we have ∆(〈Uq〉) = {x}. The proof follows by induction.

Corollary 4.25. Suppose that we have T = {a, a+ x, . . . , a+ tx} and Uq ⊂ T with

T \ Uq = {a+ x, . . . , a+ qx}

for q ≤ t− 2. If we have either t = q+ 2 and a ≥ q(q+ 1) or t ≥ q+ 3 and a ≥ (q− 1)(q+ 1), then we have
∆(〈Uq〉) = {x}.

Proposition 4.26. Let S = 〈a, a+ (t− 1)x, a+ tx〉 with t ≥ 4. Set k = t− 2, a = k(k+ 1)− 1 = t2− 3t+ 1,
and x = 1. Then for y = 2t3 − 9t2 + 11t− 3, we have 2x ∈ ∆S(y).
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Proof. Consider the following vectors in Nt+1:

α = (2t− 3, 0, . . . , 0)

β = (t− 2, 0, . . . , 0, 1, t− 3, 0)

γ = (0, . . . , 0, t− 2, t− 3).

Then we have

ϕ(α) = (2t− 3)(t2 − 3t+ 1)

= 2t3 − 6t2 + 2t− 3t2 + 9t− 3

= y.

We also have

ϕ(β) = (t− 2)(t2 − 3t+ 1) + (1)((t2 − 3t+ 1) + (t− 2)x) + (t− 3)((t2 − 3t+ 1) + (t− 1)x)

= t3 − 3t2 + t− 2t2 + 6t− 2 + t2 − 3t+ 1 + t− 2 + t3 − 3t2 + t+ t2 − t− 3t2 + 9t− 3− 3t+ 3

= y.

Finally, we have

ϕ(γ) = (t− 2)(t2 − 3t+ 1 + (t− 1)x) + (t− 3)(t2 − 3t+ 1 + tx)

= t3 − 2t2 − 2t2 + 4t+ t3 − 2t2 + t− 3t2 + 6t− 3

= y.

Thus α, β, and γ are all factorizations of y. We also have

|α| = 2t− 3,

|β| = 2t− 4, and

|γ| = 2t− 5,

which implies |α − β| = |β − γ| = x. Thus there are no factorizations of y between these. Clearly both α
and γ are factorizations in S. We aim to show that there is no factorization of length |β| in S, which would
mean that we have 2x ∈ ∆S(y).

Suppose that we do have some factorization z of y with z1 = . . . = zt−2 = 0 and |z| = 2t − 4. Then we
can write

y = (2t− 3)a = (z0 + zt−1 + zt)a+ zt−1(t− 1) + ztt = (2t− 4)a+ zt−1(t− 1) + ztt,

which implies zt−1(t− 1) + ztt = a = t2 − 3t+ 1. If zt = 0, then we have

zt−1 = t− 2− 1

t− 1
,

which is a contradiction because zt−1 is an integer. Therefore, we must have zt > 0. Then we have

zt−1(t− 1) = t2 − (3 + zt)t+ 1 = (t2 − 2t+ 1)− (1 + zt)t,

so it follows that

zt−1 = t− 1− (1 + zt)t

t− 1
.

We know that zt−1 must be a non-negative integer and that the rational number on the right side of the
above equation is nonzero, so we can write

(1 + zt)t = c(t− 1)
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for some c ∈ Z+. Therefore, we must have

zt = c− 1− c

t
,

and since zt is also an integer we can write c = dt for some d ∈ Z+. Then we have zt = d(t − 1) − 1 for
d > 0. If we have d ≥ 3, then we have

2t− 4 ≥ zt ≥ 3(t− 1)− 1 = 3t− 4 > 2t− 4,

which is false. Therefore, we have d ∈ {1, 2} and hence zt ∈ {t− 2, 2t− 3}. If zt = 2t− 3, then we have

(2t− 3)a = y ≥ zt(a+ tx) = (2t− 3)(a+ tx) > (2t− 3)a,

which is impossible. Therefore, we must have zt = t− 2. Then we have z0 + zt−1 = t− 2. We know

y = z0(t2 − 3t+ 1) + zt−1(t2 − 2t) + (t− 2)(t2 − 2t+ 1) = 2t3 − 9t2 + 11t− 3,

which implies
(z0 + zt−1)t2 − 2(z0 + z1)t− z0t+ z0 = t3 − 5t2 + 6t− 1.

Then, since know z0 + zt−1 = t− 2, we have

z0(−t+ 1) = t2 + 2t− 1 = (−t+ 1)(−t− 3) + 2,

so it follows that

z0 = −t− 3 +
2

−t+ 1
.

But z0 is a non-negative integer, so this is false. Therefore, we cannot have 2t− 4 ∈ L〈〉S(y). But since we
do have 2t− 3, 2t− 5 ∈ L〈〉S(y), we must have 2x ∈ ∆(S).

Therefore, our bound for the t = k + 2 case is sharp.

5 Delta Sets of Numerical Semigroups of Embedding Dimension
Three

5.1 Bounds on Delta Sets in Embedding Dimension Three

We wish to determine when the delta set of a numerical semigroup in embedding dimension three is a just
a single element. For this section assume all numerical semigroups are primitive.

The following proposition is a restatement of [2, Proposition 2.10]:

Proposition 5.1. Let S = 〈n1, n2, . . . , nt〉 where {n1, n2, . . . , nt} is the minimal set of generators. Then

min∆(S) = gcd{ni − ni−1|i ∈ {2, 3, . . . , t}}.

The following theorem is a restatement of [5, Theorem 3.1]:

Theorem 5.2. Let S = 〈n1, n2, n3〉. Set

c1 = min{c ∈ Z+ : cn1 ∈ 〈n2, n3〉}
c3 = min{c ∈ Z+ : cn3 ∈ 〈n1, n2〉}.

Then we can write c1n1 = r12n2 + r13n3 and c3n3 = r31n1 + r32n2, where r12 + r13 is maximal and r31 + r32
is minimal. Set K1 = c1 − (r12 + r13) and K3 = (r31 + r32)− c3. Then max(∆(S)) = max{K1,K3}.

Lemma 5.3. Let S be a numerical semigroup minimally generated by S = 〈a, a+qx, a+tx〉 where gcd(q, t) =
1 and K1,K3 be as defined in Theorem 5.2 then K1,K3 ≡ 0 (mod x).
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Proof. We first examine K1. For any multiple of a in terms of a+ qx and a+ tx we have

γ1a = δ12(a+ qx) + δ13(a+ tx)

(γ1 − (δ12 + δ13))a = (qδ12 + tδ13)x

Note that since S is primitive gcd(a, x) = 1 thus γ1− (δ12 + δ13) ≡ 0 (mod x). Specifically, K1 = c1− (r12 +
r13) ≡ 0 (mod x).

Next we examine K3. For any multiple of a+ tx in terms of a and a+ qx we have

γ3(a+ tx) = δ31(a) + δ32(a+ qx)

(δ31 + δ32 − γ3)a = (tγ3 − qδ32)x

Again since gcd(a, x) = 1, (δ31+δ32)−γ3 ≡ 0 (mod x). In particular, K3 = (r31+r32)−c3 ≡ 0 (mod x).

Lemma 5.4. Let S be a numerical semigroup minimally generated by S = 〈a, a+qx, a+tx〉 where gcd(q, t) =
1 and K1,K3 be as defined in Theorem 5.2 then K1,K3 ≥ x.

Proof. Note that c1(a) = r12(a + qx) + r13(a + tx) > r12(a) + r13(a) so K1 = c1 − (r12 + r13) > 0 and
since K1 ≡ 0 (mod x) by Lemma 5.3, K1 ≥ x. Similarly, note that c3(a + tx) = r31(a) + r32(a + qx) <
r31(a+ tx) + r32(a+ tx) so K3 = (r31 + r32)− c3 > 0 and since K3 ≡ 0 (mod x) by Lemma 5.3, K3 ≥ x.

Lemma 5.5. Let Sbe a numerical semigroup minimally generated by S = 〈a, a+qx, a+tx〉 where gcd(q, t) = 1
and K1,K3 be as defined in Theorem 5.2, then ∆(S) = {x} if and only if K1 = K3 = x.

Proof. Let K1,K3, ci, rij be as defined in Theorem 5.2. From Proposition 5.1 we have that min(∆(S)) =
gcd(qx, tx) = x. We will show max(∆(S)) = x if and only if K1 = K3 = x.

Clearly if K1 = K3 = x then max(∆(S)) = max{x, x} = x. Now let max(∆(S)) = x. We have
max(∆(S)) = max{K1,K3} = x which implies K1,K3 ≤ x, but since K1,K3 ≥ x, by Lemma 5.4 we have
K1 = K3 = x.

We will now present several cases when the delta set of a numerical semigroup in embedding dimension
three is just a single element.

5.2 The Smallest and Largest Generators Are Not Coprime

In this section we deal with numerical semigroups minimally generated by S = 〈a, a+ qx, a+ tx〉 and show
that if a ≡ 0 (mod t) then ∆(S) = {x}.

Proposition 5.6. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 where
gcd(q, t) = 1. If a ≡ 0 (mod t) then K1 = x.

Proof. Let S be as above and a ≡ 0 (mod t).
For any multiple of a in terms of a+ qx and a+ tx we have

γ1a = δ12(a+ qx) + δ13(a+ tx)

= (δ12 + δ13)a+ (qδ12 + tδ13)x. (17)

The left hand side is equivalent to 0 (mod a) thus, since S is primitive and gcd(a, x) = 1, we have qδ12+tδ13 ≡
0 (mod a). Write qδ12 + tδ13 = na where n > 0 since either δ12 or δ13 must be positive. Notice that since
gcd(q, t) = 1, δ12 ≡ 0 (mod t) so

δ12 = mt

δ13 =
na

t
−mq. (18)
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where 0 ≤ m ≤ na
qt . Substituting into equation 17 and factoring out an a we find

γ1a =
(
mt+

na

t
−mq

)
a+ (na)x

γ1 = n
(a
t

+ x
)

+m(t− q) (19)

≥ n
(a
t

+ x
)
. (20)

Notice that the right hand side is positive since t > q > 0 and n, a, x > 0. Thus γ1 is bounded from below
by the case when n = 1 and from equation 20 we have

γ1 ≥
a

t
+ x. (21)

Now notice that γ1 achieves this lower bound when δ12 = 0 and δ13 = a
t .

γ1(a) = 0(a+ qx) +
a

t
(a+ tx)

γ1(a) =
(a
t

+ x
)

(a)

Thus by the definition of c1, c1 = a
t +x. Recall that from the definition of r12, r13 in Theorem 5.2 r12 +r13 ≥

δ12 + δ13 for all δ12, δ13 satisfying δ12(a+ qx) + δ13(a+ tx) =
(
a
t + x

)
a. Since (0)(a+ qx) +

(
a
t

)
(a+ tx) =(

a
t + x

)
a we have that r12 + r13 ≥ a

t . That is, K1 = c1 − (r12 + r13) ≤
(
a
t + x

)
− a

t = x. By Lemma 5.4
K1 ≥ x thus K1 = x as desired.

Proposition 5.7. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 where
gcd(q, t) = 1. If a ≡ 0 (mod t) then K3 = x.

Proof. For any multiple of a+ tx in terms of a and a+ qx we have

γ3(a+ tx) = δ31(a) + δ32(a+ qx)

(δ31 + δ32 − γ3)a = (tγ3 − qδ32)x (22)

Note that γ3(a + tx) = δ31(a) + δ32(a + qx) < δ31(a + tx) + δ32(a + tx). Thus δ31 + δ32 − γ3 > 0 and from
equation 22 it follows that tγ3 − qδ32 > 0. Notice also that tγ3 − qδ32 ≡ 0 (mod a). That is

tγ3 = na+ qδ32 (23)

n > 0. Observe that γ3 is bounded by

γ3 ≥
a

t
.

We see that γ3 achieves this lower bound in the following equation

γ3(a+ tx) =
(a
t

+ x
)

(a) + (0)(a+ qx)

γ3 =
a

t

From the definition of c3, c3 = a
t . Since q, r32 ≥ 0, we see tc3 − qr32 = a − qr32 ≤ a. From equation 23 we

have that tc3 − qr32 ≥ a. Thus tc3 − qr32 = a which, when substituted into equation 22 shows

(r31 + r32 − c3)a = ax

K3 = r31 + r32 − c3 = x.

Theorem 5.8. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 where
gcd(q, t) = 1. If a ≡ 0 (mod t) then ∆(S) = {x}.

Proof. Let a ≡ 0 (mod t). Then by Proposition 5.6, K1 = x and by Proposition 5.7, K3 = x. Since
K1 = K3 = x, by Lemma 5.5 ∆(S) = {x}.
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5.3 A Specialized Bound on the Smallest Generator

In this section we deal with numerical semigroups minimally generated by S = 〈a, a + x, a + tx〉 and show
that if a ≥ t(t− 4) + 2 then ∆(S) = {x}.

Proposition 5.9. Let S be a numerical semigroup minimally generated by S = 〈a, a+ x, a+ tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. If n+m+ x ≥ t− 1 then K1 = x.

