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Chapter 1

Properties of d-separable,
d-separable, and d-disjunct binary
matrices

1.1 Introduction

Notation. We denote the rows of a t×n matrix A as R1, . . . , Rt or as R(1), . . . , R(t). We
denote the jth entry of row vector Rm as Rm[j]. Similarly, we denote the columns of A as
C1, . . . , Cn or as C(1), . . . , C(n). We denote the ith entry of column vector Cm as Cm[i].
Thus, we denote the entry of A which lies in the ith row and jth column as Ai,j , Ri[j], or
Cj [i].

Definition. We call an entry of a in a matrix an a-entry. We call the sum of entries in
row R the row weight of R. We denote the weight of R as |R|. We define and denote the
column weight of a column similarly. For a binary vector v, |v| is the number of 1-entries
in v.

Definition. We call a binary row vector (binary column vector) v a zero-row (zero-column)
if |v| = 0. We call v a full-row (full-column) if |v| is equal to the length of v. That is, v is a
zero-row (zero-column) if and only if v has only 0-entries and v is a full-row (full-column)
if and only if v has only 1-entries.

Definition. We denote the Boolean sum of binary vectors v1 and v2 as v1 ⊕ v2. We call
the Boolean sum of s vectors a s-sum or a sum. We denote the Boolean product of binary
vectors v1 and v2 as v1 ⊗ v2. We call the Boolean product of s vectors a s-product or
product. We say that a column vector Ci is contained in a s-sum C1⊕· · ·⊕Cs or s-product
C1 ⊗ · · · ⊗ Cs if i is in the set of indices {1, . . . , s}.
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Definition. Let C be a s-sum of vectors. We say that Ck is a sub-sum or a k-sub-sum
of C if Ck is a k-sum of vectors contained in C , where k ≤ s. We define sub-product or
k-sub-product similarly.

Notation. Let C be a sum (product) of rows or columns of a binary matrix A. We denote
the number of columns contained in C as µ(C ). Thus, C is a µ(C )-sum (µ(C )-product)
of the rows or columns of A.

Definition. We say that two rows (columns) of a matrix A are distinct if they are not the
same row (column). Thus, two rows (columns) can be both equal and distinct. We call
two sums (products) of the rows or columns of A distinct if each sum (product) contains
at least one row or column, accordingly, not contained in the other.

Notation. We denote the maximum and minimum weights of any row of a matrix A
as P (A) and ρ(A), respectively. We denote the maximum and minimum weights of any
column of A as Γ(A) and γ(A), respectively. When it is clear, we may omit (A) and use
P, ρ,Γ, γ.

Notation. We denote the maximum and minimum weights of any s-sum of rows in a
matrix A as P⊕s (A) and ρ⊕s (A), respectively. We denote the maximum and minimum
weights of any s-sum of columns in A as Γ⊕s (A) and γ⊕s (A), respectively. Similarly, we
denote the maximum and minimum weights of any s-product of rows and columns of A as
P⊗s (A), ρ⊗s (A),Γ⊗s (A), γ⊗s (A), respectively. When it is clear, we may omit the (A) and use
P⊕s , ρ

⊕
s ,Γ

⊕
s , γ

⊕
s , P

⊗
s , ρ

⊗
s ,Γ

⊗
s , γ

⊗
s .

Lemma 1.1.1. For any binary matrix

Γ⊗s = t =⇒ P⊗t ≥ s

P⊗s = t =⇒ Γ⊗t ≥ s

γ⊗s = t =⇒ ρ⊗t ≥ s

ρ⊗s = t =⇒ γ⊗t ≥ s

Proof. We prove the first implication. The proofs for the other implications are similar.
Let A be a binary matrix such that Γ⊗s = t. Then for some s columns of A C there

are an associated t rows R such that every column of C has a 1-entry in every row of R.
Thus, each of the t rows of R has a 1-entry in each column of C . So their t-product is at
least s. Thus, P⊗t ≥ s.

Lemma 1.1.2. Let A be a t × n binary matrix. Let γ be the minimum column weight of
A. Let ms be given recursively as:

m0 =

⌈
|A|
t

⌉
,ms =

⌈
(γ − s)ms−1

t− s

⌉
, 1 ≤ s ≤ γ (1.1)
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If σ ≤ ms, then Γ⊗σ > s, where Γ⊗σ is the maximum weight of the σ-products of the columns
of A.

Notice that increasing γ does not decrease ms for any 1 ≤ s ≤ γ.

Proof. We prove by induction.

Base case. By the pigeonhole principle, at least one row R has at least
⌈
|A|
t

⌉
= m0

1-entries. Let C0 be the set of columns with a 1-entry in R. Notice that there are at least
m0 columns in C0, so | ⊗ C0| > 0. Thus, Γ⊗m0

(A) > 0.
Inductive case. Assume Γ⊗ms−1

(A) ≥ s. Then there exists a ms−1-product Cs−1 such
that |Cs−1| ≥ s. Since γ(A) < t, ms ≤ ms−1. Thus, for any ms-product Cs of the columns
contained in Cs−1 we have | ⊗ Cs| ≥ s. Let A′ be the submatrix of A formed by deleting
the s rows where this ms-product contains a 1-entry and keeping only the columns of Cs−1.
Notice that A′ is a (t−s)×ms−1 matrix. Since each column of A has weight at least γ(A),
γ(A′) ≥ γ(A)− s. Thus, there are at least (γ(A)− s)ms−1 total 1-entries in A′. Thus, by

the pigeonhole principle, at least one row of A′ has at least
⌈

(γ(A)−s)ms−1

t−s

⌉
1-entries. This

row corresponds with a row in A which must have
⌈

(γ(A)−s)ms−1

t−s

⌉
1-entries in the original

ms columns of Cs. Since A contains s rows not contained in A′, each with 1-entries in the
columns of Cs, it follows that the ms-product of the columns contained in Cs has weight
greater than s. Thus, Γ⊗ms

(A) > s.

Lemma 1.1.3. Let A be a t × n binary matrix. Let ρ be the minimum row weight of A.
Let ms be given recursively as:

m0 =

⌈
|A|
n

⌉
,ms =

⌈
(ρ− s)ms−1

n− s

⌉
, 1 ≤ s ≤ ρ (1.2)

If σ ≤ ms, then P⊗σ > s, where P⊗σ is the maximum weight of the σ-products of rows of A.
Notice that increasing ρ does not decrease ms for any 1 ≤ s ≤ ρ.

Proof. The proof is similar to the proof of Lemma 1.1.2.

1.2 Separable binary matrices

The definitions and claims for separability and disjunctness can be found in [1]

Definition. Let C1 and C2 be distinct column sums of a binary matrix. If C1 = C2, we
say the unordered set {C1,C2} forms a collision. If µ(C )1 = µ(C2) = s, we say {C1,C2} is
a s-collision.

Definition. Let A be a binary matrix. Let d be a natural number. We say that A is
d-separable if A has no d-collisions. We say that A is d-separable if no collision {C1,C2}
in A is such that µ(C1), µ(C2) ≤ d. Thus, a matrix is d-separable if any distinct s1-sum,
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s2-sum are not equal, where s1, s2 ≤ d. Notice that a binary matrix that is d− separable
is d-separable.

Claim. The binary matrix that results from deleting a column from a d-separable binary
matrix is d-separable. The binary matrix that results from adding a column to a binary
matrix that is not d-separable is not d-separable. Deleting or adding a zero-row or a full-row
to a binary matrix preserves separability.

Claim. If a binary matrix A is d-separable, then A is s-separable for any natural number
s ≤ d.

Lemma 1.2.1. Let A be a t × n binary matrix. Let R be a row of A. Let A′ be the
(t − 1) × (n − |R|) submatrix of A that results from deleting row R and the columns of A
with 1-entries in R. If A is d-separable, then A′ is d-separable.

Proof. Let A be d-separable. Notice that after deleting the columns of A where R has
1-entries, R will be a zero-row. Thus, after deleting that zero-row, the resulting submatrix,
A′, will be d-separable.

Lemma 1.2.2. Let A be a t× n binary matrix. Let s < d be a natural number. Let C be
a s-sum of columns of A. Let A′ be the (t− |C |)× (n− s) submatrix of A that results from
deleting the rows of A in which C has a 1-entry and the columns contained in C . If A is
d-separable, then A′ is d− s-separable.

Proof. Let A be d-separable. Let C0
′ denote a sum of columns in A′ which corresponds with

a sum C0 of columns in A and vice versa. Assume, by way of contradiction, that A′ is not
d− s-separable. Then there exist distinct sums C1

′, C2
′ in A′, where µ(C1

′), µ(C2
′) ≤ d−s,

such that C1
′ = C2

′. Notice C1⊕C = C2⊕C . Since C1
′,C2

′ are distinct, C1,C2 are distinct.
Thus, {C1⊕C ,C2⊕C } forms a collision in A, a contradiction, since µ(C1⊕C ), µ(C2⊕C ) ≤ d
and A is d-separable. Thus A′ is d− s-separable.

Definition. Let A be a d-separable binary matrix. We call A d-reducible if there is some
submatrix of A that results from deleting a row and a column of A that is d-separable. We
call A d-irreducible if there is no such submatrix.

1.2.1 Restrictions on column weights for d-separable binary matrices

Theorem 1.2.1. Let A be a t× n binary matrix. Let s < d be a natural number. If A is
d-separable, then

Γ⊕s ≤ t− log2

(
d−s∑
i=0

(
n− s
i

))
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Proof. Let A be d-separable. Let C be a s-sum of the columns of A. Let R be the set of

t−|C | rows with 0-entries in C . Notice that there are
d−s∑
i=0

(
n−s
i

)
ways to choose columns for

0-sums, 1-sums, . . . , (d− s)-sums from the n− s columns not contained in C . Notice there
are 2t−w ways to choose the entries for R of the Boolean sums. Since A is d-separable,

these Boolean sums are unique. Thus, 2t−|C | ≥
d−s∑
i=0

(
n−s
i

)
=⇒ t− |C | ≥ log2

(
d−s∑
i=0

(
n−s
i

))
=⇒ |C | ≤ t− log2

(
d−s∑
i=0

(
n−s
i

))
Lemma 1.2.3. Let A be a t×n d-separable binary matrix. Let s < d be a natural number.
Let C be a s-sum of the columns of A. Let Cs−1 be a (s − 1)-sum of some s − 1 columns
contained in C . Let C be the column contained in C not contained in Cs−1. If A is d-
irreducible, then |C | > |Cs−1|+ d− s. That is, if A is d-irreducible, then C has more than
d− s 1-entries such that Cs−1 has 0-entries in the rows of those 1-entries.