Proof. Let S be as above, a = nt+m, where m ∈ {1, 2, . . . , t− 1}, and n+m+ x ≥ t− 1.
For any multiple of a in terms of a+ x and i+ tx we have

γ1a = δ12(a+ x) + δ13(a+ tx)

= (δ12 + δ13)a+ (δ12 + tδ13)x (24)

The left hand side is equivalent to 0 (mod a) thus, since S is primitive and gcd(a, x) = 1, we have δ12+tδ13 ≡
0 (mod a). Write δ12 + tδ13 = αa = α(nk+m) where α > 0 since either δ12 or δ13 must be positive. Notice
that δ12 ≡ αm (mod k) so

δ12 = αm+ βt

δ13 = αn− β (25)

where −bαmt c ≤ β ≤ αn. Substituting into equation 24 and factoring out an a we find

γ1a = (αm+ βt+ αn− β)a+ (αa)x

γ1 = α(n+m+ x) + β(t− 1) (26)

≥ α(n+m+ x)−
⌊αm
t

⌋
(t− 1) (27)

Notice that when α = 1, γ1 ≥ n+m+ x. We wish to show that n+m+ x is indeed a lower bound. That is,
from equation 27, we wish to show that for all α > 0, α(n+m+ x)− bαmt c(t− 1) ≥ n+m+ x. Note that
from our assumptions, 0 < t − 1 ≤ n + m + x and since m < t, 0 ≤

⌊
αm
t

⌋
< α. Since both of these values

are non-negative, we see ⌊αm
t

⌋
(t− 1) ≤ (α− 1)(n+m+ x)

n+m+ x ≤ α(n+m+ x)−
⌊αm
t

⌋
(t− 1)

Hence γ1 is bounded from below by

γ1 ≥ n+m+ x (28)

Now notice that γ1 achieves this lower bound when δ12 = m and δ13 = n.

γ1(a) = (m)(a+ x) + (n)(a+ tx)

γ1(a) = (n+m+ x)(a)

Thus by the definition of c1, c1 = n+m+ x.
Now recall that from the definition of r12, r13 in Theorem 5.2 r12+r13 ≥ δ12+δ13 for all δ12, δ13 satisfying

δ12(a + x) + δ13(a + tx) = (n + m + x)a. Since (m)(a + x) + (n)(a + tx) = (n + m + x)a we have that
r12 + r13 ≥ n+m. That is, K1 = c1 − (r12 + r13) ≤ (n+m+ x)− (n+m) = x. By Lemma 5.4 K1 ≥ x thus
K1 = x as desired.

Proposition 5.10. Let S be a numerical semigroup minimally generated by S = 〈a, a+x, a+ tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. If n+ x+m ≥ t− 1 then K3 = x.

52



Proof. For any multiple of a+ tx in terms of a and a+ x we have

γ3(a+ tx) = δ31(a) + δ32(a+ x)

(δ31 + δ32 − γ3)a = (tγ3 − δ32)x (29)

Note that γ3(a + tx) = δ31(a) + δ32(a + x) < δ31(a + tx) + δ32(a + tx). Thus δ31 + δ32 − γ3 > 0 and from
equation 29 it follows that tγ3 − δ32 > 0. Notice also that tγ3 − δ32 ≡ 0 (mod a). That is

tγ3 = αa+ δ32 (30)

α > 0. Write a = nt+m where m ∈ 1, 2, . . . , t. Then γ3 is bounded by

γ3 ≥
⌈a
t

⌉
= n+ 1.

We see that γ3 achieves this lower bound in the following equation

γ3(a+ tx) = (n+ x+ 1− (t−m))(a) + (t−m)(a+ x)

γ3 = n+ 1

From the definition of c3, c3 = n+ 1 and by equation 30

tc3 = t(n+ 1) = a+ r32 = nt+m+ r32

which shows r32 = t−m. Substituting these values into equation 29 we find

(r31 + r32 − c3)a = ax

K3 = r31 + r32 − c3 = x

Proposition 5.11. Let S be a numerical semigroup minimally generated by S = 〈a, a+x, a+ tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. Then K3 = λx where

λ = min{z ∈ Z+ : z(n+m+ x)−
⌈zm
t

⌉
(t− 1) ≥ 0}.

Proof. For any multiple of a+ tx in terms of a and a+ x we have

γ3(a+ tx) = δ31(a) + δ32(a+ x)

(δ31 + δ32 − γ3)a = (tγ3 − δ32)x (31)

Note that γ3(a + tx) = δ31(a) + δ32(a + x) < δ31(a + tx) + δ32(a + tx). Thus δ31 + δ32 − γ3 > 0 and from
equation 31 it follows that tγ3 − δ32 > 0. Notice also that tγ3 − δ32 ≡ 0 (mod i). That is

tγ3 = αa+ δ32 (32)

α > 0. For a fixed factorization determined by γ3, δ31, δ32 (note that this fixes α as well), γ3 is bounded by

γ3 ≥
⌈αa
t

⌉
≥
⌈
α(nt+m)

t

⌉
≥ αn+

⌈αm
t

⌉
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We see that γ3 achieves this lower bound in the following equation

γ3(a+ tx) =
(
α(n+m+ x)−

⌈αm
t

⌉
(t− 1)

)
(a) +

(⌈αm
t

⌉
t− αm

)
(a+ x)

= αna+ αxa+
⌈αm
t

⌉
a+

⌈αm
t

⌉
tx− αmx

= α(na+ x(nt+m)−mx) +
⌈αm
t

⌉
(a+ tx)

=
(
αn+

⌈αm
t

⌉)
(a+ tx)

γ3 = αn+
⌈αm
t

⌉
(33)

Now we wish to find a lower bound for all γ3. That is, we wish to find a lower bound for α. For equation 33
to be a valid factorization α must satisfy the following inequalities

α(n+m+ x)−
⌈αm
t

⌉
(t− 1) ≥ 0⌈αm

t

⌉
t− αm ≥ 0

The second inequality holds for all α since
⌈
αm
t

⌉
≥ αm

t . Note from the first inequality that λ as defined in
the statement of the proposition is precisely the lowerbound for α that we are looking for. That is, for all γ3

γ3 ≥ λn+

⌈
λm

t

⌉
From equation 33 γ3 achieves this lower bound, so from the definition of c3, c3 = λn +

⌈
λm
t

⌉
. Substituting

λ into equation 32 gives
tc3 − r32 = λa

Substituting this into equation 31 we find

(r31 + r32 − c3)a = λax

K3 = r31 + r32 − c3 = λx

Corollary 5.12. Let S be a numerical semigroup minimally generated by S = 〈a, a+ x, a+ tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. K3 = x if and only if n+ x+m ≥ t− 1.

Proof. Let K3 = x then by Proposition 5.11 1 = min{z ∈ Z+ : z(n + m + x) −
⌈
zm
t

⌉
(t − 1) ≥ 0}, which

shows n + x + m ≥ t − 1. Going the other way, let n + x + m ≥ t − 1. Then again 1 = min{z ∈ Z+ :
z(n+m+ x)−

⌈
zm
t

⌉
(t− 1) ≥ 0} and by Proposition 5.11, K3 = x

Note that Corollary 5.12 implies Propositon 5.10.

Theorem 5.13. Let S be a numerical semigroup minimally generated by S = 〈a, a + x, a + tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. ∆(S) = {x} if and only if n+ x+m ≥ t− 1.

Proof. Let n+x+m ≥ t−1. Then by Proposition 5.9, K1 = x and by Corollary 5.12, K3 = x. By Lemma 5.5
since K1 = K3 = x, we have that ∆(S) = {x}. Now let ∆(S) = {x}. By Lemma 5.5 we have K3 = x and by
Corollary 5.12 n+ x+m ≥ t− 1.

Corollary 5.14. Let S be a numerical semigroup minimally generated by S = 〈a, a + x, a + tx〉. If a ≥
t(t− 4) + 2 then ∆(S) = {x}

Proof. If a ≡ 0 (mod t) then by Theorem 5.8 ∆(S) = {x}. Otherwise, write a = nt+m,m ∈ {1, 2, . . . , t−1}
and let a ≥ t(t − 4) + 2. Since m,x ≥ 1, when n ≥ t − 3 we have n + m + x ≥ t − 3 + m + x ≥ t − 1.
Additionally when n = t − 4 and m ≥ 2 we also have n + m + x ≥ t − 4 + 2 + x ≥ t − 1. That is, when
a ≥ t(t− 4) + 2, we have n+m+ x ≥ t− 1 and by Theorem 5.13 above, ∆(S) = {x}.
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5.4 Generalized Bound on the Smallest Generator

In this section we show that if S is a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉
with gcd(q, t) = 1 and a ≥ t(t− 1) then ∆(S) = {x}.

Proposition 5.15. Let S be a numerical semigroup minimally generated by S = 〈a, a+x, a+ tx〉. Let a 6≡ 0
(mod t) and write a = nt+m where m ∈ {1, 2, . . . , t− 1}. Set ζ = min{z ∈ N ∪ {0} : q | zt+m}. If ζ ≤ n
and q(n+ x+ ζ + 1) ≥ (ζ + 1)t−m then K1 = x.

Proof. Let S, ζ be as described above and let ζ ≤ n and q(n+ x+ ζ + 1) ≥ (ζ + 1)t−m.
For any multiple of a in terms of a+ qx and a+ tx we have

γ1a = δ12(a+ qx) + δ13(a+ tx)

= (δ12 + δ13)a+ (qδ12 + tδ13)x (34)

The left hand side is equivalent to 0 (mod a) thus, since S is primitive and gcd(a, x) = 1, we have qδ12+tδ13 ≡
0 (mod a). Write qδ12 + tδ13 = αa = α(nk+m) where α > 0 since either δ12 or δ13 must be positive. Notice
that qδ12 ≡ αm (mod t) so

δ12 =
αm+ βt

q

δ13 = αn− β (35)

where −bαmt c ≤ β ≤ αn and q | αm+ βt. Substituting into equation 34 and factoring out an a we find

γ1i =

(
αm+ βt

q
+ αn− β

)
a+ (αa)x

γ1 = α

(
n+ x+

m

q

)
+ β

(
t− q
q

)
(36)

We will show that γ1 is bounded below by the case when α = 1. Note that when α = 1, we have β ≥ ζ ≥ 0
by definition of ζ. Thus we wish to show that for all γ1, γ1 ≥ n+ x+ m

q + ζ t−qq . Since for all values of α we

have β ≥ −bαmt c it suffices to show that for all α > 1, the following inequality holds

n+ x+
m

q
+ ζ

t− q
q
≤ α

(
n+ x+

m

q

)
−
⌊αm
t

⌋( t− q
q

)
(37)

Recall that m < t so 0 ≤
⌊
αm
t

⌋
< α and further, from our assumptions, 0 < (ζ+1)(t−q) ≤ q(n+x)+m.

Thus we see, by cases, that for all α > 1 inequality 37 holds.

(i) Case 1: bαmt c = 0. (
ζ +

⌊αm
t

⌋)
(t− q) = ζ(t− q)

≤ (ζ + 1)(t− q)
≤ qn+ qx+m

≤ (α− 1)(qn+ qx+m)

n+ x+
m

q
+ ζ

t− q
q
≤ α

(
n+ x+

m

q

)
−
⌊αm
t

⌋ t− q
q

(ii) Case 2: bαmt c > 0.(
ζ +

⌊αm
t

⌋)
(t− q) ≤

⌊αm
t

⌋
(ζ + 1)(t− q) ≤ (α− 1)(qn+ qx+m)

n+ x+
m

q
+ ζ

t− q
q
≤ α

(
n+ x+

m

q

)
−
⌊αm
t

⌋ t− q
q
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Hence γ1 is bounded from below by

γ1 ≥ n+ x+
m

q
+ ζ

t− q
q

(38)

Now notice that γ1 achieves this lower bound when δ12 = ζt+m
q and δ13 = n− ζ.

γ1(a) =
ζt+m

q
(a+ qx) + (n− ζ)(q + tx)

γ1(a) =

(
n+ x+

m

q
+ ζ

t− q
q

)
(a)

Thus by the definition of c1, c1 = n+x+ m
q + ζ t−qq . Next we wish to show r12 + r13 = n+ m

q + ζ t−qq . Recall

that we choose r12 + r13 to be maximal, thus by the factorization above we know r12 + r13 ≥ n+ m
q + ζ t−qq .

That is, K1 ≤ c1 −
(
n+ m

q + ζ t−qq

)
= x from Lemma 5.3 we know that K1 = c1 − (r12 + r13) ≥ x. Thus

K1 = x, as desired.

Corollary 5.16. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1. If a ≥ t(t− 2) then K1 = x.

Proof. If a ≡ 0 (mod t) then by Proposition 5.6 K1 = x. Now we will show that if a 6≡ 0 (mod t) and
a ≥ t(t− 2) then K1 = x.

Write a = nt+m where m ∈ {1, 2, . . . , t− 1} and let ζ = min{z ∈ N∪{0} : q | zt+m}. We wish to show
that if a ≥ t(t− 2) then ζ ≤ n and q(n+ x+ ζ + 1) ≥ (ζ + 1)t−m.