Proof. Let A be d-irreducible. We prove by contradiction.
Suppose |C | ≤ |Cs−1|+ d− s. Then C has at most than d− s 1-entries such that Cs−1

has 0-entries in the rows of those 1-entries. Let R be the collection of rows with those 1-
entries. Assume, by way of contradiction, that each row of R has a 1-entry in some column
not contained in C . Then there is a collection of at most d − s columns not contained in
C whose sum C0 has a 1-entry in each row of R. Notice that {C0 ⊕ C ,C0 ⊕ Cs−1} forms
a collision, a contradiction, since µ(C0⊕C ), µ(C0⊕Cs−1) ≤ d and A is d-separable. Thus,
there is some row R in R such that the columns contained in C have the only 1-entry in
R. Thus, C is the only column to have a 1-entry in R. Notice that the (t − 1) × (n − 1)
submatrix of A that results from deleting C and the resulting 0-row R is d-separable, a
contradiction, since A is d-irreducible. Thus, |C | > |Cs−1|+ d− s.

Theorem 1.2.2. Let A be a t × n d-separable binary matrix. Let s < d be a natural
number. If A is d-irreducible, then

γ⊕s ≥ sd−
s(s− 1)

2

Proof. Let A be d-irreducible. We prove by induction.
Base case. We prove γ ≥ d. Let C be a 1-sum of the columns of A. Notice that C is

equal to a column of A. By Lemma 1.2.3, C has at least d 1-entries such that any 0-sum
from the columns contained in C has 0-entries in the rows of those 1-entries. Since any
0-sum of A has only 0-entries, C has at least d 1-entries. Thus, the columns of A each have
at least d 1-entries.
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Inductive case. Assume γ⊕s−1 ≥ (s−1)d− (s−1)(s−2)
2 , where s < d. We prove γ⊕s ≥ sd−

s(s−1)
2 .

Notice γ⊕s−1 ≥ (s− 1)d−
s−2∑
i=1

i. Let C be a s-sum of the columns of A. Let Cs−1 be the

(s−1)-sum of some (s−1) columns contained in C . SinceA is d-irreducible, by Lemma 1.2.3,

|C | ≥ |Cs−1|+d−s+1. Thus, |C | ≥ (s− 1)d−
s−2∑
i=1

i+ d− (s− 1) = sd−
s−1∑
i=1

i = sd− s(s−1)
2 .

1.2.2 Restrictions on dimensions for d-separable binary matrices

Theorem 1.2.3. Let A be a t× n binary matrix. If A is d-separable, then

t ≥ log2

(
d∑
i=0

(
n

i

))

Proof. Let A be d-separable. Notice that there are
d∑
i=0

(
n
i

)
ways to choose columns contained

in distinct 0-sums, 1-sums, . . . , d-sums. Notice that there are at most 2t ways to choose
the entries of the Boolean sums. Since A is d-separable, these sums are unique. Thus,
d∑
i=0

(
n
i

)
≤ 2t =⇒ t ≥ log2

(
d∑
i=0

(
n
i

))
.

Theorem 1.2.4. Let A be a t × n d-separable binary matrix. Let s < d be a natural
number. If A is d-irreducible, then

t ≥ log2

(
d−s∑
i=0

(
n− s
i

))
+ sd− s(s− 1)

2

Proof. Let A be d-irreducible. By Theorems 1.2.1 and 1.2.2

sd− s(s−1)
2 ≤ γ⊕s ≤ Γ⊕s ≤ t− log2

(
d−s∑
i=0

(
n−s
i

))
=⇒ sd− s(s−1)

2 ≤ t− log2

(
d−s∑
i=0

(
n−s
i

))
=⇒ t ≥ log2

(
d−s∑
i=0

(
n−s
i

))
+ sd− s(s−1)

2

Corollary 1.2.1. Let A be a t× (t+ 1) d-separable binary matrix. Let s < d be a natural
number. If A is d-irreducible, then

t ≥ log2

(
d−s∑
i=0

(
t+ 1− s

i

))
+ sd− s(s− 1)

2

Tables outlining the results of this corollary may be found in the appendix.
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1.3 Disjunct binary matrices

Definition. Let C1, C2 be distinct sums of columns of a binary matrix A. We say that
C2 covers C1 if C2 = C1 ⊕ C2. We use the notation C1 ⊆ C2. If µ(C1) = µ(C2) = s and
C1 ⊆ C2 then we say the ordered set {C1,C2} is a s-cover in A. Notice that a collision
{C1,C2} corresponds with two covers: {C1,C2} and {C2,C1}.

Definition. We say that a matrix A is d-disjunct if A has no d-covers.

Claim. If A is a d-disjunct binary matrix, then A is s-disjunct for any natural number
s ≤ d.

Definition. Let A be a d-disjunct binary matrix. We call A d-reducible if there is some
submatrix of A that results from deleting a row and a column of A that is d-disjunct. We
call A d-irreducible if there is no such submatrix.

Claim. The binary matrix that results from deleting a column from a d-disjunct binary
matrix is d-disjunct. The binary matrix that results from adding a column to a binary
matrix that is not d-disjunct is not d-disjunct. Deleting or adding a zero-row or a full-row
to a binary matrix preserves disjunctness. A matrix with a zero-column or a full-column
is not d-disjunct for any natural number d. A binary matrix with two identical columns
d-disjunct for any natural number d.

Claim. Any binary matrix that is d-disjunct is d-separable. The binary matrix that results
from deleting a row of a d-disjunct matrix is d-separable. A binary matrix that is d-separable
is (d− 1)-disjunct.

Claim. If there is no t × n d-disjunct binary matrix, then there is no (t − 1) × (n − 1)
d-disjunct binary matrix.

Lemma 1.3.1. Let A be a t × n binary matrix. Let R be a row of A. Let A′ be the
(t − 1) × (n − |R|) submatrix of A that results from deleting row R and the columns of A
with 1-entries in R. If A is d-disjunct, then A′ is d-disjunct.

Proof. The proof is analogous to the proof of Lemma 1.2.1.

The following definition, Sperner’s Theorem, and the LYM Inequality can be found
in [6].

Definition. A Sperner Family is a collection of subsets of a set such that no subset is
contained in any other subset.

Sperner’s Theorem. Let K be a set of k elements. Suppose S is a Sperner Family of
K. Then S contains at most

( k
b k2c
)

subsets of K.
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The LYM Inequality. If F is a Sperner family of a set of size t, then∑
X∈F

1(
t
|X|
) ≤ 1

Definition. Let C be a binary vector. The subset version of C is the set of indices where
C has a 1-entry.

Definition. Let A be a t × n matrix. Let A⊕d be the t ×
(
n
d

)
matrix whose columns are

the distinct d-sums of columns of A. We call A⊕d the d-sum-matrix of A.

Lemma 1.3.2. A binary matrix A is d-disjunct if and only if A⊕d is 1-disjunct.

Proof. Suppose A is d-disjunct. If any C1 column in A⊕d covers another column C2 in A⊕d ,
then the d-sum C1 of columns of A corresponding to C1 in A⊕d must cover the d-sum C2 of
columns of A corresponding to C2 in A⊕d , a contradiction, since A is d-disjunct. Thus, A⊕d
must be 1-disjunct.

Suppose A is not d-disjunct. Then there is some d-sum C1 of A which covers another
d-sum C2 of A. Thus, there is a column in A⊕d which covers another column in A⊕d . Thus,
A⊕d is not 1-disjunct.

1.3.1 Restrictions on column weights for d-disjunct binary matrices

Notation. Let n, d be natural numbers, where n ≥ d. We define the function f(n, d) = m,
where m is the largest integer satisfying

( m
bm2 c

)
<
(
n
d

)
.

Theorem 1.3.1. Let A be a t× n binary matrix. If A is d-disjunct, then for any natural
number s < d,

Γ⊕s < t− f(n− s, d− s).

where Γ⊕s is the maximum weight of the s-sums of columns of A.

Proof. Let A be d-disjunct. We prove by contradiction
Suppose Γ⊕s ≥ t− f(n− s, d− s). There is a s-sum C0 of columns such that |C0| = Γ⊕s .

Let k be the number of 0-entries in C0. Notice that k ≤ f(n − s, d − s). Let A′ be the
submatrix of A that results from deleting all rows in which C0 has a 1-entry and each
column contained in C0. Notice that A′ is a k × (n − s) binary matrix. We denote the
column of A′ that results from a column Ci of A as C ′i and the sum of columns of A′ that

results from a sum of columns C in A as C ′. Notice that
( k
b k2c
)
≤
( f(n−s,d−s)⌊

f(n−s,d−s)
2

⌋) < (n−sd−s
)
.

So by Theorem 1.3.4, A′ is not (d− s)-disjunct. Thus, there is some (d− s)-sum C ′1 in A′

which covers a column C ′ in A′. The d-sum C0 ⊕ C1 in A covers C in A, a contradiction,
since A is d-disjunct.
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Theorem 1.3.2. Let A be a t×n d-disjunct binary matrix. Let γ be the minimum column
weight in A. If A is d-irreducible, then

γ > d

where γ is the minimum weight of the columns of A.

Proof. Let A be d-irreducible. We prove by contradiction.
Suppose γ ≤ d. There is a column Cj with weight γ. Let R be the collection of

rows where Cj has 1-entries. Assume, by way of contradiction, that each row in R has a
1-entry in some column other than Cj . Then there is a s-cover of Cj , where s ≤ γ ≤ d, a
contradiction, since A is d-disjunct. Thus, there is some row Ri in R such that Ri[j] is the
only 1-entry of Ri. The submatrix of A that results from deleting Cj and then deleting the
resulting 0-row Ri is d-disjunct, a contradiction, since A is d-irreducible. Thus γ > d.

Lemma 1.3.3. Let d ≥ 2 be a natural number. Let A be a t× n d-disjunct binary matrix.
Let Cj , Ck be two columns of A. If A is d-irreducible, then |Cj ⊕ Ck| ≥ |Cj | + d and
|Cj ⊗ Ck| ≤ |Ck| − d.

Proof. Let A be d-irreducible. We prove by contradiction.
Suppose |Cj ⊕ Ck| < |Cj | + d. Then by the inclusion-exclusion principle, |Cj ⊗ Ck| >

|Ck| − d. Notice that |Cj ⊗ Ck| ≤ |Ck| − 2, since A is d-disjunct. Thus, there are at least
2 and at most |Cj | − |Ck| + 2d − 2 rows such that one but not both of the columns have
a 1-entry in that row. Notice that there are less than |Cj | − |Ck| + d rows such that the
1-entry is in Cj , and at most d− 1 rows such that the 1-entry is in Ck. Let RA be the set
of rows such that there is a 1-entry in Ck but not Cj . Suppose for each row of RA, there
is a column, not Ck, such that there is a 1-entry in that column for that row. Let CA be
the sum of these columns. Notice that 1 ≤ µ(CA) < d. Notice that the d-sum of CA with
Cj covers Ck. But this is a contradiction, since A is d-disjunct. Thus, for some row Ri,
Ri[k] is the only 1-entry of Ri. Let A′ be the submatrix of A that results from deleting
Ck, Ri. Since after deleting Ck Ri will be a 0-row, A′ is d-disjunct, a contradiction, since
A is irreducible. Thus, |Cj ⊕Ck| ≥ |Cj |+ d. By applying the inclusion-exclusion principle,
|Cj ⊗ Ck| ≤ |Ck| − d.