We start by showing that if a ≥ t(t − 2) then ζ ≤ n. Note that since gcd(q, t) = 1 there exists some
z ∈ {0, 1, . . . , q − 1} such that zt ≡ −m (mod q). That is, there exists some z ∈ {0, 1, . . . , q − 1} such that
q | zt + m. Now by the definition of ζ, we see ζ ≤ q − 1. Now since t > q, and a ≥ t(t − 2) (which implies
n ≥ t− 2) we have ζ ≤ q − 1 ≤ t− 2 ≤ n.

Next we show that if a ≥ t(t− 2) then q(n+ x) +m ≥ (ζ + 1)(t− q). Let a ≥ t(t− 2). Recall n ≥ t− 2,
x,m, q ≥ 1, and q − 1 ≥ ζ.

q(n+ x) +m ≥ q((t− 2) + 1) +m

≥ q(t− 1)

≥ q(t− q)
≥ (ζ + 1)(t− q)

Thus when a ≥ t(t− 2) all of the conditions in Proposition 5.15 hold and hence K1 = x.

Proposition 5.17. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1. Let a 6≡ 0 (mod t) and write a = nt + m where m ∈ {1, 2, . . . , t − 1}. Set β = min{z ∈ Z+ :
q | zt−m} if β ≤ n then K3 = x if and only if q(x+ n+ β) ≥ βt−m.

Proof. First let q(x+ n+ β) ≥ t−m. For any multiple of a+ tx in terms of a and a+ qx we have

γ3(a+ tx) = δ31(a) + δ32(a+ qx)

(δ31 + δ32 − γ3)a = (tγ3 − qδ32)x (39)

Now since S is primitive implies gcd(a, x) = 1 we have tγ3 − qδ32 ≡ 0 (mod a).

tγ3 = αa+ qδ32

γ3 = αn+
αm+ qδ32

t

We will show that γ3 ≥ n+ β. Let α = 1, then

γ3 = n+
m+ qδ32

t
.
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Since γ3 is an integer, we have qδ32 ≡ −m (mod t). Recall that we define β = min{z ∈ Z+ : q | zt−m} and
by this definition, γ3 ≥ n + β. Now let α be arbitrary. For every value of α > 1 we will see that n + β <
αn+ αm+qδ32

t . Recall β ≤ n and since αm+qδ32
t > αm

t > 0, then for all α > 1, n+ β ≤ 2n < αn+ αm+qδ32
t .

Now we see that γ3 ≥ n+ β.
Note that by our assumption n + x + β − βt−m

q ≥ 0. Then we see that this lower bound is achieved in
the following equation

γ3(a+ tx) =

(
n+ x+ β − βt−m

q

)
(a) +

βt−m
q

(a+ qx)

= (n+ β)(a+ tx)

That is, c3 = n+ β. Thus c3 = n+ m+qr32
t and from this we see tc3 − qr32 = nt+m = i, and substituting

this into equation 39 we see that K3 = r31 + r32 − c3 = x.
Now let K3 = x. That is,

r31 + r32 − c3 = x (40)

For any multiple of a+ tx in terms of a and a+ qx we have

γ3(a+ tx) = δ31(a) + δ32(a+ qx)

(δ31 + δ32 − γ3)a = (tγ3 − qδ32)x

Specifically, xa = K3a = (r31 + r32 − c3)a = (tc3 − qr32)x, so

tc3 = a+ qr32. (41)

From equation 40 and equation 41 we rearrange to find

r31 = x+ c3 − r32

= x+ c3 −
tc3 − a
q

(42)

Since r31 ≥ 0 we see

x+ c3 −
tc3 − a
q

≥ 0

q(x+ c3) ≥ tc3 − a
qx+ a ≥ c3(t− q) (43)

Now for any γ3, δ32 from a valid factorization, which give tγ3 = a+ qδ32 we have that

γ3 =
nt+m+ qδ32

t
= n+

m+ qδ32
t

.

Now let β = min{z ∈ Z+ : q | zt−m}. Then since γ3, r32 ∈ Z, γ3 ≥ n+ β. In particular, c3 ≥ n+ β. From
equation 43 we see

qx+ a ≥ (n+ β)(t− q)
qx+ qn+ qβ +m ≥ βt
q(x+ n+ β) ≥ βt−m

This completes the proof.

Corollary 5.18. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1. If a ≥ t(t− 1) then K3 = x.
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Proof. If a ≡ 0 (mod t) then by Proposition 5.7 K1 = x. Now we will show that if a 6≡ 0 (mod t) and
a ≥ t(t− 1) then K3 = x.

Let a 6≡ 0 (mod t), write a = nt+m where m ∈ {1, 2, . . . , t− 1}, and set β = min{z ∈ Z+ : q | zt−m}.
We wish to show that when a ≥ t(t− 1) (which implies n ≥ t− 1) then β ≤ n and q(x+ n) +m ≥ β(t− q).

We show first that β ≤ n. Since gcd(q, t) = 1, for some z ∈ {1, 2, . . . , q} we will have zt ≡ m (mod q)
and for this z, q | zt−m. Then by the definition of β and by our assumption, β ≤ q ≤ t− 1 ≤ n.

Now we show that q(x+ n) +m ≥ β(t− q). Recall that n ≥ t− 1, x,m, q ≥ 1 and q ≥ β

q(x+ n) +m ≥ q(1 + (t− 1)) +m

≥ q(t)
≥ q(t− q)
≥ β(t− q)

Thus when q ≥ t(t− 1) all of the conditions in Proposition 5.17 hold, hence K3 = x.

Theorem 5.19. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1. If a ≥ t(t− 1) then ∆(S) = {x}.

Proof. Let a ≥ t(t − 1). Then by Corollary 5.16, K1 = x and by Corollary 5.18, K3 = x. By Lemma 5.5
since K1 = K3 = x, we have that ∆(S) = {x}.

5.5 Technical Results

In this section we present some results on the specific values of c1, c− 3, r12, r13, r31, r32 when K1 = K3 = x.

Proposition 5.20. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1. Let ia = ntk +m,m ∈ {1, 2, . . . , kt− 1} and set

ζ = min{z ∈ N ∪ {0} : q | zt+m)}, and ζ ≤ n.

K1 = x if and only if

c1 = x+ n− ζ +
ζt+m

q
, r12 =

ζt+m

q
, and r13 = n− ζ.

Proof. Let c1 = x+ n− ζ + ζt+m
q , r12 = ζt+m

q , and r13 = n− ζ. Then clearly

K1 = c1 − (r12 + r13) = x.

Now let K1 = x. For any multiple of a in terms of a+ qx, a+ tx, we have

γ1(a) = δ12(a+ qx) + δ13(a+ tx)

(γ1 − (δ12 + δ13))(a) = (qδ12 + tδ13)(x)

Thus for any factorization such that γ1−(δ12+δ13) = x we have qδ12+tδ13 = a = nt+m. Since gcd(q, t) = 1,
all δ12, δ13 will be of the following form

δ12 =
αt+m

q
(44)

δ13 = n− α (45)

Where n ≥ α ∈ N ∪ {0} and q | αt+m. Then for all factorizations such that γ1 − (δ12 + δ13) = x we have

γ1 = x+
αt+m

q
+ n− α

γ1 = x+ n+
m

q
+ α

(
t− q
q

)
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Since t > q, γ1 is bounded from below by the case when α is as small as possible. Note that α ≥ ζ by the
definition of ζ. That is,

γ1 ≥ x+ n− ζ +
ζt+m

q

We see that γ1 achieves this lower bound in the following equation

γ1(i) =
ζt+m

q
(a+ qx) + (n− ζ)(a+ tx)

=

(
x+ n− ζ +

ζt+m

q

)
(a)

Then by definition of c1, c1 = x + n − ζ + ζt+m
q . Recall that K1 = x implies c1 = x = r12 + r13. That is,

r12 + r13 = n− ζ + ζt+m
q . From equation 44

n− ζ +
ζt+m

q
= n− α+

αt+m

q

ζ

(
t− q
q

)
= α

(
t− q
q

)
So α = ζ and from equation 44, r12 = ζt+m

q , and r13 = n− ζ.

Proposition 5.21. Let S be a numerical semigroup minimally generated by S = 〈a, a + qx, a + tx〉 with
gcd(q, t) = 1 and write a = nt+m,m ∈ {1, 2, . . . , t− 1}. Let β = min{z ∈ Z+ : q | zt−m}. Then K3 = x if
and only if c3 = n+ β, r31 = n+ x+ β − βt−m

q , r32 = βt−m
q .

Proof. Let c3 = n+ β, r31 = n+ x+ β − βt−m
q , r32 = βt−m

q . Clearly

K3 = r31 + r32 − c3 =

(
n+ x+ β − βt−m

q

)
+

(
βt−m
q

)
− (n+ β) = x.

Now let K3 = x. For any multiple of a+ tx in terms of a and a+ qx we have

γ3(a+ tx) = δ31(a) + δ32(a+ qx)

(δ31 + δ32 − γ3)a = (tγ3 − qδ32)x

Specifically, xa = K3a = (r31 + r32 − c3)a = (tc3 − qr32)x, so

tc3 = a+ qr32. (46)

For any γ3, δ32 from a valid factorization, which give tγ3 = a+ qδ32 we have that

γ3 =
nt+m+ qδ32

t
= n+

m+ qδ32
t

.

Now let β = min{z ∈ Z+ : q | zt−m}. Then since γ3, r32 ∈ Z,

γ3 ≥ n+ β. (47)

By Proposition 5.17 since K3 = x, n + x + β − βt−m
q ≥ 0. Then we see that the lower bound shown in

equation 47 is achieved in the following equation

γ3(a+ tx) =

(
n+ x+ β − βt−m

q

)
(a) +

βt−m
q

(a+ qx)

= (n+ β)(a+ tx)

That is,
c3 = n+ β.
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Now by equation 46

t(n+ β) = a+ qr32 = nt+m+ qr32

r32 =
βt−m
q

Now since K3 = r31 + r32 − c3 = x, we have

r31 = x+ n+ β − βt−m
q

6 Compound Semigroups

Now, we will examine various invariants related to a certain kind of numerical semigroups, which we call
compound numerical semigroups:

Definition 6.1. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Then S = 〈n0, n1, . . . , nx〉 is compound.

Example 6.2. Let a1 = 5, a2 = 3, a3 = 4, b1 = 7, b2 = 11, and b3 = 9. Then, we set

n0 = 5 · 3 · 4 = 60

n1 = 7 · 3 · 4 = 84

n2 = 7 · 11 · 4 = 308

n3 = 7 · 11 · 9 = 693.

So, S = 〈60, 84, 308, 693〉 is compound. Notice that the generators are increasing, even though it is not the
case that a1 ≤ a2 ≤ a3 nor b1 ≤ b2 ≤ b3. The condition that ai < bi for each i is sufficient for having
increasing generators.

Lemma 6.3. If S = 〈n0, n1, . . . , nx〉 is a numerical semigroup, then there exists some k ∈ Q+ such that kS
is compound.

Proof. Order the generators of S so that n0 < n1 < · · · < nx. For each i ∈ [1, x], set ai = ni−1

gcd(ni−1,ni)
and

bi = ni

gcd(ni−1,ni)
. Then, ai

bi
= ni−1

ni
, where gcd(ai, bi) = 1 and ai < bi. Set mi = b1b2 · · · biai+1ai+2 · · · ax.

Then, mi−1

mi
= ai

bi
= ni−1

ni
. We know that

m0 = a1a2 · · · ax =
n0n1 · · ·nx−1

gcd(n0, n1) gcd(n1, n2) · · · gcd(nx−1, nx)
.

Similarly, if k = n1n2···nx−1

gcd(n0,n1) gcd(n1,n2)··· gcd(nx−1,nx)
, then for each i ∈ [0, x], mi = kni, so 〈m0,m1, . . . ,mx〉 =

kS, where 〈m0,m1, . . . ,mx〉 is compound.

In the proof of Lemma 6.3, notice that because ai
bi

= ni−1

ni
and gcd(ai, bi) = 1, k is the smallest z ∈ Q+

such that zS is compound. If we take l to be any positive integer multiple of k (so l = αk where α ∈ N),
then lS is also compound. (To see why this is, multiply both a1 and b1 by α to obtain the form necessary for
a compound semigroup.) If we had started by considering lS, we would have found that multiplying lS by
1
α would have given us kS, the smallest multiple of lS that is compound. Therefore, an easy way to check
whether or not a semigroup is compound is to determine k and compare it with 1. If k ≤ 1, then the original
semigroup is compound. If k > 1, then it is not. This is equivalent to saying that a numerical semigroup
S = 〈n0, n1, . . . , nx〉 is compound if and only if

n1n2 · · ·nx−1 ≤ gcd(n0, n1) gcd(n1, n2) · · · gcd(nx−1, nx).

60



Example 6.4. Suppose we are given the numerical semigroup S = 〈40, 60, 81〉 and want to determine
whether or not it is compound. We can check to see that

60 = gcd(40, 60) gcd(60, 81) = 20 · 3.