Lemma 1.3.4. Let A be a t× n d-disjunct binary matrix. Let s < d be a natural number.
Let C be a s-sum of the columns of A. Let Cs−1 be a (s − 1)-sum of some s − 1 columns
contained in C . Let C be the column contained in C not contained in Cs−1. If A is d-
irreducible, then |C | > |Cs−1|+ d− s. That is, if A is d-irreducible, then C has more than
d− s 1-entries such that Cs−1 has 0-entries in the rows of those 1-entries.

Proof. Since A is d-disjunct, A is d-separable. Thus, the results follow from Lemma 1.2.3.

10



Theorem 1.3.3. Let A be a t × n d-disjunct binary matrix. Let 1 < s < d be a natural
number. If A is d-irreducible, then

γ⊕s ≥ sd−
s(s− 1)

2
+ 2

where γ⊕s is the minimum weight of the s-sums of columns of A.

Proof. Let A be d-irreducible. We prove by induction.
Base case. We prove γ⊕2 ≥ 2d + 1. This follows directly from Theorem 1.3.2 and

Lemma 1.3.3.
Inductive case. Assume γ⊕s−1 ≥ (s − 1)d − (s−1)(s−2)

2 + 2, where 2 < s < d. We prove

γ⊕s ≥ sd − s(s−1)
2 + 2. Notice that γ⊕s−1 ≥ (s − 1)d −

s−2∑
i=1

i + 2. Let C be a s-sum of A.

Let Cs−1 be the (s − 1)-sum of (s − 1) columns forming C . Since A is d-irreducible, by

Lemma 1.3.4, |C | ≥ |Cs−1| + d − s + 1. Thus, |C | ≥ (s − 1)d −
s−2∑
i=1

i + d − (s − 1) + 2 =

sd−
s−1∑
i=1

i+ 2 = sd− s(s−1)
2 + 2.

Lemma 1.3.5. Let A be a t × n binary matrix, where n > t. If A is d-disjunct, then A
has less than t− 2d columns of weight at most d.

Proof. Let A be d-disjunct. We prove by contradiction.
Suppose A has at least t − 2d columns of weight at most d. Call this set of columns

C . We examine Cj in C . Let R be the set of at most d rows where Cj has a 1-entry.
Assume, by way of contradiction, that each row of R has a 1-entry in a column other than
Cj . Then there is a d-cover of Cj , a contradiction, since A is d-disjunct. Thus, for each
column Ck ∈ C , there is a corresponding Ri such that Cj is the only column with a 1-entry
in that row. The submatrix that results from deleting each column Ck ∈ C of A, and the
resulting 0-rows Ri corresponding to each Ck is a (t − |C |) × (n − |C |) d-disjunct binary
matrix. Since |C | ≥ t − 2d, there exists a m × (m + 1) d-disjunct binary matrix, where
m ≤ 2d, a contradiction, since by Lemma 1.3.6, no such matrix exists. Thus, A has less
than t− 2d columns of weight at most d.

1.3.2 Restrictions on dimensions for d-disjunct binary matrices

Theorem 1.3.4. Let A be a t× n binary matrix. Let s ≤ d be a natural number. If A is
d-disjunct, then (

n

s

)
≤
(

t⌊
t
2

⌋)

11



Proof. Let A be d-disjunct. Consider the collection S of all s-sums of the columns A.
Since A is d-disjunct, the subset versions of the s-sums of S must be a Sperner family of
{1, . . . , t}. There are

(
n
s

)
possible s-sums. Notice that for each s-sum X contained in S ,(

t
|X|
)
≤
( t
b t2c
)
. By the LYM Inequality, 1 ≥

∑
X∈S

1

( t
|X|)
≥
(
n
s

)
1

( t

b t2c)
=⇒

(
n
s

)
≤
( t
b t2c
)

Lemma 1.3.6. Let A be a t× (t+ 1) binary matrix. Let d ≥ 2 be a natural number. If A
is d-disjunct, then t > 3d.

Proof. Let A be d-disjunct. We prove by contradiction.
Suppose t ≤ 3d. We prove exhaustively.
Suppose t = 3d. Notice that

( 2d−1

b 2d−1
2 c
)
<
(

3d
d−1

)
. So by Theorem 1.3.1, Γ < d+ 1. But by

Lemma 1.3.5, Γ ≥ d+ 1, a contradiction. Thus, t < 3d. That is, there is no 3d× (3d+ 1)
d-disjunct binary matrix. Thus, there is no (3d− 1)× 3d d-disjunct binary matrix, Thus,
there is no (3d − 1) × 3d d-disjunct binary matrix, . . . , there is no (d − 1) × d d-disjunct
binary matrix. Thus, t > 3d.

Lemma 1.3.7. Let a, b, c be natural numbers such that a ≥ 2, b ≥ 3c. If a ≤ f(b, c), then
a− 1 ≤ f(b− 1, c).

Proof. We prove by cases.
Suppose a is even. Then

( a−1

ba−1
2 c
)

= 1
2

( a
ba2c
)
. By assumption,

( a−1

ba−1
2 c
)

= 1
2

( a
ba2c
)
<

1
2

(
b
c

)
= b

2(b−c)
(
b−1
c

)
≤
(
b−1
c

)
, since b ≥ 3c =⇒ b

2(b−c) ≤ 1. So a− 1 ≤ f(b− 1, c).

Suppose a is odd. Then
( a−1

ba−1
2 c
)

= a+1
2a

( a
ba2c
)
. By assumption,

( a−1

ba−1
2 c
)

= a+1
2a

( a
ba2c
)
<

a+1
2a

(
b
c

)
= (a+1)b

2a(b−c)
(
b−1
c

)
≤
(
b−1
c

)
, since b ≥ 3c =⇒ (a+1)b

2a(b−c) ≤ 1, since a ≥ 3. So a − 1 ≤
f(b− 1, c).

Theorem 1.3.5. Let d ≥ 2 be a natural number. Let A be a t × n binary matrix, where
n > t > 3d. If A is d-disjunct, then

t > f(n− 1, d− 1) + d+ 1

Proof. We first prove that if A is d-irreducible, then the inequality holds. We then prove
that if A is d-disjunct, then the inequality holds, regardless of d-irreducibility.

Let A be d-irreducible. We prove by contradiction.
Suppose t ≤ f(n−1, d−1) +d+ 1. Then t−f(n−1, d−1) ≤ d+ 1. By Theorem 1.3.1,

Γ < t − f(n − 1, d − 1). Thus, Γ ≤ d. Suppose γ ≤ d. Then by the contrapositive
of Theorem 1.3.2, A is d-reducible, a contradiction. Thus, γ > d, a contradiction, since
Γ ≤ d. Thus, t > d+ f(n− 1, d− 1) + 1.

Let A be d-disjunct. We prove by contradiction.
Let m1 = f(n−1, d−1). Suppose t ≤ m1 +d+1. By the contrapositive of the first part

of this proof, there is a (t− 1)× (n− 1) d-disjunct binary matrix. Since (n− 1) ≥ 3(d− 1),

12



by Lemma 1.3.7, m2 = m1 − 1 ≤ f(n − 2, d − 1). Notice that if t ≤ d + m1 + 1, then
t − 1 ≤ d + m2 + 1, so by the contrapositive of the first part of this proof, there is a
(t−2)×(n−2) d-disjunct binary matrix. We know that for any natural number x ≤ t−3d,
n − x ≥ 3(d − 1), since n − x < 3(d − 1) =⇒ x > n − 3d + 3 =⇒ x > t − 3d + 3, a
contradiction, since x ≤ t− 3d. Thus, this continues until, since n− (t− 3d) ≥ 3(d− 1), by
Lemma 1.3.7, mt−3d = m1 − (t− 3d− 1) ≤ f(n− (t− 3d), d− 1). So by the contrapositive
of the first part of this proof, there is a (t − (t − 3d)) × (n − (t − 3d)) d-disjunct binary
matrix. Thus, there exists a 3d× (3d+ 1) d-disjunct binary matrix, a contradiction, since
by Lemma 1.3.6, no such matrix exists. Thus, t > f(n− 1, d− 1) + d+ 1.

Corollary 1.3.1. Let d ≥ 2 be a natural number. Let A be a t × (t + 1) binary matrix,
where t > 3d. If A is d-disjunct, then

t > f(t, d− 1) + d+ 1

Theorem 1.3.6. Let d ≥ 3 be a natural number. Let A be a t×n d-disjunct binary matrix.
Let 1 < s < d be a natural number. If A is d-irreducible, then

t > sd− s(s− 1)

2
+ 2 + f(n− s, d− s)

Proof. We first prove that if A is d-irreducible, then the inequality holds. We then prove
that if A is d-disjunct, then the inequality holds, regardless of d-irreducibility.

Let A be d-irreducible. By Theorems 1.3.3 and 1.3.1, sd − s(s−1)
2 + 2 ≤ γ⊕s ≤ Γ⊕s <

t − f(n − s, d − s) =⇒ sd − s(s−1)
2 + 2 < t − f(n − s, d − s) =⇒ t > sd − s(s−1)

2 + 2 +
f(n− s, d− s).

Corollary 1.3.2. Let d ≥ 3 be a natural number. Let A be a t× (t+ 1) d-disjunct binary
matrix, where t > 3d. If A is d-irreducible, then

t > sd− s(s− 1)

2
+ 2 + f(t+ 1− s, d− s)

Claim. If A is a t×n binary matrix, then t ≤ Γ·n
ρ , where Γ is the maximum column weight

of A and ρ is the minimum row weight of A.

Claim. If A is a t× n binary matrix, then n ≤ P ·t
γ , where P is the maximum row weight

of A and γ is the minimum column weight of A.

Proposition 1.3.1. Let A be a t × n d-disjunct binary matrix with γ = Γ = d + 1. If A

is d-irreducible, then n ≤ b
t−1
d ct
d+1 .
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Proof. Let A be d-irreducible. By Lemma 1.3.3, no column can have a 2-product of weight
greater than 1 with any other column. Assume, by way of contradiction, that P >

⌊
t−1
d

⌋
.

Then there exists a row R such that |R| >
⌊
t+d−1
d

⌋
. Thus, there is a collection of |R|

columns C such that each column has a 1-entry in R. Notice that each column of C has d

1-entries not in R. Notice that there are t− 1 rows not R in A. Since

⌈
b t+d−1

d cd
t−1

⌉
≥ 2 ,by

the pigeonhole principle, there is at least one row not R of A such that two columns of C
have a 1-entry in that row. These two columns have a 2-product of weight greater than 1,

a contradiction. Thus, P ≤
⌊
t−1
d

⌋
. Thus, n ≤ b

t−1
d ct
d+1 .

Proposition 1.3.2. There exists no 8× 9 2-disjunct binary matrix.