Therefore, S is compound. Furthermore,

a1 =
40

gcd(40, 60)
=

40

20
= 2

a2 =
60

gcd(60, 81)
=

60

3
= 20

b1 =
60

gcd(40, 60)
=

60

20
= 3

b2 =
81

gcd(60, 81)
=

81

3
= 27.

Example 6.5. What about the numerical semigroup S = 〈60, 70, 77, 88〉? Applying the method in Lemma
6.3, we get that

k =
70 · 77

gcd(60, 70) gcd(70, 77) gcd(77, 88)
=

70 · 77

10 · 7 · 11
= 7 6= 1.

Therefore, S is not compound, although 7S is, with a1 = 6, a2 = 10, a3 = 7, b1 = 7, b2 = 11, and b3 = 8.

Example 6.6. Finally, consider the numerical semigroup S = 〈36, 48, 60〉. We check to see that

48 ≤ gcd(36, 48) gcd(48, 60) = 12 · 12 = 144,

so k = 48
144 = 1

3 . Therefore, S is compound. In fact, S/3 = 〈12, 16, 20〉 is also compound with a1 = 3,
a2 = 4, b1 = 4, and b2 = 5. There is no single set of ais and bis for S, but one such set can be obtained by
multiplying a1 and b1 by 1

k = 3. Then, we can say that S is compound with a1 = 9, a2 = 4, b1 = 12, and
b2 = 5.

The invariants that we will explore (delta set, catenary degree, specialized elasticity, etc.) do not change
when a numerical semigroup is multiplied by a constant because numerical semigroups that are constant
multiples of one another are isomorphic. Every numerical semigroup is isomorphic to a compound semi-
group, and these compound semigroups represent isomorphism classes that partition the set of all numerical
semigroups. Therefore, if one were to determine these invariants for all compound numerical semigroups,
one would know these invariants for all semigroups. However, the results in this paper do not categorize all
semigroups because they rely on the condition that a semigroup is primitive. The following lemma gives a
necessary and sufficient condition for a compound numerical semigroup to be primitive:

Lemma 6.7. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉, then S is primitive if and only if gcd(ai, bj) = 1
whenever i ≥ j.

Proof. (⇒) First, to show that the primitivity of S implies that gcd(ai, bj) = 1 whenever i ≥ j, we will prove
the contrapositive. Suppose the gcd(ai, bj) = z > 1 for some i ≥ j. Then, every generator is a multiple of ai
or bj . Thus, since z | ai and z | bj , z divides every generator. Therefore, S is not primitive.

(⇐) Now, suppose that gcd(ai, bj) = 1 whenever i ≥ j. For the sake of contradiction, assume that
gcd(n0, · · · , nx) = z > 1, and let p be a prime divisor of z. Since p | n0, there is some maximal i where
p | ai. Since p | ai but gcd(p, ai+1 · · · ax) = 1, we must have p | b1 · · · bi. Hence there is some j ∈ [1, i] such
that p | bj , but then gcd(ai, bj) ≥ p, a contradiction. Thus, S must be primitive.

Lemma 6.8. If S = 〈n0, n1, . . . , nx〉 is a numerical semigroup, then there is a unique k ∈ N such that kS is
primitive.
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Proof. First, we show that such a k exists. If S is primitive, then k = 1, so assume S is not primitive. Then,
gcd(n0, n1, . . . , nx) = z > 1. Set k = 1

z , so 1
z · S = 〈n0

z ,
n1

z , . . . ,
nx

z 〉. Then, gcd(n0

z ,
n1

z , . . . ,
nx

z ) = 1, so 1
z · S

is primitive.
Now we show that k is unique. Assume that for some other k′ ∈ N, k′S is also primitive. Without loss of

generality, suppose k ≤ k′. If k | k′, then k′

k ∈ N. We can write k′S = k′

k (kS), so k′S is an integer multiple

of a primitive semigroup. Since k′S is also primitive, this implies that k′ = k. Now, if k - k′, then k′

k ∈ Q\N.

Again, we can write k′S = k′

k (kS). All generators in kS and k′S are natural numbers, which implies that k
divides all the generators of kS, so the generators of S are integers, and kS is not primitive, a contradiction.
Therefore, k is unique.

Each numerical semigroup has exactly one constant multiple that is a primitive semigroup and has an
infinite number of multiples that are compound semigroups. In this paper, we will look at the semigroups
where these two conditions coincide, that is, where a compound numerical semigroup is also primitive.

One special case of compound numerical semigroups that we will examine in detail is when a1 = a2 =
· · · = a and b1 = b2 = · · · = b. This results in semigroups of the form 〈ax, ax−1b, . . . , abx−1, bx〉, which are
generated by geometric progressions.

To see that ax, ax−1b, . . . , abx−1, bx is a geometric progression, set n = ax and r = b
a . Then,

ax, ax−1b, . . . , abx−1, bx

= ax, ax
(
b

a

)
, . . . , ax

(
b

a

)x−1
, ax

(
b

a

)x
= n, nr, . . . , nrx−1, nrx.

Whenever we work with these semigroups, which we call geometric, we will assume a < b to ensure the
generators are in increasing order, and we will assume gcd(a, b) = 1 to ensure that the greatest common
divisor of all the generators is 1.

Example 6.9. Let a = 3, b = 5, and x = 3. Then, we have a geometric semigroup in embedding dimension
4: 〈33, 32 · 5, 3 · 52, 53〉. Notice that the embedding dimension of the semigroup is x+ 1. This is always the
case for geometric semigroups.

6.1 Delta Sets

Proposition 6.10. Let S = 〈n0, n1, . . . , nx〉 be a primitive numerical semigroup such that for each i ∈
[0, x − 1], βi = gcd(n0, n1, . . . , ni) > 1 and αi = lcm(bi,ni+1)

ni+1
> 1. If m ∈ Z and z, z′ are two linear

combinations of {n0, n1, . . . , nx} that equal m, then z and z′ can be connected by x equations of the following
form:

α0n1 = r00n0

α1n2 = r10n0 + r11n1

· · ·

αini+1 = ri0n0 + · · ·+ riini

· · ·

αx−1nx = r(x−1)0n0 + · · ·+ r(x−1)(x−1)nx−1

where each rab ∈ N0. Additionally, if the coefficients of z, z′ are all non-negative, then all intermediate
factorizations of m have non-negative coefficients.

Proof. First, notice that because gcd(n0, n1, . . . , nx) = 1, we can write any integer (even one not in S) as a
linear combination of the generators of S. For the sake of this proof, we will allow linear combinations with
negative coefficients to be factorizations of a number.

We will prove the result by induction on x. For the base case, let x = 1, so S = 〈n0, n1〉 and clearly

gcd(n0) = n0 > 1. Also, gcd(n0, n1) = 1; otherwise, S is not primitive. So α0 = lcm(n0,n1)
n1

= n0. Let m ∈ Z,
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and let y0n0 + y1n1 = z0n0 + z1n1 be two factorizations of m. We want to show that we can connect these
two factorizations of m by making swaps using the equation n0n1 = n1n0 (the first of the above equations
when α0 = n0 and r00 = n1). Since n0 divides the first terms of the factorizations and gcd(n0, n1) = 1, we
know that y1 ≡ z1 (mod n0). Without loss of generality, assume y1 ≥ z1. Then y1 − kn0 = z1 for some
k ≥ 0. If k = 0, then we are done because y1 = z1, which implies that y0 = z0, and our factorizations are
the same. So, assume k ≥ 1. Using the equation n0n1 = n1n0 to make swaps k times, we arrive at the
intermediate factorization:

y0n0 + y1n1 = (y0 + kn1)n0 + (y1 − kn0)n1.

Then since y1 − kn0 = z1, y0 + kn1 = z0, so our factorizations are the same. Notice that if y0, y1, z0, z1 ≥ 0,
then all intermediate factorizations have non-negative coefficients. Thus, the result holds when x = 1.

Now, let x ≥ 1, and suppose that for any numerical semigroup in embedding dimension x + 1 of the
form above, any x equations of the form above connect factorizations of every integer in the semigroup.
In addition assume that if two factorizations have non-negative coefficients, any intermediate factorizations
will have non-negative coefficients. Let S = 〈n0, n1, . . . , nx+1〉 be a numerical semigroup in embedding

dimension x + 2 such that for each i ∈ [0, x], βi = gcd(n0, n1, . . . , ni) > 1 and αi = lcm(bi,ni+1)
ni+1

> 1. Let

m ∈ Z, and let
∑x+1
j=0 yjnj =

∑x+1
j=0 zjnj be two factorizations of m. We will show that we can connect

these two factorizations using swaps generated by the equations above. By our inductive hypothesis, βx
divides all the generators except for nx+1. Since S is a primitive numerical semigroup, gcd(βx, nx+1) = 1,
so αx = βx. Therefore, αx divides all generators except for nx+1. Thus, yx+1 ≡ zx+1 (mod αx). Without
loss of generality, assume that yx+1 ≥ zx+1, so yx+1 − kαx = zx+1 for some k ≥ 0.

If k = 0, then yx+1 = zx+1, and we can write m − yx+1nx+1 =
∑x
j=0 yjnj =

∑x
j=0 zjnj , which can

be factored using the generators of M = 〈n0, n1, . . . , nx〉. By hypothesis, M is not primitive because
gcd(M) = βx. However, M/βx = 〈n0

βx
, n1

βx
, . . . , nx

βx
〉 is primitive and has all the properties necessary for our

inductive hypothesis. Since M/βx has embedding dimension x + 1, there are x equations that generate its
monoid of swaps. They are of the form:

αi
βx
ni+1 = ri0n0 + · · ·+ riini

where 0 ≤ i ≤ x−1 and rab ∈ N0. In particular, when multiplying these equations by βx, we obtain a subset
of the equations that generate the monoid of swaps for S. These equations have the form above, so we are
done.

Suppose, however, that k ≥ 1. Then we can obtain an intermediate factorization for m using the equation
αxnx+1 = rx0n0 + · · ·+ rxxnx, where rab ∈ N0:

y0n0 + · · ·+ yxnx + yx+1nx+1 = (y0 + krx0)n0 + · · ·+ (yx + krxx)nx + (yx+1 − kαx)nx+1.

If each yj , zj ≥ 0, then all intermediate factorizations will also have non-negative coefficients. Now, since

yx − kαx = zx+1, we can connect this new factorization to
∑x+1
j=0 zjnj using the first x of our available

equations. Therefore, any two linear combinations of {n0, n1, . . . , nx+1} can be connected using equations of
the form above, and as long as the coefficients on the linear combinations are non-negative, all intermediate
factorizations will have non-negative coefficients as well.

Corollary 6.11. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive. If m ∈ S and z, z′ are two linear
combinations of {n0, n1, . . . , nx} that equal m, then z and z′ can be connected by x equations of the following
form:

a1n1 = b1n0

a2n2 = b2n1

· · ·

aini = bini−1

· · ·
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axnx = bxnx−1.

Additionally, if the coefficients z, z′ are all non-negative, then all intermediate factorizations of m have
non-negative coefficients.

Proof. Since S is primitive, by Lemma 6.7 we know that gcd(ai, bj) = 1 whenever i ≥ j.
Now, for each i ∈ [0, x− 1],

gcd(n0, n1, . . . , ni)

= gcd(a1a2 · · · ax, b1a2 · · · ax, . . . , b1b2 · · · biai+1 · · · ax)

=(ai+1ai+2 · · · ax) · gcd(a1a2 · · · ai, b1a2 · · · ai, . . . , b1b2 · · · bi).

Notice that gcd(a1a2 · · · ai, b1a2 · · · ai) = a2 · · · ai. Also, gcd(a2 · · · ai, b1b2a3 · · · ai) = a3 · · · ai. In the
same way, each new term reduces the greatest common divisor of (a1a2 · · · ai, b1a2 · · · ai, . . . , b1b2 · · · bi)
until we have gcd(ai, b1b2 · · · bi) = 1. Therefore:

gcd(n0, n1, . . . , ni)

=(ai+1ai+2 · · · ax) · gcd(a1a2 · · · ai, b1a2 · · · ai, . . . , b1b2 · · · bi)
=(ai+1ai+2 · · · ax) · 1
>1.

Also,

lcm(ai+1ai+2 · · · ax, ni+1)

= lcm(ai+1ai+2 · · · ax, b1b2 · · · bi+1ai+2 · · · ax)

=ai+1b1b2 · · · bi+1ai+2 · · · ax
=ai+1ni+1

so lcm(ai+1ai+2···ax,ni+1)
ni+1

= ai+1. Therefore, by Proposition 6.10, the above equations are of the proper

form to connect any two factorizations z, z′ of an element m ∈ S. Furthermore, if z and z′ have only
non-negative coefficients, then each intermediate factorization obtained using these equations will have non-
negative coefficients.

Corollary 6.12. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉, where a < b and gcd(a, b) = 1. If m ∈ S and z, z′ are
two linear combinations of {ax, ax−1b, . . . , bx} that equal m, then z and z′ can be connected by x equations
of the following form:

bax−(j−1)bj−1 = aax−jbj

for j ∈ [1, x]. Additionally, if the coefficients z, z′ are all non-negative, then all intermediate factorizations
of m have non-negative coefficients.

Proof. The proof follows immediately from Corollary 6.11 since S and the connecting equations have the
proper form.

Recall the following proposition from [2, Proposition 2.10]:

Proposition 6.13. Let S = 〈n0, n1, . . . , nx〉 where {n0, n1, . . . , nx} is the minimal set of generators. Then

min ∆(S) = gcd{ni − ni−1 : 1 ≤ i ≤ x}.

The following lemma is from [7, Lemma 3]:

Lemma 6.14. If S is a primitive numerical semigroup, then

min ∆(S) = gcd ∆(S).
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Theorem 6.15. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive and M = max{b1 − a1, . . . , bx − ax} and
m = gcd(b1 − a1, . . . , bx − ax), then ∆(S) ⊆ [m,M ] ∩mN.

Proof. By Proposition 6.13, min ∆(S) is the greatest common factor of the differences in consecutive gener-
ators. The differences between consecutive generators are:

c1 = (b1 − a1)a2a3 · · · ax

c2 = (b2 − a2)b1a3 · · · ax
· · ·

cx = (bx − ax)b1b2 · · · bx−1.

Clearly gcd(c1, c2, . . . , cx) = k ·gcd(b1−a1, . . . , bx−ax) = km ≥ m for some k ∈ N. So, min ∆(S) = km ≥ m.
Let z ∈ S. Then, it is possible to connect any two factorizations of z using swaps of the form aini = bini−1

by Corollary 6.11. The maximum distance between the length of factorizations each time one of these
swaps is performed is max{b1 − a1, . . . , bx − ax} = M . Therefore, max ∆(z) ≤ M . Because z is arbitrary,
max ∆(S) ≤M .

By Lemma 6.14, min ∆(S) = km = gcd ∆(S). Therefore, all elements in ∆(S) must be multiples of km
and hence multiples of m. So, ∆(S) ⊆ [m,M ] ∩mN.

Corollary 6.16. Let a1, . . . , ax, b1, . . . , bx be integers such that 0 < k = bi − ai for each i ∈ [1, x]. For
j ∈ [0, x], set nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive, then ∆(S) = {k}.

Proof. This is a special case of Theorem 6.15 where max{b1− a1, . . . , bx− ax} = k and gcd(b1− a1, . . . , bx−
ax) = k. Thus, ∆(S) ⊆ [k]. Also, ∆(S) 6= {} because the element axnx = bxnx−1 has a factorization of two
different lengths. So, ∆(S) = {k}.

Corollary 6.17. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉, where a < b and gcd(a, b) = 1. Then, ∆(S) = {b− a}.

Proof. This is a special case of Corollary 6.16 when a1 = a2 = · · · = ax = a and b1 = b2 = · · · = bx = b. For
each i ∈ [0, x], bi − ai = b− a, so ∆(S) = {b− a}.

Corollaries 6.16 and 6.17 guarantee that, given any m ∈ N, there are in infinite number of numerical
semigroups in every embedding dimension that have delta set {m} because for any relatively prime numbers
a and b such that b− a = m, then ∆(〈ax, ax−1b, . . . , abx−1, bx〉) = {m}.

Lemma 6.18. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive and fix some ni. If k = min{z ∈
N : zni ∈ 〈n0, . . . , ni−1, ni+1, · · · , nx〉} and kni = c0n0 · · · ci−1ni−1 + ci+1ni+1 + · · · + cxnx, then either
c0 = · · · = ci−1 = 0 or ci+1 = · · · = cx = 0.

Proof. Set A = ai+1 · · · ax, B = b1b2 · · · bi. Then, ni = AB. Note that gcd(A,B) = 1 because S is primitive.
If kni is the smallest multiple of ni that can be written in terms of the other generators, we may write kni
as

kni = kAB = c0n0 + c1n1 + · · ·+ ci−1ni−1 + ci+1ni+1 + · · ·+ cxnx

= c0(a1 · · · ai)A+ c1(b1a2 · · · ai)A+ · · ·+ ci−1(b1 · · · bi−1ai)A
+ ci+1(bi+1ai+2 · · · ax)B + · · ·+ cx(bi+1 · · · bx)B.

Now, take both sides modulo B. The result is 0, hence

0 ≡ c0(a1 · · · ai)A+ c1(b1a2 · · · ai)A+ · · ·+ ci−1(b1 · · · bi−1ai)A (mod B)

but since gcd(A,B) = 1 we may divide by A to get

0 ≡ c0(a1 · · · ai) + c1(b1a2 · · · ai) + · · ·+ ci−1(b1 · · · bi−1ai) (mod B).
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Hence there is some nonnegative integer l such that lB = c0(a1 · · · ai)+c1(b1a2 · · · ai)+· · ·+ci−1(b1 · · · bi−1ai).
If l = 0, then c0 = c1 = · · · = ci−1 = 0. If instead l > 0, then we can multiply both sides by A to get

lAB = c0(a1 · · · ai)A+ c1(b1a2 · · · ai)A+ · · ·+ ci−1(b1 · · · bi−1ai)A.

If 0 < l < k, we have a contradiction because then kni is not the smallest multiple of ni that can be written
in terms of the other generators. So, k ≤ l. Thus,

kAB ≤ lAB = c0(a1 · · · ai)A+ c1(b1a2 · · · ai)A+ · · ·+ ci−1(b1 · · · bi−1ai)A ≤ kAB,

which implies that

kAB = c0(a1 · · · ai)A+ c1(b1a2 · · · ai)A+ · · ·+ ci−1(b1 · · · bi−1ai)A

and ci+1 = · · · = cx = 0.

Proposition 6.19. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive, then for any generator ni of S,
min{ai, bi+1} = min{z ∈ N : zni ∈ 〈n0, . . . , ni−1, ni+1, · · · , nx〉} (where b1n0 is the smallest multiple of n0
because there is no a0, and axnx is the smallest multiple of nx because there is no bx+1).

Proof. Fix some generator ni, and set k = min{z ∈ N : zni ∈ 〈n0, . . . , ni−1, ni+1, · · · , nx〉}. By Lemma 6.18,
every factorization of kni (not involving ni) will either be in terms of only generators larger than ni or only
generators smaller than ni.

Suppose first that we have a factorization of kni that is only in terms of generators larger than ni. Then,

kni = ci+1ni+1 + · · ·+ cxnx

for ci+1, . . . , cx ∈ N0. We can rewrite this as

k(b1 · · · biai+1 · · · ax) = ci+1(b1 · · · bi+1ai+2 · · · ax) + · · ·+ cx(b1 · · · bx).

Dividing through by (b1 · · · bi), we obtain

k(ai+1 · · · ax) = ci+1(bi+1ai+2 · · · ax) + · · ·+ cx(bi+1 · · · bx).

Notice that bi+1 divides every term on the right side of the equation. Also, because S is primitive, we
have gcd(bi+1, ai+1 · · · ax) = 1. Thus, bi+1 | k, which implies that k ≥ bi+1. In fact, k = bi+1 because
bi+1ni = ai+1ni+1.

Suppose now that that we have a factorization of kni that is only in terms of generators smaller than ni.
Then,

kni = c0n0 + · · ·+ ci−1ni−1

for c0, . . . , ci−1 ∈ N0. We can rewrite this as

k(b1 · · · biai+1 · · · ax) = c0(a1 · · · ax) + · · ·+ ci−1(b1 · · · bi−1ai · · · ax).

Dividing through by (ai+1 · · · ax), we obtain

k(b1 · · · bi) = c0(a1 · · · ai) + · · ·+ ci−1(b1 · · · bi−1ai).

Notice that ai divides every term on the right side of the equation. Also, because S is primitive, we have
gcd(ai, b1 · · · bi) = 1. Thus, ai | k, which implies that k ≥ ai. In fact, k = ai because aini = bini−1.

It is clear that if i = 0, then any factorization of kn0 (other than kn0) will be in terms of larger generators.
So, k = b1. If i = x, then any factorization of knx (other than knx) will be written in terms of smaller
generators. In this case, k = ax. Otherwise, 1 ≤ i ≤ x−1. It is possible to write some multiple of ni in terms
of exclusively larger generators (consider bi+1ni = ai+1ni+1), and it is possible to write some multiple of ni
in terms of exclusively smaller generators (consider aini = bini−1). Therefore, since we want to minimize k,
k = min{ai, bi+1}.

66



Corollary 6.20. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 where a < b and gcd(a, b) = 1. Then, for each generator
aibx−i except for ax, a = min{z ∈ N : z ·aibx−i ∈ 〈{ax, ax−1b, ax−2b2, . . . , abx−1, bx}\aibx−i〉}. Furthermore,
b = min{z ∈ N : z · ax ∈ 〈ax−1b, ax−2b2, . . . , abx−1, bx〉}.

Proof. This is a special case of Proposition 6.19 when a1 = · · · ax = a and b1 = · · · = bx = b. Notice that
because a < b, for every i ∈ [1, x − 1], the smallest multiple of ax−ibi that can be written in terms of the
other generators is min{a, b} = a.

6.2 Catenary Degree

Theorem 6.21. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive, then c(S) = max{b1, b2, . . . , bx}.

Proof. Let b = max{b1, b2, . . . , bx}. First, we show that c(S) ≤ b. Let S be a numerical semigroup with the
form above, and let m ∈ S. By Corollary 6.11, we can connect any two factorizations of m by making swaps
of ai of one generator for bi of another. Because ai < bi, the distance between factorizations separated by one
such swap is bi. Therefore, since each bi ≤ b, it is possible to make a b-chain connecting the factorizations of
m. So, c(m) ≤ b and c(S) ≤ b.

Now to show that c(S) = b, we have only to demonstrate that there exists some m ∈ S such that c(m) = b.
Fix some i such that bi = b. Consider the element m = bini−1. First we will show that any factorization of
m involves only generators less than or equal to ni−1 or only generators greater than or equal to ni.

Set A = aiai+1 · · · ax, B = b1b2 · · · bi. Note that gcd(A,B) = 1 because S is primitive. We may write m
as

m = AB = c0n0 + c1n1 + · · ·+ ci−1ni−1 + cini + ci+1ni+1 + · · ·+ cxnx

= c0(a1 · · · ai−1)A+ c1(b1a2 · · · ai−1)A+ · · ·+ ci−1(b1 · · · bi−1)A

+ ci(ai+1 · · · ax)B + ci+1(bi+1ai+2 · · · ax)B + · · ·+ cx(bi+1 · · · bx)B.

Now, take m modulo B. The result is 0, so

0 ≡ c0(a1 · · · ai−1)A+ c1(b1a2 · · · ai−1)A+ · · ·+ ci−1(b1 · · · bi−1)A (mod B).

Since gcd(A,B) = 1, we can divide by A to get

0 ≡ c0(a1 · · · ai−1) + c1(b1a2 · · · ai−1) + · · ·+ ci−1(b1 · · · bi−1) (mod B).

Thus, there is some non-negative integer k such that

kB = c0(a1 · · · ai−1) + c1(b1a2 · · · ai−1) + · · ·+ ci−1(b1 · · · bi−1)

. If k = 0, then c0 = c1 = · · · = ci−1 = 0. If instead k ≥ 1, then we multiply both sides by A to get

kAB = c0(a1 · · · ai−1)A+ c1(b1a2 · · · ai−1)A+ · · ·+ ci−1(b1 · · · bi−1)A ≤ AB.

So, k = 1 and ci+1 = · · · = cx = 0. Therefore, any factorization of m is either written entirely in terms of
{n0, n1, . . . , ni−1} or entirely in terms of {ni, ni+1, . . . , nx}.

Now, let z, z′ be two factorizations of m such that z involves only generators less than or equal to ni−1
and z′ involves only generators greater than or equal to ni. (There always exist such factorizations. For
instance, take z to be bini−1 and z′ to be aini.) Because gcd(z, z′) = 1, d(z, z′) = max{|z|, |z′|}. We know
|z| > |z′| because z involves strictly smaller generators. Thus, d(z, z′) = |z|. Now |z| ≥ bi because bini−1
involves only the largest generator less than or equal to ni−1. So, d(z, z′) ≥ bi. If we disallow swaps of
length bi or greater, z will be disconnected from z′. Thus, the c(m) ≥ bi = b. However, we already know
that c(S) ≤ b. Hence, c(m) = b and c(S) = b.

Corollary 6.22. If S = 〈ax, ax−1b, ax−2b2, . . . , abx−1, bx〉 for gcd(a, b) = 1 and a < b, then c(S) = b.

Proof. This is a special case of Theorem 6.21 when a1 = a2 = · · · = ax = a and b1 = b2 = · · · = bx = b. So,
c(S) = max{b1, b2, . . . , bx} = b.
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6.3 Specialized Elasticity

Definition 6.23. We say an element m of a numerical semigroup S is k-unique if there is a unique way to
factor m in S and this unique factorization has length k.

Proposition 6.24. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive, then all sums of k atoms are k-unique
if k < min{a1, a2, . . . , ax}.