Proof. Let A be a 8× 9 binary matrix. We prove by contradiction.
Suppose A is 2-disjunct. By Corollary 1.3.1, A is 2-irreducible. Thus, by Theorem 1.3.2,

γ > 2. By Theorem 1.3.1, Γ < 4. Thus, the weight of all columns of A is 3. Thus, by the
contrapositive of Proposition 1.3.1, A is not 2-irreducible, a contradiction. Thus, A is not
2-disjunct.

Tables outlining the results of Corollary 1.3.2 and Proposition 1.3.2, may be found in
the appendix.

Proposition 1.3.3. There exists no 9× 13 2-disjunct binary matrix.

Proof. Let A be a 9× 13 binary matrix. We prove by contradiction.
Suppose A is 2-disjunct. By Proposition 1.3.2, A is 2-irreducible. Thus, by Theo-

rem 1.3.2, γ > 2. By Theorem 1.3.1, Γ < 4. Thus, the weight of all columns of A is 3.
Thus, by the contrapositive of Proposition 1.3.1, A is not 2-irreducible, a contradiction.
Thus, A is not 2-disjunct.
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1.4 Counting collisions and covers

Definition. We denote the Boolean sum of two matrices A, B as A⊕B, where

(A⊕B)[i, j] =

{
1, if A[i, j] = 1 or if B[i, j] = 1

0, if A[i, j] = B[i, j] = 0.

Similarly, we denote the Boolean product of two matrices A, B as A⊗B, where

(A⊗B)[i, j] =

{
1, if A[i, j] = B[i, j] = 1

0, if A[i, j] = 0 or if B[i, j] = 0.

Definition. We define the weight of a matrix A, denoted |A|, to be the sum of the entries
of A. In a binary matrix, the weight is the number of 1-entries.

1.4.1 s-collision and s-cover matrices

Let A be a matrix and s a natural number. Let A⊕s be the s-sum-matrix of A. Let C1 and
C2 be distinct columns of A⊕s (so they are distinct s-sums of A). If C1 = C2, then {C1, C2}
forms a s-collision of A.

Notation. We denote the number of s-collisions of A as Z=
s (A). The number of s̄-collisions

will be denoted Z=
s (A). We denote the number of s-covers of a matrix A as Z⊆s (A).

Claim. IA is d-separable if and only if Z=
s (A) = 0. A is d-separable if and only if

Z=
s (A) = 0 for each s ≤ d. A is d-disjunct if and only if Z⊆d (A) = 0.

Definition. Let A be a t×n matrix and let s be a natural number. Let A=
s be the

(
n
s

)
×
(
n
s

)
matrix defined by

A=
s [i, j] =

{
1, if Cj = Ci in A⊕s
0, otherwise.

We call A=
s the s-collision matrix of A.

Definition. Let A be a t× n matrix. Let A⊕s be the s-sum-matrix of A. Define A⊆s to be
the

(
n
s

)
×
(
n
s

)
binary matrix whose entries are given by:

A⊆s [i, j] =

{
1, if Ci ⊆ Cj in A⊕s
0, otherwise.

We call A⊆s the s-cover-matrix of A.
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Proposition 1.4.1. Let A be a t× n matrix. Then we have

Z=
s (A) =

1

2

[
|A=

s | −
(
n

s

)]
and

Z⊆s (A) = |A⊆s | −
(
n

s

)
.

Proof. The 1-entries on the diagonal of A=
s represent the same sum paired with itself,

which is not a s-collision, so we must subtract these
(
n
s

)
1-entries. Each s-collision Ci, Cj

is represented twice in A=
s , in A=

s [i, j] and A=
s [j, i], so we must divide by 2. A similar proof

works for the second equation, but since covers are ordered pairs, we don’t divide by 2.

Lemma 1.4.1. Let A be a t×n binary matrix. Let d be a natural number. Let A(1), . . . , A(m)
be submatrices of A such that every row of A is a row in at least one of A(1), . . . , A(m)
(so each A(i) has n columns). If |A(1)=

d ⊗ · · · ⊗ A(m)=
d | >

(
n
d

)
, then A is not d-separable.

If |A(1)⊆d ⊗ · · · ⊗A(m)⊆d | >
(
n
d

)
, then A is not d-disjunct.

Proof. Notice |A(1)=
d ⊗· · ·⊗A(m)=

d |−
(
n
d

)
is the number of d-collisions which are d-collisions

in each ofA(1), . . . A(m). If there are distinct d-sums C1 and C2 inA such that C1(i) = C2(i)
in A(i) for each i, this corresponds with a d-collision in A. If A has a d-collision, then A
cannot be d-separable. Similarly |A(1)⊆d ⊗ · · · ⊗ A(m)⊆d | is the number of d-covers which
are d-covers in each of A(1), . . . A(m). If there is a d-sum C1(i) which covers d-sum C2(i)
in A(i) for each i, this corresponds with a d-cover in A. If |A(1)⊆d ⊗ · · · ⊗ A(m)⊆d | >

(
n
d

)
,

then A has at least one d-cover, and therefore A is not d-disjunct.

Lemma 1.4.2. Let A be a t× n matrix, and let A(1) and A(2) be submatrices of A such
that every row of A is a row in either A(1) or in A(2), possibly both. If A is d-separable,
then we have

|A(1)=
d |+ |A(2)=

d | ≤
(
n

d

)2

+

(
n

d

)
.

Furthermore, if A is d-disjunct, then we have

|A(1)⊆d |+ |A(2)⊆d | ≤
(
n

d

)2

+

(
n

d

)
.

Proof. We have |A(1)=
d |+|A(2)=

d | = |A(1)=
d ⊕A(2)=

d |+|A(1)=
d ⊗A(2)=

d | = |A(1)=
d ⊕A(2)=

d |+
|A=

d | ≤
(
n
d

)2
+
(
n
d

)
, applying Lemma 1.4.1. A similar proof works for the disjunct case.

Theorem 1.4.1. Let A be a t × n d-separable binary matrix, and let A(1), . . . , A(m) be
submatrices of A such that every row of A is a row in at least one of A(1), . . . , A(m). Then
we have

m∑
i=1

|A(i)=
d | ≤ (m− 1)

(
n

d

)2

+

(
n

d

)
.
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Furthermore, if A is d-disjunct, then we have

m∑
i=1

|A(i)⊆d | ≤ (m− 1)

(
n

d

)2

+

(
n

d

)
.

Proof. We prove the separable case. The disjunct case is proved analogously. We prove by
induction on m. By Lemma 1.4.2 we know the inequality is true for m = 2. Suppose it is
true for m ≥ 2. Let A(1), . . . , A(m+ 1) be submatrices of A such that every row of A is a
row in at least one of A(1), . . . , A(m+ 1). Consider the submatrix of A which results from
deleting only the rows contained in A(m+1). Call this submatrix Ā. Then A(1), . . . , A(m)
are submatrices of Ā satisfying the conditions of our inductive hypothesis, so we know
m∑
i=1
|A(i)=

d | ≤ (m−1)
(
n
d

)2
+
(
n
d

)
. Thus we have

m+1∑
i=1
|A(i)=

d | =
[
m∑
i=1
|A(i)=

d |
]

+ |A(m+1)=
d | ≤

(m− 1)
(
n
d

)2
+
(
n
d

)
+
(
n
d

)2
= m

(
n
d

)2
+
(
n
d

)
as desired.

1.4.2 Row weight inequalities

Consider a t × n matrix A, and consider the rows R(1), . . . , R(t) of A. If we think of the
rows as submatrices of A, we can apply Theorem 1.4.1 to get the following result:

Lemma 1.4.3. If A is d-separable, we have

t∑
i=1

|R(i)=
d | ≤ (t− 1)

(
n

d

)2

+

(
n

d

)
.

If we also have that A is d-disjunct, then

t∑
i=1

|R(i)⊆d | ≤ (t− 1)

(
n

d

)2

+

(
n

d

)
.

Lemma 1.4.4. Let R be a 1× n binary matrix. Then

|R=
s | =

(
n

s

)2

+ 2

(
n− |R|

s

)2

− 2

(
n

s

)(
n− |R|

s

)
Proof. If the weight of R is |R|, then there are |R| 1-entries of R and (n − |R|) 0-entries.
Consider the 1 ×

(
n
s

)
s-sum-matrix R⊕s . There are

(
n−|R|
s

)
0-entries and

(
n
s

)
−
(
n−|R|
s

)
1-

entries in R⊕s . This corresponds to have exactly
(
n−|R|
s

)2
+
[(
n
s

)
−
(
n−|R|
s

)]2
1-entries in

A=
s , which reduces to the desired result.

Theorem 1.4.2. Let A be a t × n d-separable matrix with rows R(1), . . . R(t). Then we
have (

n

d

)2

−
(
n

d

)
≤ 2

t∑
i=1

[(
n

d

)(
n− |R(i)|

d

)
−
(
n− |R(i)|

d

)2
]
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Proof. The proof follows directly from Lemma 1.4.4 and Lemma 1.4.3

Lemma 1.4.5. Let R be a 1× n binary matrix. Then

|R⊆s | =
(
n

s

)2

−
(
n− |R|

s

)(
n

s

)
+

(
n− |R|

s

)2

Proof. If the weight of R is |R|, then there are |R| 1-entries of R and (n − |R|) 0-entries.
Consider the 1 ×

(
n
s

)
s-sum-matrix R⊕s . There are

(
n−|R|
s

)
0-entries and

(
n
s

)
−
(
n−|R|
s

)
1-

entries in R⊕s . This corresponds to
(
n−|R|
s

)
·
(
n
s

)
+
[(
n
s

)
−
(
n−|R|
s

)]2
1-entries in A⊆d , which

reduces to the desired result.

Theorem 1.4.3. Let A be a t × n d-disjunct matrix with rows R(1), . . . R(t). Then we
have (

n

d

)2

−
(
n

d

)
≤

t∑
i=1

[(
n

d

)(
n− |R(i)|

d

)
+

(
n− |R(i)|

d

)2
]

(1.3)

Proof. The proof follows directly from Lemma 1.4.5 and Lemma 1.4.3

1.4.3 A lower bound on the number of collisions

Lemma 1.4.6. Let A be a t × n matrix, and let A⊕s be the s-sum-matrix of A. Suppose
A⊕s has exactly υ nonidentical columns C1, . . . , Cυ such that each column in A⊕s is equal to
one of the columns in C1, . . . , Cυ. Let χi denote the number of columns of A⊕s which are
equal to Ci. Let A=

s be the s-collision matrix of A. Then we have:

|A=
s | =

υ∑
i=1

χ2
i

Proof. Each pair of identical columns corresponds to exactly one 1-entry in A=
s . This

includes repeated columns and any order, so there are χ2
i 1-entries for each set of χi

identical columns.

Theorem 1.4.4. Let A be a t× n matrix, and let A⊕s be the s-sum-matrix of A. Suppose
A⊕s has exactly υ nonidentical columns C1, . . . , Cυ such that each column in A⊕s is equal to
one of the columns in C1, . . . , Cυ. Let Z=

s (A) be the number of s-collisions of A. Then we
have:

Z=
s (A) =

1

2

[
υ∑
i=1

χ2
1 −

(
n

s

)]
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Theorem 1.4.5. Let A be a t× n matrix, and let A⊕s be the s-sum-matrix of A. Suppose
A⊕s has exactly υ nonidentical columns C1, . . . , Cυ such that each column in A⊕s is equal to
one of the columns in C1, . . . , Cυ. Let k and r be nonnegative integers such that

(
n
s

)
= kυ+r,

and r < υ. Then we have:

|A=
s | ≥ (υ − r)

⌊(
n
s

)
υ

⌋2

+ r

⌈(
n
s

)
υ

⌉2

Proof. Consider the function F (x1, . . . , xυ) =
υ∑
i=1

x2 on the nonnegative integers, subject

to the restriction
υ∑
i=1

xi =
(
n
s

)
. This function takes a minimum when each xi is as equal as

possible, which occurs when x1 = · · · = xυ−r =

⌊
(ns)
υ

⌋
, and xυ−r+1 = · · · = xυ =

⌈
(ns)
υ

⌉
.

This function models |A=
d |, and for any choice of χ1, . . . , χυ, we have F (χ1, . . . , χυ) ≥

(υ − r)
⌊

(ns)
υ

⌋2

+ r

⌈
(ns)
υ

⌉2

.

1.4.4 Using a generalization of Sperner’s theorem to count covers

The following definition and theorem can be found in [8].

Definition. A multifamily of a set T is a collection of subsets of T where repetitions
are allowed. We use two notations. We can list the elements of our multifamily M =
{Y1, . . . , Yn}, where each Yi is a distinct (but possibly equal) subset. Or we can write
M = {(χ1,m1), . . . , (χq,mq)}, where χi 6= χj for i 6= j, but each subset Yi is equal to some
χj . We call the set of representative subsets {χ1, . . . , χq} the support of M . We call the
set {m1, . . . ,mq} the set of multiplicities. Each mi represents the number of subsets in M

which are equal to χi. So we have
q∑
i=1

mi = n.

Notation. Let M = {Y1, . . . , Yn} be a multifamily of a set T . We denote the set of
ordered pairs (i, j) such that Yi ⊆ Yj as φ(M ).

A Generalization of Sperner’s Theorem. Let M be a multifamily of a t-element set
T . Suppose there are n subsets in M . Let k, r be the nonnegative integers satisfying
n = k

(
t
b t

2
c
)

+ r and r <
(
t
b t

2
c
)
. Then we have

|φ(M )| ≥ k(k − 1)

(
t

b2
2c

)
+ 2kr + n.

If k = 0, or if k = 1 and r = 0, then equality holds if and only if M is a Sperner family.
For k ≥ 1, equality holds if the support of M consists of all subsets of T of size b t2c, or all
subsets of T of size d t2e, and if all multiplicities are k or k + 1. If k ≥ 1 and t ≥ 4, then
no other multifamilies achieve this bound.
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Claim. Let A be a t × n binary matrix. Let s be a natural number, let A⊕s be the s-sum-
matrix of A, and let A⊆s be the s-cover matrix of A. If you consider the columns of A⊕d as
subsets of [t], then we have |A⊆s | = |φ(A⊕d )|.

Proposition 1.4.2. Let A be a t× n binary matrix. Let s be a natural number. Let k, r
be the nonnegative integers satisfying

(
n
s

)
= k

(
t
b t

2
c
)

+ r and r <
(
t
b t

2
c
)
. Then we have

Z⊆s ≥ k(k − 1)

(
t

b t2c

)
+ 2kr.

Equality is achieved if and only if A⊕s has columns of equal weight, either |C| =
(
t
b t

2
c
)

or

|C| =
(
t
d t

2
e
)

for each column C of A⊕s .

1.4.5 Applying outside problems to disjunctness

The following definition and theorem can be found in [4].

Definition. Let M be a multifamily of subsets of [t]. We say the parameters of M is the
set of numbers {p0, . . . pt}, where pi represents the number of subsets of M of cardinality
i.

Existence Theorem for Sperner Families. Let S be a Sperner family of subsets of
[t]. Let {p0, . . . , pt} be the parameters of S . Then there is a Sperner family Y on [t] with
parameters {q0, . . . , qt}, where qi = 0 for 0 ≤ i < t

2 , qi = pt−1 + pi for t
2 < i ≤ t, and when

t is even, q t
2

= p t
2
.

Definition. Let A be a t × n matrix. We call the parameters of A the set of numbers
{p0, . . . pt}, where pi represents the number of columns of A with weight i

Proposition 1.4.3. Let A be a t×n d-disjunct matrix. Let {p0, . . . , pt} be the parameters
of A⊕d . Then there exists a t ×

(
n
d

)
1-disjunct matrix with parameters {q0, . . . , qt}, where

qi = 0 for 0 ≤ i < t
2 , qi = pt−1 + pi for t

2 < i ≤ t, and when t is even, q t
2

= p t
2
.

The following definition and theorem can be found in [7].

Definition. A Sperner family S is called flat if for all S ∈ S , |S| = x or |S| = x+ 1 for
some nonnegative integer x.

The Flat Antichain Theorem. If S is a Sperner family of [t], then there exists a flat
Sperner family Y of [t] with the same number of subsets as S , and the same average set
size as S .

Lemma 1.4.7. Let A be a t×n d-disjunct matrix. Suppose |A⊕d | = k
(
n
d

)
+r for nonnegative

integers k, r, with r <
(
n
d

)
. Then there exists a 1-disjunct t ×

(
n
d

)
matrix B with

(
n
d

)
− r

columns of weight k and r columns of weight r + 1.
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Theorem 1.4.6. Let A be a t × n d-disjunct matrix, and let A⊕d be the d-sum-matrix of

A. Let k =

⌊
|A⊕d |
(nd)

⌋
. Then we have(

n

d

)
≤ max

[(
t

k

)
,

(
t

k + 1

)]
.

Proof. Let M = max
[(
t
k

)
,
(

t
k+1

)]
, and suppose

(
n
d

)
> M . Let k =

⌊
|A⊕d |
(nd)

⌋
, and let r be

the nonnegative integer satisfying |A⊕d | = k
(
n
d

)
+ r. Then by Lemma 1.4.7, we know there

exists 1-disjunct t×
(
n
d

)
matrix B with

(
n
d

)
−r columns of weight k and r columns of weight

k + 1. Applying the LYM Inequality, we see that
(nd)
M ≤ (nd)−r

(t
k)

+ r

( t
k+1)

≤ 1. Therefore we

have
(
n
d

)
≤M and the proof is complete.

Example. Suppose there exists a 10× 14 2-disjunct matrix, A. Let x denote the average
column weight of A⊕d . Then 3 ≤ x ≤ 7.

1.5 Existence of a 10 × 14 2-disjunct binary matrix

Suppose there is a 10×14 2-disjunct binary matrix. Call this matrix A .

Notation. We denote the number of columns of a matrix A with weight w as ℵw(A).
When it is clear, we may use ℵw.

Proposition 1.5.1. ℵ4(A ) ≥ 5.

Proof. We prove by contradiction, by cases.
Suppose A has less than 4 columns of weight 4. By Theorem 1.3.1, each column of A

has weight at most 4. Since A is d-irreducible, by Theorem 1.3.2, each column of A has
weight at least 3. By Lemma 1.1.3, A has a row of weight at least 5. Since ℵ4 ≤ 3 by
Lemma 1.7.1 there are greater than 10 rows in A , a contradiction. Thus, A has at least
4 columns of weight 4.

Suppose A has 4 columns of weight 4. Since A is d-irreducible, by Theorem 1.3.2,
γ(A) = 3 Let A ′ be the submatrix of A taken by deleting a 4-column of A . Notice that
A has 10 3-columns and 3 4-columns. By Lemma 1.1.3, P (A ′) ≥ 5. Thus, by Lemma 1.7.1,
there are greater than 10 rows in A ′, a contradiction. Thus, A ′ has at least 5 columns of
weight 4.

Notation. Let C1, C2, · · · , Cj be a collection of columns. We call the set of indices i
such that (Ci ⊕ C2 ⊕ · · · ⊕ Cj)[i] = 0, the zero-set of C1, C2, . . . , Cj , and use the notation
Z[1, 2, . . . , j]. That is, the zero-set of a number of columns is the set of rows where all the
columns have 0-entries. We call the set of indices where at least one of the columns has a
1-entry the unit-set of C1, C2, . . . , Cj and use the notation U [1, 2, . . . , j].
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Proposition 1.5.2. A has at least one pair of 4-columns whose 2-product has weight 2.

Proof. We prove by contradiction.
Suppose A has no 4-columns whose 2-product with another 4-column has weight 2.

By Proposition 1.5.1, A has at least 5 columns of weight 4. Without loss of generality,
assume C1, . . . , C5 are 4-columns. Suppose for some two 4-columns, the weight of their
2-product is 0. Without loss of generality, assume these are C1, C2. Suppose for some
other 4-column, CZ , CZ has two 1-entries in Z[1, 2]. Then since |C1 ⊕ C2 ⊕ CZ | = 10, by
the pigeonhole principle any other 4-column must have a 2-product with at least one of
C1, C2, CZ with weight at least 2, a contradiction, since no such column exists. Thus no
other 4-column has two 1-entries in Z[1, 2]. Suppose a 4-column has one 1-entry in Z[1, 2].
Such a column has three 1-entries in U [1, 2], and thus has a 2-product with at least one
of C1, C2 with weight at least 2, a contradiction, since no such column exists. Since A is
2-disjunct, there cannot be any column of A with zero 1-entries in Z[1, 2] Thus, since there
are no columns with 0, 1, 2 1-entries in Z[1, 2], and there are two rows Z[1, 2], there is a
contradiction. Thus, there are no two 4-columns of A with a 2-product of weight 0. Thus,
each 4-column of A has a 2-product with any other 4-column with weight 1.

Suppose at least 2 4-columns of A have a 3-product with C1 of weight 1. Notice the
2-sum of these two columns must have a 1-entry in each of the 6 rows of Z[1]. Then by the
pigeonhole principle, since these three columns have at least one 1-entry in each row of A ,
any other 4-column must have a 2-product with one of these three columns of weight at
least 2, a contradiction. Thus no 2 4-columns of A have a 3-product with C1 of weight 1.

Suppose there are at least six 4-columns of A . Then by the pigeonhole principle, at
least 2 4-columns of A have a 3-product with C1 of weight 1, a contradiction, since no
such columns exist. Thus, there are exactly five 4-columns of A .

Notice that there are nine 3-columns in A . Suppose at least four of these columns
have zero 1-entries in U [1]. Notice that the submatrix A ′ with 6 rows and at least 4
columns formed by taking these columns and the rows of Z[1] must be 2-disjunct. Thus,
by Theorem 1.3.1 Γ(A ′) < 3, a contradiction, since Γ(A ′) = 3. Thus, at least six 3-columns
have one 1-entry in U [1].

By the pigeonhole principle, at least two of these 3-columns have a 1-entry in the same
row of U [1], Ri. Thus, the other two 1-entries for each of these columns must occupy a
distinct four rows of Z[1].