Proof. We will prove the result by induction on embedding dimension of S.
First, suppose S has embedding dimension 2, so that S = 〈a, b〉. Fix some k such that k < a. Let m

be an element of S that has a factorization of length k. Then we can write m = c0a + c1b = d0a + d1b, for
c0, c1, d0, d1 ∈ N0 where c0 + c1 = k. Since S is primitive, gcd(a, b) = 1 by Lemma 6.7. So, c1 ≡ d1 (mod a).
If c1 = d1, then our factorizations are the same, and we are done.

So, suppose c1 6= d1. By Corollary 6.11, we can connect these two factorizations using swaps of the form
ab = ba. However, no such swap can be made on the factorization c0a + c1b because c0, c1 ≤ k < a < b, so
subtracting either a or b from either of the coefficients results in a factorization with a negative coefficient.
Therefore, we cannot have c1 6= d1, so the factorizations are the same.

Now, for the inductive step, assume the result holds for any compound semigroup of embedding di-
mension x. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Let S = 〈n0, n1, . . . nx〉 be a primitive compound semigroup in embedding
dimension x+ 1. Let ai = min{a1, a2, . . . , ax}, and fix some k such that k < ai.

Let m be an element in S that has a factorization of length k. Then, we can write m =
∑x
j=0 cjnj =∑x

j=0 djnj , where cj , dj ∈ N0 and
∑x
j=0 cj = k. All generators except nx are divisible by ax. Further,

because S is primitive, by Lemma 6.7, gcd(ax, nx) = 1. Thus, cx ≡ dx (mod ax). If cx = dx, then
m−cxnx

ax
=
∑x−1
j=0 cj

(
nj

ax

)
is a factorization of n−cxnx

ax
in 〈n0

ax
, n1

ax
, . . . , nx−1

ax
〉 that has length k − cx ≤ k <

ai. Notice that ai = min{a1, a2, . . . , ax} ≤ min{a1, a2, . . . , ax−1}. So, by the inductive hypothesis, this

factorization is unique. Therefore, the factorizations m−cxnx

ax
=
∑x−1
i=0 ci

(
ni

ax

)
=
∑x−1
j=0 dj

(
nj

ax

)
are identical,

so m =
∑x
i=0 cini =

∑x
j=0 djnj are the same factorizations of m in S.

Suppose now that cx 6= dx. If cx > dx, then we can subtract some positive multiple of nx and add a linear
combination of the smaller generators to get from

∑x
j=0 cjnj to

∑x
j=0 djnj . That is, ynx =

∑x−1
i=0 yini where

yi ∈ Z and 0 < y ≤ cx ≤ k. Since ax divides each term on the right side of the equation and gcd(ax, nx) = 1,
ax | y. This implies ai ≤ ax ≤ y ≤ k. However, we assumed k < ai. Therefore, cx 6> dx.

So, suppose dx > cx. Then, we can subtract a linear combination of smaller generators and add some
positive multiple of nx to get from

∑x
j=0 cjnj to

∑x
j=0 djnj . That is, znx =

∑x−1
i=0 zini where zi ∈ Z and∑x−1

i=0 zi ≤ k. We cannot have z > k, because then znx >
∑x−1
i=0 zini, so z ≤ k. Again, since ax divides each

term on the right side of the equation and gcd(ax, nx) = 1, ax | z. This implies ai ≤ ax ≤ z ≤ k. However,
we assumed ai > k. Therefore, there are no other factorizations for m.

Thus, all sums of k atoms are k-unique.

The bound in Proposition 6.24 that k < min{a1, . . . , ax} is important because if k ≥ min{a1, a2, . . . , ax},
then there is almost always some sum of k atoms will not be k-unique. Consider the following example:

Example 6.25. Let S = 〈15, 55, 143〉, so S is compound with a1 = 3, a2 = 5, b1 = 11, and b2 = 13. Set
k = min{a1, a2} = 3. Then, 165 = 3(55) = 7(15) has a factorization of length 3 and of length 7, so S is not
3-unique.

Corollary 6.26. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉, then for any k where k < min{a1, a2, · · · , ax},
ρk(S) = k.

Corollary 6.27. Let S = 〈ax, ax−1b, ax−2b2, . . . , abx−1, bx〉 be a numerical semigroup such that gcd(a, b) = 1
and a < b. Then all sums of k atoms are k-unique if k < a.

Proof. This is a special case of Proposition 6.24 when a1 = a2 = · · · = ax = a and b1 = b2 = · · · = bx = b.
Thus, all sums of k atoms are k-unique if k < min{a} = a.
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Corollary 6.28. Let S = 〈ax, ax−1b, ax−2b2, . . . , abx−1, bx〉 be a numerical semigroup such that gcd(a, b) = 1
and a < b. For any k where k < a, ρk(S) = k.

The motivation for the following theorem comes from the result in [8] that

ρ(S) = lim
k→∞

ρk(S)

k
.

It is also shown in [8] that for any numerical semigroup S, ρ(S) is the largest generator divided by the
smallest generator. Therefore, if S = 〈n0, n1, . . . , nx〉, then

ρ(S) =
nx
n0

= lim
k→∞

ρk(S)

k
,

which implies that limk→∞ ρk(S) = knx

n0
. However, specialized elasticity is always an integer and nx

n0
6∈ Z for

any semigroup, so we consider values of k that are multiples of n0:

Lemma 6.29. If S = 〈n0, n1, . . . nx〉 is a primitive semigroup, then for k = cn0 where c ∈ N, ρk(S) = cnx.

Proof. Let c ∈ N, and set k = cn0. Let m ∈ S such that m =
∑x
i=0 cini where

∑x
i=0 ci = k. We know that

m ≤ knx. Substituting in k = cn0, we have m ≤ (cn0)nx = (cnx)n0. Since the longest factorization of m
contains only the smallest generator, every factorization of m will have length less than or equal to cnx. We
attain a length of cnx when m = knx = (cnx)n0, so ρk(S) = cnx.

6.4 Apery Sets

Definition 6.30. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive. A factorization of an element
n ∈ S is i-basic if there are integers c0, . . . , ci−1, ci+1, . . . , cx satisfying:

1. For each j ∈ [0, i− 1], we have 0 ≤ cj < bj+1,

2. For each j ∈ [i+ 1, x], we have 0 ≤ cj < aj , and

3. n = c0n0 + · · ·+ ci−1ni−1 + ci+1ni+1 + · · ·+ cxnx.

Furthermore, if n has an i-basic factorization, we call the element n i-basic.

Example 6.31. Let S = 〈45, 105, 280, 504〉. Then S is compound with a1 = 3, a2 = 3, a3 = 5, b1 = 7,
b2 = 8, and b3 = 9. Any 0-basic element will have a factorization of the form

c1(105) + c2(280) + c3(504),

where c1 < 3, c2 < 3, and c3 < 5. Similarly, a 1-basic element will have some factorization of the form

c0(45) + c2(280) + c3(504),

where c0 < 7, c2 < 3, and c3 < 5. Then, any 2-basic element will have a factorization of the form

c0(45) + c1(105) + c3(504),

where c0 < 7, c1 < 8, and c3 < 5. Finally, a 3-basic element in S will have a factorization of the form

c0(45) + c1(105) + c2(280),

where c0 < 7, c1 < 8, and c2 < 9.

As we will see, i-basic factorizations are special because the coefficients in these factorizations are too
small to allow for certain types of swaps. For this reason, i-basic elements in a compound semigroup can be
used to describe the Apéry set and Frobenius number of the semigroup. Before we prove these results, we
will need the following lemma:
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Lemma 6.32. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive. If an element n ∈ S is i-basic, then
n has a unique i-basic factorization in S.

Proof. Let n be i-basic, and suppose n has two i-basic factorizations:

m = c0n0 + · · ·+ ci−1ni−1 + cn+1ni+1 + · · ·+ cxnx

= d0n0 + · · ·+ di−1ni−1 + dn+1ni+1 + · · ·+ dxnx.

Then, for each j ∈ [0, i − 1], we have cj , dj < bj+1, and for each j ∈ [i + 1, x], we have cj , dj < aj . All the
generators except for nx are divisible by ax. Furthermore, gcd(ax, nx) = 1, so cx ≡ dx (mod ax). Since
0 ≤ cx, dx < ax, this implies that cx = dx. In a similar way, for each j > i, it can be argued that cj ≡ dj
(mod aj) and cj = dj .

Also, all of the generators except for n0 are divisible by b1, and gcd(b1, n0) = 1, so c0 ≡ d0 (mod b1).
Since 0 ≤ c0, d0 ≤ b1, this implies that c0 = d0. In a similar way, for each j < i, it can be argued that
cj ≡ dj (mod bj+1) and cj = dj . Thus, the two factorizations for m are the same.

Lemma 6.33. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive. For some i ∈ [0, x], if n is i-basic
in S, then m = n− ni 6∈ S.

Proof. Let some integer n be an i-basic element of S, and set m = n−ni. Then, we can write m =
∑x
j=0 cjnj ,

where ci = −1, cj < bj+1 for each j ∈ [0, i − 1] and cj < aj for each j ∈ [i + 1, x]. To show that m 6∈ S, it
suffices to show that m cannot be written as a non-negative linear combination of the generators of S.

Suppose for the sake of contradiction that there is some such factorization of m in S: m =
∑x
j=0 djnj

where each dj ≥ 0. All generators except for nx are multiples of ax, and gcd(ax, nx) = 1 by the primitivity
of S, so cx ≡ dx (mod ax). By our assumption, cx < ax, so cx ≤ dx. Then, cx+kxax = dx for some kx ∈ N0.
If kx = 0, then cx = dx, so the coefficients on nx in our two factorizations are already the same. So, assume
kx > 0. Then, we may perform the swap axnx = bxnx−1 the appropriate number of times to obtain the
following equivalent factorizations of m:

m = c0n0 + · · ·+ (cx−1 − kxbx)nx−1 + (cx + kxax)nx = d0n0 + · · ·+ dx−1nx−1 + dxnx.

Since cx + kxax = dx, we can subtract dxnx from both equations and divide through by ax. So, we have two
factorizations of the element n−dxnx

ax
:

c0

(
n0
ax

)
+ · · ·+ cx−2

(
nx−2
ax

)
+ (cx−1 − kxbx)

(
nx−1
ax

)
= d0

(
n0
ax

)
+ · · ·+ dx−2

(
nx−2
ax

)
+ dx−1

(
nx−1
ax

)
.

Once again, it can be shown that (cx−1 − kxbx) ≡ dx−1 (mod ax−1) and that we can form intermediate
factorizations that have equal coefficients on nx−1

ax
using the swap ax−1nx−1 = bx−1nx−2. We can continue

this process until we arrive at the equivalent factorizations:

c0

(
n0

ai+1 · · · ax

)
+ · · ·+ ci−1

(
ni−1

ai+1 · · · ax

)
+ (ci − ki+1bi+1)

(
ni

ai+1 · · · ax

)

= d0

(
n0

ai+1 · · · ax

)
+ · · ·+ di−1

(
ni−1

ai+1 · · · ax

)
+ di

(
ni

ai+1 · · · ax

)
,

for some ki+1 ∈ N0. Since all generators in {n0, . . . , ni−1} are multiples of ai and gcd(ai,
ni

ai+1···ax ) = 1,

(ci − ki+1bi+1) ≡ di (mod ai). We know that ci − ki+1bi+1 ≤ ci = −1 < 0 ≤ di, so ci − ki+1bi+1 + kiai = di
for some positive ki ∈ N. So, we use the swap aini = bini−1 the appropriate number of times to obtain the
equivalent factorizations:

c0

(
n0

ai+1 · · · ax

)
+ · · ·+ (ci−1 − kibi)

(
ni−1

ai+1 · · · ax

)
+ di

(
ni

ai+1 · · · ax

)
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= d0

(
n0

ai+1 · · · ax

)
+ · · ·+ di−1

(
ni−1

ai+1 · · · ax

)
+ di

(
ni

ai+1 · · · ax

)
.

Notice that by our assumption, ci−1 < bi ≤ kibi, so ci−1 − kibi < 0. Thus, at each remaining step we
will have a negative coefficient. If we continue making swaps in this way, we will eventually arrive at the
equivalent factorizations:

(c0 − k1b1)

(
n0

a1 · · · ax

)
= d0

(
n0

a1 · · · ax

)
,

where 0 < k1 ∈ N. Therefore, we have that c0 − k1b1 = d0. However, c0 < b1 ≤ k1b1, so c0 − k1b1 < 0 ≤ d0,
and the two terms cannot be equal. Therefore, there is no non-negative factorization of m in S, and
m 6∈ S.

Corollary 6.34. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b and gcd(a, b) = 1.
For some i ∈ [0, x], if n is i-basic in S, then m = n− ax−ibi 6∈ S.

Proposition 6.35. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. If S = 〈n0, n1, . . . nx〉 is primitive, then for any i ∈ [0, x]:

Ap(S, ni) = {n ∈ S : n is i-basic}.

Proof. LetM denote the set on the right side of the equation, and fix some i ∈ [0, x]. Clearly, |Ap(S, ni)| = ni.
Also, one can see by counting that there are b1 · · · bi−1ai · · · ax = ni possible i-basic factorizations. By Lemma
6.32, this implies that there are ni elements in S that are i-basic. Therefore, because |M | = |Ap(S, ni)| <∞,
to show that the two sets are equal it suffices to show that M ⊆ Ap(S, ni).
Let m ∈ M . Then, m ∈ S. However, m − ni 6∈ S by Proposition 6.33. Therefore, m ∈ Ap(S, ni). So,
M ⊆ Ap(S, ni), and the two sets are equal.

Corollary 6.36. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b and gcd(a, b) = 1.
For some i ∈ [0, x],

Ap(S, ax−ibi) = {n ∈ S : n is i-basic}.

Proposition 6.37. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x],
set nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is a primitive numerical semigroup. Then,
for every i ∈ [0, x], F (S) = (b1 − 1)n0 + · · ·+ (bi − 1)ni−1 − ni + (ai+1 − 1)ni+1 + · · ·+ (ax − 1)nx.

Proof. Fix some i ∈ [0, x]. The Frobenius number of S is equal to maxAp{S, ni)} − ni. By Proposition
6.35, Ap(S, ni) is equal to the set of all i-basic elements in S. So, max{Ap(S, ni)} = (b1 − 1)n0 + · · ·+ (bi −
1)ni−1 + (ai+1− 1)ni+1 + · · ·+ (ax− 1)nx, and F (S) = (b1− 1)n0 + · · ·+ (bi− 1)ni−1−ni + (ai+1− 1)ni+1 +
· · ·+ (ax − 1)nx.

Corollary 6.38. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b and gcd(a, b) = 1.
Then, F (S) = (b− 1)ax + (b− 1)ax−1b+ · · ·+ (b− 1)abx−1 − bx.

Although not every element of a compound semigroup is a member of an Apéry set of some generator,
we can assign each element a “normal” factorization with respect to each generator in the following way:

Lemma 6.39. Let a1, . . . , ax, b1, . . . , bx be integers such that ai < bi for each i ∈ [1, x]. For j ∈ [0, x], set
nj = b1b2 · · · bjaj+1aj+2 · · · ax. Suppose S = 〈n0, n1, . . . nx〉 is primitive. Let i ∈ [0, x], and n ∈ S. Then
there is exactly one τ ∈ N0 such that n− τni ∈ S and n− τni is i-basic.

Proof. First we will show that such a τ exists. There is some element, y, in Ap(S, ni) such that y ≡ n
(mod ni). Since y is the smallest such element in S, y ≤ n. So, n − τni = y ∈ S for some τ ∈ N0. By
Proposition 6.35, y has an i-basic factorization. Thus, n− τni is i-basic.
Now suppose that n − σni ∈ S and n − σni is i-basic for some σ ∈ N0 where σ 6= τ . Without loss of
generality, assume σ < τ . Then, n − σni > n − τni. By Proposition 6.35, since n − σni and n − τni have
i-basic factorizations, n − σni, n − τni ∈ Ap(S, ni). Clearly, n − σni ≡ n − τni (mod ni). However, this
implies that there are two elements in Ap(S, ni) that are equivalent (mod ni), which cannot be the case.
Therefore, there is only one τ ∈ N0 such that n− τni ∈ S and n− τni is i-basic.
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6.5 Omega Primality

The following proposition is from [9, Proposition 3.2]:

Proposition 6.40. For a numerical semigroup S,

ω(n) = max{|a| : a ∈ bul(n)}

for all n ∈ S.

Proposition 6.41. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b and gcd(a, b) = 1.
Then ω(ax) = a.

Proof. First, we will show that all expressions of the form aax−ibi, where 1 ≤ i ≤ x, are bullets for ax. Fix
some i ∈ [1, x]. Then, let m = −ax + aax−ibi. We want to show that m ∈ S. Since aax−jbj = bax−(j−1)bj−1

for each j ∈ [1, x], we can write

m = ax−i(−ai + abi)

= ax−i((b− 1)ai + (b− a)ai−1b+ (b− a)ai−2b2 + · · ·+ (b− a)abi−1)

Therefore, m ∈ S. However, n = −ax+(a−1)ax−ibi 6∈ S, by Corollary 6.34 because (a−1)ax−ibi is x-basic.
So, aax−ibi is a bullet for ax.
Additionally, ax is clearly a bullet for itself because ax − ax = 0 ∈ S and −ax 6∈ S.
Now, we will demonstrate that these are the only bullets for ax. Consider that

ax 6� (a− 1)ax−1b+ (a− 1)ax−2b2 + · · ·+ (a− 1)abx−1 + (a− 1)bx.

This is equivalent to saying that

−ax + (a− 1)ax−1b+ (a− 1)ax−2b2 + · · ·+ (a− 1)abx−1 + (a− 1)bx 6∈ S,

which is true by Corollary 6.34. Similarly,

ax 6� c1ax−1b+ · · ·+ cxb
x

if each ci < a. Thus, all the bullets for ax in S (except for ax itself) are of the form aax−ibi, where 1 ≤ i ≤ x.
According to Proposition 6.40, ω(ax) = max{|z| : z ∈ bul(ax)}. So, ω(ax) = max{1, a} = a.

Proposition 6.42. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b, gcd(a, b) = 1,
and x ≥ 1. Then ω(ax−1b) = b.

Proof. First, we will show that all expressions of the form aax−ibi, where 2 ≤ i ≤ x, are bullets for ax−1b.
Fix some i ∈ [2, x]. Then, let m = −ax−1b + aax−ibi. We want to show that m ∈ S. Since aax−jbj =
bax−(j−1)bj−1 for each j ∈ [1, x], we can write

m = ax−ib(−ai−1 + abi−1)

= ax−ib((b− 1)ai−1 + (b− a)ai−2b+ (b− a)ai−3b2 + · · ·+ (b− a)abi−2)

Therefore, m ∈ S. However, n = −ax−1b + (a − 1)ax−ibi 6∈ S by Corollary 6.34. So, aax−ibi is a bullet for
ax−1b.

Additionally, ax−1b is clearly a bullet for itself because ax−1b− ax−1b = 0 ∈ S and −ax−1b 6∈ S.
Also, bax is a bullet for ax−1b because bax − ax−1b = (a − 1)ax−1b ∈ S and (b − 1)ax − ax−1b 6∈ S by

Corollary 6.34.
Now we will demonstrate that these are the only bullets for ax−1b. Consider that

ax−1b 6� (b− 1)ax + (a− 1)ax−2b2 + · · ·+ (a− 1)bx.

This is equivalent to saying that

(b− 1)ax − ax−1b+ (a− 1)ax−2b2 + · · ·+ (a− 1)bx 6∈ S.
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which is true by Corollary 6.34. Similarly,

ax−1b 6� c0ax + c2a
x−2b2 + · · ·+ cxb

x

if c0 < b and every other ci < a. Thus, ω(ax−1b) = max{1, a, b} = b.

All data seem to suggest that the following conjectures are true:

Conjecture 6.43. Let S = 〈a2, ab, b2〉 be a numerical semigroup with a < b and gcd(a, b) = 1. Then
ω(b2) =

⌈
b
a

⌉
b.

Conjecture 6.44. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 be a numerical semigroup with a < b and gcd(a, b) = 1.
Then, b | ω(ax−ibi) for i ∈ [1, x].

The following lemma is powerful because it makes the problem of finding omega primality for any gen-
erator of any geometric semigroup much easier. All that needs to be done to find the omega primality of
a generator is to find the omega primality of the last generator of a related geometric semigroup. Perhaps
this lemma could be helpful for proving Conjecture 6.44 if it could be shown that the last generator of a
geometric semigroup always has omega primality divisible by b:

Lemma 6.45. Let S = 〈ax, ax−1b, . . . , abx−1, bx〉 and M = 〈ax+1, axb, . . . , abx, bx+1〉. If ωS(ax−ibi) = n,
then ωM (ax+1−ibi) = max{a, n}.

Proof. Choose some generator of S, v = ax−ibi, and set w = av = ax+1−ibi, which is a generator of
M . Suppose z = z1 + z2 + · · · + zk, where each zi is a generator of M , is a bullet for w in M . So,
w � z = (z1 + z2 + · · ·+ zk), and w 6� (z1 + z2 + · · ·+ zk − zi) for each i ∈ [0, k].

If bx+1 is not a factor of z, then a | zi for each i ∈ [1, k]. Dividing through by a, we have that
v = w

a �
z
a =

(
z1
a + z2

a + · · ·+ zk
a

)
, where each zi

a is a generator of S, and v = w
a 6�

(
z1
a + z2

a + · · ·+ zk
a −

zi
a

)
for each i ∈ [1, k]. Thus, z

a is a bullet for v in S, and |z| =
∣∣ z
a

∣∣.
Now suppose bx+1 is a factor of z. Notice that w � abx+1 because

abx+1 − w = babx − ax+1−ibi

= (b− a)abx + (b− a)a2bx−1 + · · ·+ (b− 1)ax+1−ibi,

which is in M . Also, w 6� (a− 1)bx+1 because (a− 1)bx+1 − ax+1−ibi 6∈M by Corollary 6.34. So, abx+1 is a
bullet for w in M .

We will conclude by showing that there are no other possibilities for z. If there were, they would be of
the form z =

∑x+1
j=0 cja

x+1−jbj , where 1 ≤ cx+1 ≤ a− 1, ci = 0, and every other cj ≥ 0. Assume for the sake

of contradiction that some z of this form is a bullet for w in M . Then, w = ax+1−ibi �
∑x+1
j=0 cja

x+1−jbj , so(∑x+1
j=0 cja

x+1−jbj
)
−ax+1−ibi ∈M . By Proposition 6.10, we can connect

(∑x+1
j=0 cja

x+1−jbj
)
−ax+1−ibi to

some non-negative factorization of z −w using swaps of the form bax−(j−1)bj−1 = aax−jbj for j ∈ [1, x+ 1].
Since ax+1−ibi is the only term with a negative coefficient, we must use a series of swaps to increase this
coefficient to a non-negative number. Because bx+1 is a larger generator than ax+1−ibi, if this series of swaps
does anything to cx+1, it will change it by some multiple of a. To increase cx+1 would be absurd, since cx+1

is positive to begin with and we are only interested in changing the factorization until we have a non-negative
factorization. Thus, any change to cx−1 would be a decrease by a multiple of a.

However, cx+1 < a, so any such change would reduce cx+1 to a negative number. Thus, there must be some

series of swaps that does not involve bx+1 that will connect
(∑x+1

j=0 cja
x+1−jbj

)
−ax+1−ibi to a non-negative

factorization of z−w. But this implies we can subtract cx+1b
x+1 and have

(∑x
j=0 cja

x+1−jbj
)
−ax+1−ibi ∈

M , so z is not a bullet.
Therefore, any bullet for w in M either is a constant multiple of a bullet for v in S or is abx+1. Then, if

ωS(v) = n, by Proposition 6.40, ωM (w) = max{a, n}.

Lemma 6.46. Let S = 〈n1, n2, . . . , nk〉 be a primitive numerical semigroup. If zi is the length of the longest
factorization of elements in Ap(S, ni) for 1 ≤ i ≤ k, then ω(ni) ≤ zi + 1.
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Proof. Fix some i ∈ [1, k]. To find ω(ni), we must consider the bullets of ni. Suppose some x = x1 + · · ·+xm
is a bullet for ni. Then, x1 + · · · + xm − ni ∈ S but x1 + · · ·xm − xj − ni 6∈ S for every k ∈ [1,m]. Since
x1 + · · ·+xm−xj ∈ S but x1 + · · ·+xm−xj −ni 6∈ S, x1 + · · ·xm−xj ∈ Ap(S, ni). Therefore, every bullet,
with one element removed, is in Ap(S, ni). This implies that max{|x| : x ∈ bul(ni)} − 1 is no longer than
the longest factorization of elements in Ap(S, ni). Since ω(ni) = max{|x| : x ∈ bul(ni)} by Proposition 6.40,
ω(ni)− 1 is no longer than the longest factorization of elements in Ap(S, ni). Therefore, ω(ni) ≤ zi + 1.

For some generators in certain semigroups, this bound is attained, and the omega primality of a generator
ni is exactly one more than the longest factorization in Ap(S, ni). For instance, in S = 〈25, 30, 36〉, ω(36) = 12
and the longest factorization in Ap(S, 36) is 11. Also, in T = 〈11, 12, 13, 14〉, ω(12) = 6 and the longest
factorization in Ap(T, 12) is 5. In the semigroup R = 〈5, 7, 9〉, all generators attain this maximum bound:
ω(5) = 3, while the longest factorization in Ap(R, 5) is 2; ω(7) = 5, while the longest factorization in Ap(R, 7)
equals 4; and ω(9) = 5, while the longest factorization in Ap(R, 9) is 4.

7 Appendix

7.1 Numerical Semigroups of Embedding Dimension Four with Catenary De-
gree Three

The following are the generators of all of the numerical semigroups of embedding dimension four which have
catenary degree three.