Since each 4-column not C1 has a 1-entry in U [1], and no two of them have that 1-entry
in that same row, one of the 4-columns has a 1-entry in Ri. Since there are only two rows
not occupied by the two 3-columns in Z[1], the 4-column must have a 2-product with one
of the 3-columns of weight at least 2, a contradiction. Thus, A has at least 2 4-columns
whose 2-product has weight 2.
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1.6 A conjecture on d-disjunct matrices with optimal dimen-
sions

Definition. For a given number of rows t, we call a t × n d-disjunct binary matrix d-
optimal if there exists no t × (n + 1) d-disjunct binary matrix. We also say the matrix is
of d-optimal dimensions.

Conjecture. For a given number of rows, there exists a binary matrix A of d-optimal
dimensions such that A only has columns whose weight is of the form nd+ 1, where n is a
natural number.

Evidence: Every best known matrix for d=2 that we’ve seen (or seen at least seen the
Steiner system they’re based off of) have column weights of 1, 3, 5, or 7 (t=9,10,11,12,13,16,17,21,22,23,26).
All columns of weight d+ 1 can overlap with any other column of weight d+ 1 in any one
place independently of other columns, all columns of weight 2d + 1 can overlap with any
other column of weight 2d+ 1 in any two places independently of other columns, etc. For
d=2 and a given 4-column C, there are only at most three ways other 4-columns can over-
lap by two with C, and there are at most ten ways 5-columns can overlap by two with
C.

Lemma 1.6.1. Let A be a t× n 2-disjunct binary matrix. If A has exactly one column of
weight 4 and n− 1 columns of weight 3, then there exists a t× n 2-disjunct binary matrix
with all columns of weight 3.

Proof. Let A be a t × n 2-disjunct binary matrix with one column of weight 4 and n − 1
columns of weight 3. Without loss of generality, assume C1 is the 4-column. Let Â be the
matrix which results by changing exactly one 1-entry in C1 to a 0-entry. Let Ĉj denote the
column of Â which results from column Cj of A. Notice that Ĉj = Cj for all 1 < j ≤ n.
Suppose Â is not 2-disjunct. Clearly, this can only happen if Ĉ1 is covered by two columns
of Â. Without loss of generality, assume these are Ĉ2, Ĉ3. Thus, Ĉ1 ⊗ Ĉ2 + Ĉ1 ⊗ Ĉ3 ≥ 3.
Then C1 ⊗ C2 + C1 ⊗ C3 ≥ 3. So by the pigeonhole principle, at least one of C2, C3 has
a 2-product with C1 with weight at least 2, a contradiction, since by Lemma 1.3.3, the
2-product is at most 1. Thus Â is 2-disjunct.

Lemma 1.6.2. Let A be a t×n 2-disjunct binary matrix. If A has exactly two columns of
weight 4 and n− 2 columns of weight 3, then there exists a t× n 2-disjunct binary matrix
with all columns of weight 3.

Proof. Let A be a t× n 2-disjunct binary matrix with two columns of weight 4 and n− 2
columns of weight 3. Without loss of generality, assume C1, C2 are the 4-columns. We
prove by cases.

Suppose C1⊗C2 ≥ 1. Then there is at least one row where both C1, C2 have a 1-entry.
Without loss of generality, assume this is R1. Let Â be the matrix which results by changing

23



C1[1], C2[1] to 0-entries. Let Ĉj denote the column of Â which results from column Cj of
A. Notice Ĉj = Cj for all 3 ≤ j ≤ n. Suppose Â is not 2-disjunct. Clearly, this can only
happen if Ĉ1 or Ĉ2 is covered. Without loss of generality, assume Ĉ1 is covered. Suppose
Ĉ1 is covered by Ĉ2 with some other column Ĉk of Â. Then C1 is covered by C2 ⊕ Ck, a
contradiction, since A is 2-disjunct. Suppose Ĉ1 is covered by two columns Ĉl, Ĉm not Ĉ2

of Â. Then Ĉ1 ⊗ Ĉl + Ĉ1 ⊗ Ĉm ≥ 3. So by the pigeonhole principle, at least one of Cl, Cm
has a 2-product with C1 with weight at least 2, a contradiction, since by Lemma 1.3.3, the
2-product is at most 1. Thus Â is 2-disjunct.

Suppose C1 ⊗ C2 = 0. Let Â be the matrix which results by changing exactly one 1-
entry in both C1, C2 to a 0-entry. Let Ĉj denote the column of Â which results from column
Cj of A. Notice that Ĉj = Cj for all 3 ≤ j ≤ n. Suppose Â is not 2-disjunct. Clearly, this
can only happen if Ĉ1 or Ĉ2 is covered. Without loss of generality, assume C1 is covered.
Notice that C1 cannot be covered by the 2-sum of C2 with any other column of Â. Thus,
Ĉ1 must be covered by two columns Ĉk, Ĉl not Ĉ2 of Â. Then Ĉ1 ⊗ Ĉk + Ĉ1 ⊗ Ĉl ≥ 3.
So by the pigeonhole principle, at least one of Ck, Cl has a 2-product with C1 with weight
at least 2, a contradiction, since by Lemma 1.3.3, the 2-product is at most 1. Thus Â is
2-disjunct.

1.7 Other items of interest

Lemma 1.7.1. Let A be an t× n binary matrix where Γ ≤ γ + 1 = d+ 2. Let Ri be a row
of weight P . Let ℵw denote the number of w-columns with a 1-entry in Ri. We define αa
and βb as follows:

αa = a · d, 0 ≤ a ≤ ℵγ

ψb =
b(2Γ− 1)− b2

2

ω0 = 0, ωb = min{ϕ : ∃ ϕ× b d-disjunct binary matrix with weights all Γ− 1}

βb = max
0≤b≤ℵΓ

{ψb, ωb}

If A is d-disjunct, then t > min
a+b=P

{αa + βb}.

Proof. Let A be an d-disjunct t × n d-disjunct binary matrix, Γ ≤ γ + 1 = d + 2. Let Ri
be a row of weight P . Let the C be the collection of columns with a 1-entry in Ri. Let Cs
be the subset of s-columns of C .

Let αa = a · d, 0 ≤ a ≤ ℵγ . We show that if |Cγ | = a, then Cγ has 1-entries in αa rows
not Ri.

Suppose |Cγ | = a. By the inclusion-exclusion principle and Lemma 1.3.3, each column
of Cγ has a 2-product with any other column of C of weight at most 1. Since each column
of Cγ has a 1-entry in Ri, it must be that the other d entries of each column of Cγ are the
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only 1-entries in the row among the columns of C . Thus, there at least a · d such rows not
Ri. Call these rows Rγ .

Let ψ0 = 0, ψb = ψb−1 + Γ− b, 1 ≤ b ≤ ℵΓ. We show by induction that if |CΓ| = b, then
CΓ has 1-entries in at least ψb rows not Ri.

Base case. Suppose |CΓ| = 0. Then clearly, CΓ has 1-entries in at least 0 rows not Ri.
Inductive case. Assume that if |CΓ| = b− 1, CΓ has 1-entries in at least ψb−1 rows not

Ri. Notice that by the inclusion-exclusion principle and Lemma 1.3.3, the 2-product of
any columns of CΓ is at most Γ− d. Thus, for any pair of columns of CΓ, there is at most
Γ − d − 1 rows not Ri such that both columns have a 1-entry in that row. Thus, the bth

column of CΓ has at least Γ − 1 − (b − 1)(Γ − d − 1) ≥ Γ − b rows such that the column
is the only column of CΓ to have a 1-entry in that row. Thus, CΓ has 1-entries in at least
ψb−1 + Γ− b rows not Ri. That is, CΓ has 1-entries in at least ψb rows not Ri. Notice that

this sequence can be given by ψb = b(2Γ−1)−b2
2 , 0 ≤ b ≤ ℵΓ.

Let ω0 = 0, ωb = min{ϕ : ∃ ϕ× b d-disjunct binary matrix with weights all Γ− 1}, 0 ≤
b ≤ ℵΓ. We prove by contradiction that if |CΓ| = b, then CΓ has 1-entries in at least ωb
rows not Ri.

Let b = |CΓ|. Suppose CΓ has 1-entries in less than ωb rows not Ri. Notice the submatrix
A′ of A from the columns of CΓ is d-disjunct, since A is d-disjunct. Notice that the rows
without 1-entries for the columns of C correspond to 0-rows in A′ and, Ri corresponds to
a full-row in A′ Thus, the submatrix A′′ with less than ωb rows and b columns formed by
deleting these corresponding rows in A′ is d-disjunct, a contradiction, since ωb is such that
no such matrix exists. Thus, CΓ has 1-entries in at least ωb rows not Ri.

Thus CΓ has 1-entries in at least max{ψb, ωb} rows not Ri. Call these rows RΓ.
Notice that the rows of Rγ are distinct from the rows of RΓ. Since neither Rγ nor RΓ

contain Ri, the total number of rows of A is greater than min
a+b=P

{αa + βb}.

Lemma 1.7.2. Let A be an d-irreducible binary matrix with t rows.. Let Ca, Cb, Cc be
columns of A such that, for each row of A, at least one of these three columns has a 1-
entry. Let x be the number of rows where Ca has a 1-entry and Cb has 0-entries. Let y be
similar for Cb with Ca. Let z be the number of rows where Ca and Cb both have 1-entries.
Let

n =

min{Γ−2,x−1}∑
i=1

(x
i

)( z⌊
z
2

⌋) Γ−b z2c−i−1∑
j=1

(
y

j

)
+

min{Γ−2,y−1}∑
j=Γ−b z2c−i

(
y

j

)(
z⌊

Γ−i−j−1
2

⌋)



If A is 2-disjunct, then A has at most n+ 3 columns.

Proof. Let A be an d-irreducible 2-disjunct binary matrix with t columns, three columns
such that their 3-sum has a 1-entry in each row of A. Without loss of generality, assume
these are C1, C2, C3. Notice that by Theorem 1.3.2 γ ≥ 3. Let x be the number of rows
where C1 has a 1-entry and C2, C3 have 0-entries. Let y be similar for C2. Let z be the
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number of rows where C1 and C2 both have 1-entries. Let Rx,Ry,Rz be the rows that
x, y, z correspond to, respectively. Let Rw be the collection of rows where C3 has a 1-entry
and C1, C2 have 0-entries. Notice that each other column of A must have at least one
1-entry in each of Rx,Ry,Rw.

Fix some rows of Rx,Ry. Let t be the total selected number of these rows. Let C
denote the columns not C1, C2, C3 with 1-entries in all of these rows, 0-entries in all other
rows corresponding to x, y. Notice that each column of C has at most Γ− t−1 1-entries in
Rz. Notice that if the 1-entries in Rz for any column Ca of C contain the 1-entries in Rz

for another column Cb of C , then Ca⊕C3 covers Cb, a contradiction, since A is 2-disjunct.
Thus, no column of C has 1-entries in Rz which contain the 1-entries in Rz for another
column of C . That is, the 1-entries in Rz for the columns of C form a Sperner family. So
by Sperner’s Theorem, there are at most

( z
b z2c
)

columns in C . Additionally, since there

are at most Γ − t − 1 1-entries in Rz for any column in C , if Γ − t − 1 <
⌊
z
2

⌋
, that is, if

t ≥ Γ−
⌊
z
2

⌋
, then by the LYM Inequality there are at most

( z
bΓ−t−1

2 c
)

columns in C .