(4, 5, 6, 7), (4, 6, 7, 9), (5, 6, 7, 8), (5, 6, 7, 9), (5, 6, 8, 9), (5, 7, 8, 9), (5, 7, 8, 11), (6, 7, 8, 9), (6, 7, 8,
10), (6, 7, 8, 11),(6, 7, 9, 10), (6, 7, 9, 11), (6, 7, 10, 11), (6, 8, 9, 10), (6, 8, 9, 11), (6, 8, 9, 13), (6, 8, 10,
11), (6, 8, 10, 13), (6, 8, 10, 15), (6, 9, 10, 11), (6, 9, 10, 14), (6, 9, 11, 13), (6, 9, 13, 14), (7, 8, 9, 12), (7, 8,
9, 13), (7, 8, 10, 11), (7, 8, 10, 13), (7, 8, 11, 13), (7,8, 12, 13), (7, 9, 12, 15), (7, 10, 11, 12), (7, 10, 11, 15),
(8, 9, 10, 12), (8, 9, 10, 14), (8, 9, 10, 15), (8, 9, 11, 13), (8, 9, 11, 15), (8, 9, 12, 15), (8, 10, 11, 12), (8, 10,
11, 13), (8, 10, 11, 14), (8, 10, 12, 13), (8, 10, 12, 15), (8, 10, 12, 17), (8, 10, 13, 14), (8, 10, 14, 15), (8, 10,
14, 17), (8, 10, 14, 19), (8, 10, 14, 21), (8, 11, 12, 14), (8, 11, 12, 17), (8, 11, 13, 17), (8, 12, 13, 14), (8, 12,
13, 18), (8, 12, 13, 19), (8, 12, 14, 15), (8, 12, 14, 17), (8, 12, 14, 19), (8, 12, 14, 21), (8, 12, 15, 18), (8, 12,
15, 21), (8, 12, 17, 18), (8, 12, 18, 19), (8, 12, 18, 21), (8, 12, 18, 27), (9, 10, 12, 15), (9, 10, 12, 17), (9, 10,
15, 17), (9, 11, 12, 15), (9, 12, 13, 15), (9, 12, 14, 15), (9, 13, 14, 21), (10, 11, 12, 15), (10, 11, 12, 18), (10,
11, 13, 15), (10, 11, 13, 17), (10, 11, 15, 18), (10, 12, 13, 15), (10, 12, 13, 17), (10, 12, 14, 15), (10, 12, 15,
16), (10, 12, 15, 18), (10, 12, 15, 21), (10, 12, 17, 18), (10, 12, 18, 19), (10, 12, 18, 21), (10, 12, 18, 23), (10,
12, 18, 27), (10, 13, 14, 15), (10, 13, 15, 19), (10, 14, 15, 17), (10, 14, 15, 21), (10, 14, 16, 17), (10, 14, 16,
19), (10, 15, 16, 24), (10, 15, 18, 27), (11, 12, 14, 19), (11, 12, 14, 21), (11, 12, 15, 18), (11, 12, 15, 21), (11,
12, 18, 21), (11, 15, 18, 27), (12, 13, 14, 18), (12, 13, 15, 18), (12, 13, 15, 21), (12, 13, 18, 21), (12, 13, 18,
27), (12, 14, 15, 18), (12, 14, 15, 21), (12, 14, 18, 19), (12, 14, 18, 21), (12, 14, 18, 23), (12, 14, 18, 25), (12,
14, 18, 27), (12, 15, 16, 18), (12, 15, 16, 21), (12, 15, 17, 18), (12, 15, 17, 21), (12, 15, 19, 21), (12, 16, 17,
18), (12, 16, 18, 21), (12, 16, 18, 23), (12, 16, 18, 25), (12, 16, 18, 27), (12, 17, 18, 21), (12, 17, 18, 27), (12,
18, 19, 21), (12, 18, 19, 27), (12, 18, 20, 21), (12, 18, 22, 27), (13, 18, 21, 27), (14, 15, 17, 21), (14, 15, 18,
27), (14, 16, 17, 21), (14, 16, 21, 24), (14, 18, 19, 21), (14, 18, 20, 21), (14, 18, 21, 27), (14, 18, 24, 27), (15,
16, 18, 27), (15, 17, 18, 27), (15, 18, 19, 27), (15, 18, 20, 27), (15, 18, 23, 27), (16, 18, 21, 27), (16, 18, 24,
27), (17, 18, 24, 27), (18, 19, 21, 27), (18, 20, 21, 27), (18, 20, 24, 27), (18, 21, 22, 27), (18, 21, 23, 27), (18,
21, 25, 27), (18, 22, 24, 27), (18, 23, 24, 27), (18, 24, 25, 27), (18, 24, 26, 27)

7.2 Special Elasticity Code

The first cell in every sage worksheet should be to load the numerical semigroup package developed by Chris.

load(’/media/sf_Desktop/NumericalSemigroup.sage’)

7.2.1 ρ2

This first definition returns a tuple that has ρ2 in the first entry and the factorization(s) that give ρ2. This
code can be adjusted for ρk but may not be as efficient.
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def datrhodo(S):

gens = S.gens

embdim = len(gens)

twoelements = []

for i in gens:

for j in gens:

twoelements.append(i+j)

factorizations = []

for t in twoelements:

for f in S.Factorizations(t):

factorizations.append(f)

maxlength = 0

maxfactorizations = []

for g in factorizations:

if sum(g) > maxlength:

maxlength = sum(g)

for g in factorizations:

if sum(g) == maxlength:

maxfactorizations.append(g)

maxfactelements = Set([])

for m in maxfactorizations:

element = 0

for i in range(0, embdim):

element += m[i]*gens[i]

maxfactelements = maxfactelements.union(Set([element]))

maxfactelementslist = list(maxfactelements)

maxfactelementslistwfacts = [(m, S.Factorizations(m)) for m in maxfactelementslist]

maxfacts = S.Factorizations(maxfactelementslist[0])

return (max([sum(f) for f in maxfacts]), maxfactelementslistwfacts)

This definition calls the above one and gives back the semigroup, followed by the value for ρ2 ≤ 3 and
on the next line(s) it returns the factorization(s). This code can be adjusted to return any value of ρ2.

def dodatrhodo(NumSemigroups):

for S in NumSemigroups:

if tuple(S.gens) in Tested.keys():

print str(S.gens)+",", Tested[tuple(S.gens)][0]

for tup in Tested[tuple(S.gens)][1]:

print str(tup[0])+",", tup[1]

print

continue

result = datrhodo(S)

if result[0]<=3:

print str(S.gens)+",", result[0]

for tup in result[1]:

print str(tup[0])+",", tup[1]

print

Tested[tuple(S.gens)] = result

Tested = { }

This is one of our example codes to compute many semigroups. Here we are computing all semigroups of
dimension 3 such that the multiplicity is 3 or 4 and the other two generators range up to, but not including,
10.

for i in [3,4]:

for j in range(i+1, 10):

for k in range(j+1, 10):

if gcd(i, gcd(j, k)) == 1:

s = NumericalSemigroup([i, j, k])
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if len(s.gens) == 3:

NumSemigroups[(i,j,k)] = s

print str(100.*((i-2)/2))+"%"

dodatrhodo(NumSemigroups)

This code was to compute semigroups where the highest common factor between generators is 2.

NumSemigroups=[]

i=6

for j in range(i+1, 25):

for k in range(j+1, 30):

if gcd(i, gcd(j, k)) == 1 and ((gcd(i,j)==2 and gcd(i,k)==1 and gcd(j,k)==1) or

(gcd(i,j)==1 and gcd(i,k)==2 and gcd(j,k)==1) or (gcd(i,j)==1 and gcd(i,k)==1 and gcd(j,k)==2)):

s = NumericalSemigroup([i, j, k])

if len(s.gens) == 3:

NumSemigroups.append(s)

print str(100.*((j-i)/(25-i+1)))+"%"

dodatrhodo(NumSemigroups)

This code was used for semigroups of the pairwise corpime (symmetric) form. Lemma 3.25 lets us choose
one generator to be even.

NumSemigroups=[]

for xp in range(2,10):

for yp in range(1,10):

for zp in range(yp+1,15):

if gcd(2*xp, 2*yp+1) == 1 and gcd(2*yp+1, 2*zp+1)==1 and gcd(2*xp, 2*zp+1)==1 :

s = NumericalSemigroup([2*xp, 2*yp+1, 2*zp+1])

if len(s.gens) == 3:

NumSemigroups.append(s)

print str(100.*((xp-1)/(8)))+"%"

dodatrhodo3(NumSemigroups)

7.2.2 Modified Arithmetic Sequences

These first two definitions return the generators and ρk depending on which definition and how you alter
them.

def rhotwoarith(NumSemigroups):

for s in NumSemigroups:

print str(s.gens)+",",s.SpecialElasticity(2)

def rhokarith(NumSemigroups):

for s in NumSemigroups:

print str(s.gens)+",",s.SpecialElasticity(3)

This code removes one of the middle generators out of a general arithmetic sequence.

NumSemigroups=[]

x=4

h=2

d=3

for a in range(5,9):

for n in range(1,x):

if gcd(a,d)==1:

l=[a]+[a*h+i*d for i in [1..x] if i != n]

s = NumericalSemigroup(l)

NumSemigroups.append(s)

print str(100.*((a-4)/4))+"%"

rhotwoarith(NumSemigroups)
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We used this code to check the factorization that gives back rho2 and its factorizations and compare it
to certain ”lower” semigroups.

print dodatrhodo([NumericalSemigroup([7,15,16,17,18])])

print dodatrhodo([NumericalSemigroup([7,15,16,18])])

This code was used for bulk computations.

NumSemigroups=[]

x=5

h=1

d=1

for a in range(6,11):

for n in range(1,5):

for m in range(n+1,min(n+3,5)):

if gcd(a,d)==1:

l=[a]+[a*h+i*d for i in [1..x] if i != n and i != m]

s = NumericalSemigroup(l)

NumSemigroups.append(s)

print str(100.*((a-5)/5))+"%"

dodatrhodo(NumSemigroups)

These two cells were used to compute examples for removing all but the first, second, second to last, and
last generator out of an arithmetic sequence a, a+ d, ..., a+ xd.

NumSemigroups=[]

x=13

d=3

for a in [x+1,2*x-3,2*x-2,2*x-1,2*x]:

if gcd(a,d)==1:

l=[a, a+d, a+(x-1)*d, a+x*d]

s = NumericalSemigroup(l)

NumSemigroups.append(s)

print str(100.*((a-5)/5))+"%"

dodatrhodo(NumSemigroups)

NumSemigroups=[]

x=13

d=3

for a in [x+2,..,2*x-4]:

if gcd(a,d)==1:

l=[a, a+d, a+(x-1)*d, a+x*d]

s = NumericalSemigroup(l)

NumSemigroups.append(s)

print str(100.*((a-5)/5))+"%"

dodatrhodo(NumSemigroups)

This code was used to check the possible values in theorem 5.1 which could give ρ2(S) < 4.

def rhofrob(amax, bmax):

for a in range(5, amax+1):

for b in range(a+1, bmax+1):

if gcd(a, b) != 1:

continue

T = NumericalSemigroup([a, b])

f = T.frob

for c in range(b+1, f+1):

S = NumericalSemigroup([a, b, c])

if len(S.gens) != 3:

continue

if tuple(S.gens) in Tested.keys():
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print str(S.gens)+",", Tested[tuple(S.gens)][0]

for tup in Tested[tuple(S.gens)][1]:

print str(tup[0])+",", tup[1]

print

continue

result = datrhodo(S)

print str(S.gens)+",", result[0]

for tup in result[1]:

print str(tup[0])+",", tup[1]

print

Tested[tuple(S.gens)] = result

This code was used to get an idea of whether conjecture 5.10 holds. It calculates ρ2(S) for semigroups with
all generators coprime for embedding dimension 4 up to the frobenius number, and can easily be adjusted
to for higher embedding dimensions.

def rhoe4(amax, bmax, cmax):

for a in range(9, amax+1):

for b in range(a+1, bmax+1):

for c in range(b+1, cmax+1):

if any([gcd(x,y) > 1 for x in [a,b,c] for y in [a,b,c] if x != y]):

continue

T = NumericalSemigroup([a, b, c])

if len(T.gens) != 3:

continue

result = datrhodo(T)

print str(T.gens)+’,’, result[0]

for tup in result[1]:

print str(tup[0])+",", tup[1]

print

f = T.frob

for d in range(c+1, f+1):

if any([gcd(x,d) > 1 for x in [a,b,c]]):

continue

S = NumericalSemigroup([a, b, c, d])

if len(S.gens) != 4:

continue

resultwd = datrhodo(S)

#if [0,0,0,0,2] not in sum([l[1] for l in resultwd[1]],[]):

#print str(T.gens)+’,’, result[0]

#for tup in result[1]:

#print str(tup[0])+",", tup[1]

#print

print str(d)+’,’, resultwd[0]

for tup in resultwd[1]:

print str(tup[0])+",", tup[1]

print
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