Thus for the choice of any i rows of Rx, j rows of Ry, if i+ j ≥ Γ−
⌊
z
2

⌋
, then there are

an associated
( z
bΓ−i−j−1

2 c
)

columns, and if i+ j ≤ Γ−
⌊
z
2

⌋
− 1, then there are an associated( z

b z2c
)

columns.

Notice that for any column, Cc not C1, C2, C3, since there is at least one 1-entry in
Ry,Rw there are at most Γ − 2 1-entries in Rx. Additionally, there is at most x − 1
1-entries in Rx, since if there are x 1-entries, Cc ⊕ C2 covers C1, a contradiction, since A
is 2-disjunct. Thus, for any column not C1, C2, C3, there are at most min {Γ− 2, x− 1}
1-entries in Rx. By similar reasoning, there are at most min {Γ− 2, x− 1} 1-entries in Ry.
This implies that there are at most

n =

min{Γ−2,x−1}∑
i=1

Γ−b z2c−i−1∑
j=1

(
x

i

)(
y

j

)(
z⌊
z
2

⌋) +

min{Γ−2,y−1}∑
j=Γ−b z2c−i

(
x

i

)(
y

j

)(
z⌊

Γ−i−j−1
2

⌋)


=

min{Γ−2,x−1}∑
i=1

(x
i

)( z⌊
z
2

⌋) Γ−b z2c−i−1∑
j=1

(
y

j

)
+

min{Γ−2,y−1}∑
j=Γ−b z2c−i

(
y

j

)(
z⌊

Γ−i−j−1
2

⌋)



columns not C1, C2, C3. Thus, A has at most n+ 3 columns.

Lemma 1.7.3. Let A be an d-irreducible binary matrix with t rows.. Let Ca, Cb, Cc be
columns of A such that, for each row of A, at least one of these three columns has a 1-
entry. Let x be the number of rows where Ca has a 1-entry and Cb has 0-entries. Let y be
similar for Cb with Ca. Let z be the number of rows where Ca and Cb both have 1-entries.

26



Let

n =

min{Γ−2,x−1}∑
i=1

(x
i

)( y⌊y
2

⌋) Γ−b y2c−i−1∑
j=0

(
z

j

)
+

min{Γ−3,z}∑
j=Γ−b y2c−i

(
z

j

)(
y⌊

Γ−i−j−1
2

⌋)



If A is 2-disjunct, then A has at most n+ 3 columns.

Proof. This proof follows exactly as the proof for Lemma 1.7.2. However, we instead fix
rows of Rx,Rz.

For any column not C1, C2, C3, there are at least zero (not one), 1-entries in Rz. Since
there is at least one 1-entry in Rx,Ry,Rw, there is at most Γ − 3 1-entries in Rz. There
is also at most z 1-entries in Rz. Thus, for any column not C1, C2, C3, there are at most
min {Γ− 3, z} 1-entries in Rz. This leads to the different bounds from Lemma 1.7.2 on
the inner summations in the expression for n.
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Chapter 2

Constructing efficient decodable
pooling matrices

2.1 On d-separable binary matrices with time optimal anal-
ysis algorithms

Combinatorial group testing is a well known problem which has seen substantial research
during the last decade (see for example [insert citations here]). Suppose we have N items,
some of which are ’defective’. Suppose we can perform tests on subsets of these N items
which will tell us whether some defective exists in that subset or not. Our goal is to identify
exactly which items are defective, and which are not. Naturally, we could test each item
one by one, performing N tests, but in practice there are much more efficient strategies for
’pooling’ objects together to minimize the number of required tests.

Testing strategies can be represented as the binary incidence matrix where we place a
1 in the i, j entry if item j is contained in test i, and 0 otherwise. Being able to recover
the indices of defective items has motivated the definition of d-separable matrices, which
are precisely the matrices that can be decoded if there are at most d defectives.

More precisely, a t×N binary matrix induces a function from the subsets S of [N ] of
size less than or equal to d to (0, 1)t by taking the boolean sum (note that some authors
refer to this as union) of the columns corresponding to the elements of S. If S is the set of
at most d defectives, then the image of S under this map is the test result vector, i.e. the
vector representing the outcomes of each test. If this function is injective, we say that the
matrix is d-separable.

Although d-separable matrices always can be decoded, decoding such matrices is often
intractable if the matrix is very large. The naive decoding algorithm would be to calculate
every possible boolean sum of at most d columns until we find the one that matches the test
result vector, a process which requires time O(Nd). This has led to the study of d-disjunct
matrices, which are d-separable but have a decoding algorithm which takes time O(tN).
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For very large matrices, using even the d-disjunct decoding algorithm may be in-
tractable. The best we can possibly do is recover the defective indices by looking at
the results of each test, doing a constant amount of work at each step, regardless of the
number of columns. Such an algorithm runs in time O(t) and is referred to as a time
optimal analysis algorithm.

Eppstein, Goodrich, and Hirschberg [5] constructed a 3-separable matrix with time-
optimal analysis algorithm with dimensions 22

(
q
2

)
× 2q for any positive integer q. We

extend their construction, techniques, and proofs to construct a 2d−1
(
q

d−1

)
×2q d-separable

matrix for each d ≥ 3 and every positive integer q together with a time optimal analysis
algorithm.

2.1.1 The Construction

Suppose there are N = 2q items where q ∈ N. We will express an item index X ∈
{0, 1, . . . , N − 1} in binary notation so that X = Xq−1Xq−2 . . . X0 where each Xp ∈ {0, 1}.
For this paper we will let pi ∈ {0, 1, . . . , q − 1}, vi ∈ {0, 1} be radix positions and bi-
nary values respectively, for each i. For convenience we define Ik to be the indexing set
{1, 2, . . . , k}. We write ⊕ to represent the Boolean sum.

Let Md be the 2d−1
(
q

d−1

)
×2q matrix formed by associating each row with an unordered

collection of d− 1 distinct position values p1, p2, pd−1 together with binary values for each
position v1, v2, . . . , vd−1. We denote a row index by the set {(pi, vi)}i∈Id−1

. We define
Md[{(pi, vi)}i∈Id−1

, X] = 1 if for each i, Xpi = vi, and 0 otherwise.
We remark that each column of Md will have weight

(
q

d−1

)
, since, given a column index

X, for every set of distinct positions {p1, . . . , pd−1}, there is exactly one tuple (v1, . . . , vd−1)
such that Md[{(pi, vi)}i∈Id−1

, X] = 1.
The weight of each row {(pi, vi)}Id−1

of Md is 2q−d+1, which is the number of indices
X ∈ {0, . . . , 2q} such that Xpi = vi for each i.

We define the following tests for use in our decoding algorithm:

• testMd
({(pi, vi)}i∈Id−1

) is 1 if the test result for that row is 1, and 0 otherwise. Equiv-
alently, this test is positive if there is some defective D such that Dpi = vi for each
i.

• test1Md
(p1, . . . , pd−1) is the number of distinct ordered (d−1)−tuples (v1, v2, . . . , vd−1)

of values present among defectives at positions p1, . . . , pd−1. We calculate it as fol-
lows:

test1Md
(p1, . . . , pd−1) =

∑
(v1,...,vd−1)∈{0,1}d−1

testMd

(
{(pi, vi)}i∈Id−1

)
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2.1.2 Determining the number of defectives

For P ⊆ {0, 1, . . . , q−1} and item X ∈ {0, 1}q, define X[P ] ⊆ {0, 1}|P | by choosing exactly
those bits from X corresponding to the positions in P .

Lemma 2.1.1. Given {D1, . . . , Dk}, a set of k distinct items, there is some P ⊆ {0, 1, . . . , q−
1} with |P | = k − 1 such that {D1[P ], D2[P ], . . . , Dk[P ]} are all distinct.

Proof. We induct on k. Base case k = 1 is trivial, so assume k > 1. By induction there ex-
ists P ′ such thatD1[P ′], D2[P ′], . . . , Dk−1[P ′] are distinct. Let T = {D1[P ′], D2[P ′], . . . , Dk−1[P ′]}.
If Dk[P ′] /∈ T , we may arbitrarily extend P ′ to P . If not, there is exactly one defective
Di ∈ T such that Di[P ′] = Dk[P ′]. Since Di and Dk are distinct, there must be some
position p /∈ P such that Di[{p}] 6= Dk[{p}], so we take P = P ′ ∪ {p}.

Proposition 2.1.1. If there are at most d defectives, the exact number of defectives is
given by

max
p1,...,pd−1

(test1Md
(p1, . . . , pd−1))

Proof. Let d′ ≤ d be the number of defectives present. For any choice of distinct p1, . . . , pd−1,
test1Md

(p1, . . . , pd−1) ≤ d′, since each defective can contribute at most one ordered (d−1)-
tuple of values at the positions p1, . . . , pd−1. Thus we need only show that there exist
positions p1, . . . , pd−1 such that test1Md

(p1, . . . , pd−1) attains d′. Suppose the defectives
are D1, . . . , Dd′ . By Lemma 2.1.1, there exists a set of positions P ′ = {p1, . . . , pd′−1} such
that D1[P ′], . . . , Dd′ [P ′] are all distinct. Since |P ′| = d′ − 1 ≤ d − 1, we may arbitrarily
extend it to some P = {p1, . . . , pd−1}, and then test1Md

(p1, . . . , pd−1) = d′.

2.1.3 Recovering the Defective Values

To identify the defectives, it is sufficient to determine the binary values of each defective
index at each radix position. We say that a set of position-value pairs{(p1, v1), . . . , (pk, vk)}
distinguishes a defective D if it is the only defective such that for each i, Dpi = vi. We
also say that a set P = {p1, . . . , pk} of positions distinguishes D if there exist such values
v1, . . . , vk that {(p1, v1), . . . , (pk, vk)} distinguishes D.

The general strategy will be to find for each defective D a set of position-value pairs S
with |S| = d−2 that distinguishes D. Then letting p be arbitrary, we calculate testMd

(S ∪
{(p, 1)}). If this is 1, we may conclude that the defective has value 1 at position p, and
otherwise it must have value 0 at p.

We remark that it is sufficient to find S′ that distinguishes D with |S′| ≤ d−2 since we
can arbitrarily extend S′ to some S with |S| = d − 1 and simply cycle through the 2d−|S|

possibilities of values for the additional positions until testMd
(S) = 1, thereby identifying

the values at each position in S. We may then use those position-value pairs to efficiently
find the others as above.
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When it is not possible to find positions and values that distinguish each defective, we
will make use of the following lemma:

Lemma 2.1.2. Suppose there are d defectives. If there is a set of positions {p1, . . . , pd−2}
such that for each i ∈ Id−2, position pi distinguishes defective Di, and there is a defective
E whose digits are known, then the digits of the last defective F can be computed.

Proof. For each i ∈ Id−2 let vi = Di
pi . Since each of these defectives is distinguished by

pi, we may conclude that Fpi = vi for each i ∈ Id−2. For any other position p, compute
Ep = v. If testMd

({(pi, vi)}i∈Id−2
∪{p, v}) = 1 we may conclude that Fp = v since no other

defectives are present in this test. However, if it is 0, we may conclude that Fp = v since
otherwise it would have caused the test to be positive.

We now have the tools to prove the following:

Theorem 2.1.1. For d ≥ 3, a 2d−1
(
q

d−1

)
× 2q binary d-separable matrix with time-optimal

analysis algorithm can be constructed for each positive integer q.

Proof. Suppose that d = 3. Then, by Proposition 2.1.1 we may find positions p1, p2 such
that test1M3(p1, p2) is the number of defectives present.

Case 1: Suppose there is exactly one defective. If we pick any position p, clearly the defective
is distinguished by p, as it is the only defective.

Case 2: Suppose that there are exactly two defectives. Since test1M3(p1, p2) = 2, the defec-
tives must not agree in at least one of the positions, say p. Then both defectives are
distinguished by (p, 0) and (p, 1), respectively.

Case 3: Suppose that there are exactly three defectives, D1, D2, D3. All three defectives
cannot have the same value at the same position, else the other position would have
to distinguish all three of them. Say then that D1 is distinguished by p1. D1 cannot
then be distinguished by p2, else D2 and D3 would agree at both positions, so say D2

is distinguished by p2, Then the digits of D2 can be determined. By Lemma 2.1.2,
we may then determine the digits of D3.

Since only a constant amount of work was required at each step, M3 has a time-optimal
analysis algorithm. We give credit to Eppstein, et al. [5] for the construction of our base
case.

Now, suppose that Md−1 has a time-optimal analysis algorithm. We note that

testMd−1

(
{(pi, vi)}i∈Id−2

)
=

⊕
vd−1∈{0,1}

testMd

(
{(pi, vi)}i∈Id−1

}
)
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Hence, if there are d′ < d defectives present, by our inductive hypothesis we may recover
the values of each defective in time O(t) by computing the tests of Mmax(3,d′). Thus we
need only consider the case when there are exactly d defectives present.

Suppose that there are exactly d defectives, D1, . . . , Dd. By Proposition 2.1.1 we may
find positions p1, . . . , pd−1 such that test1Md

(p1, . . . , pd−1) = d. Let P = {p1, p2, . . . , pd−1}
and for each i, Pi = {p1, p2, . . . , pd−1} \ {pi} one of its subsets of order p − 2. If for each
defective one of the Pi distinguishes it, we are done, so assume that there is some defective,
say Dd that cannot be distinguished by any of the Pi. Then for each Pi, D

d must agree
with at least one other defective. However it must agree with exactly one since otherwise
one position would have to distinguish three defectives. Furthermore, Dd cannot agree with
the same defective on different Pi since then they would agree on all of P , contradicting
the fact that test1Md

(p1, . . . , pd−1) = d. Then Dd agrees with each of the other defectives
on exactly one of the Pi. Without loss of generality say Dd agrees with Di on Pi. Then
Dd

1 = D2
1 = D3

1 = · · · = Dd−1
1 . But D1

1 6= Dd
1 since otherwise D1 and Dd would agree on

all of P . Thus, D1 is distinguished by p1. Similarly, Di is distinguished by pi for each
i ∈ Id−1. Applying Lemma 2.1.2, we may also compute the values of Dd at each position.

Only a constant amount of work was required for each step, so Md has a time-optimal
analysis algorithm.

2.1.4 Runtime Analysis

We now give a more detailed analysis of the runtime of this algorithm. Pick q, d ∈ N, let
N = 2q and t = 2d−1

(
q

d−1

)
and Md the t×N matrix as described above.

The number of operations required to determine the number of defectives is at most
2d−1

(
q

d−1

)
+
(
q

d−1

)
, as computing test1(p1, . . . , pd−1) for every possible choice of p1, . . . , pd−1

requires us to compute
(
q

d−1

)
sums of 2d−1 elements each, and then we must compare each

sum to the previously found maximum. If there are exactly d defectives, we may require
even fewer operations as we may stop once one of the sums is d.

Once the a maximum value is found, we also immediately obtain the witnessing set
S = {p1, . . . , pd−1} such that test1(p1, . . . , pd−1) = d′ where d′ ≤ d is the number of
defectives present, as well as the values of the defectives on S by looking up the row index
of the d positive tests in the computation of test1(p1, . . . , pd−1).

To find the sets Pi ⊂ S, i ∈ Id′ with |Pi| = d − 2 where Pi distinguishes defective Di,
requires at most d(d− 1)2 operations. For example, if we look at each of the d− 1 subsets
Pi ⊂ S with |Pi| = d − 2, we simply look at the values of each of the d defectives at Pi,
compare it to each of the other d − 1 defectives, and thus determine if it is distinguished
from the others at Pi. We note that this bound could be improved by a more efficient
algorithm, but since d is generally small, d(d− 1)2 is a sufficient bound for our needs.

Once a set P with |P | = d−2 is found that distinguishes a defective, q−d+1 operations
are required to determine the remaining digits of that defective, since all that is required
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is looking up the value of a single test for each digit.
Thus far we have described the runtime of determining up to d− 1 defectives. If all d

are present, computing the last one requires 2(q−d+2) as all we must do for each unknown
digit is look up the value of one of the previously computed defectives, and then look up
the value of a single test.

Letting log represent the base-2 logarithm, analysis of the runtime analysis of each
stage of our algorithm shows that the overall runtime is bounded above by

2d−1

(
q

d− 1

)
+

(
q

d− 1

)
+ d+ d(d− 1)2 + (d− 1)(q − d+ 1) + 2(q − d+ 2)

≤ 2d−1

(
q

d− 1

)
+

(
q

d− 1

)
+ d3 + (d+ 1)q

≤
(

2d−1 + 1
)
qd−1 + (d+ 1) q + d3

= (2d−1 + 1) (logN)d−1 + (d+ 1) log (N) + d3

2.1.5 Comparison with other Matrices

d-disjunct matrices have been studied extensively due to the fact that they can be decoded
in θ(Nt), but exist with desirable dimensions, in that they can be found such that the
number of columns is exponential in the number of rows. Table 1 lists the number of tests
required by our construction for various values of d and N compared with td, one of the
best known upper bounds on the minimum number of rows of a d-disjunct matrix due to
Cheng, et al [2]. We note that our construction requires many more tests than a d-disjunct
matrix with the same number of items, though we also remark that ours is time-optimal.

Table 1:
N 103 106 1010 1020 1030

M3 180 760 2244 8844 19, 800
t3 192 383 639 1277 1915
M4 960 9120 47, 872 383, 240 1, 293, 600
t4 312 624 1039 2077 3116
M5 3360 77, 520 742, 016 12, 263, 680 62,739,600
t5 461 921 1535 3069 4604

2.2 A new construction of d-disjunct matrices with K (d + 1) qt

rows

Definition. Let C be a column of a binary matrix. We call the set of row indices where
C has a 1-entry the support of C.

33



Definition. Let A be a binary matrix. We call a matrix whose columns are the supports
of the columns of A the helper matrix of A.

Construction 2.2.1. Let d ≥ 2 be a natural number. Let q ≥ d+ 1 be prime. Let t be a
natural number. We construct a (d+ 1)× q2t matrix whose pairs of columns share at most
one entry.

Let M be the 0-indexed (d+ 1)× q2t matrix whose columns are constructed as:

Ci =



(
0
⌊
i
qt

⌋
+ i
)

mod qt((
1
⌊
i
qt

⌋
+ i
)

mod qt
)

+ qt

...((
d
⌊
i
qt

⌋
+ i
)

mod qt
)

+ dqt

where 0 ≤ i < qt

Any two columns of M share at most one entry.

Proof. We prove by contradiction.
Suppose two columns, Cj , Ck of M share at least two entries. Notice that each entry

in R0 of M is in {0, 1, 2, . . . , qt − 1}, each entry in R1 of M is in {qt, qt + 1, . . . , 2qt − 1},
. . . , each entry in Rd of M is in {dqt, dqt + 1, . . . , (d+ 1)qt − 1}. Thus, any shared en-
try of Cj , Ck must be in the same row of M . So Cj , Ck have the same entry in at
least two rows. So there are elements a, b in both column Cj and column Ck such that

a =
(
m
⌊
j
qt

⌋
+ j
)

mod qt +mqt =
(
m
⌊
k
qt

⌋
+ k
)

mod qt +mqt and b =
(
n
⌊
j
qt

⌋
+ j
)

mod qt + nqt =
(
n
⌊
k
qt

⌋
+ k
)

mod qt + nqt

for 0 ≤ m,n ≤ d with m 6= n, where m,n indicate which rows a, b are found in, and where
0 ≤ j, k < qt with j 6= k. Thus,

m
⌊
j
qt

⌋
+ j ≡ m

⌊
k
qt

⌋
+ k (mod qt) and n

⌊
j
qt

⌋
+ j ≡ n

⌊
k
qt

⌋
+ k (mod qt)

=⇒ m
(⌊

j
qt

⌋
−
⌊
k
qt

⌋)
≡ k − j (mod qt) and n

(⌊
j
qt

⌋
−
⌊
k
qt

⌋)
≡ k − j (mod qt)

=⇒ m
(⌊

j
qt

⌋
−
⌊
k
qt

⌋)
≡ n

(⌊
j
qt

⌋
−
⌊
k
qt

⌋)
(mod qt)

=⇒ (m− n)
(⌊

j
qt

⌋
−
⌊
k
qt

⌋)
≡ 0 (mod qt)

Since m 6= n, 0 ≤ m,n < q ≤ qt,m − n 6≡ 0 (mod qt), and q prime,
⌊
j
qt

⌋
−
⌊
k
qt

⌋
≡ 0

(mod qt). Thus,⌊
j
qt

⌋
≡
⌊
k
qt

⌋
(mod qt)

=⇒
⌊
j
qt

⌋
=
⌊
k
qt

⌋
, since j, k < q2t and |j − k| < qt (since |j − k| ≥ qt would imply

⌊
j
qt

⌋
6=⌊

k
qt

⌋
)

=⇒ j ≡ k (mod qt), since
(
m
⌊
j
qt

⌋
+ j
)

=
(
m
⌊
k
qt

⌋
+ k
)

(mod qt)

=⇒ j = k + iqt for some i ∈ Z
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=⇒ j = k, since |j − k| < qt, a contradiction. Thus, any two columns of M share at most
one entry.

Claim. Let C be a column vector of length `. If each entry in C is distinct, then any
column for which C is the support will have weight `.

Construction 2.2.2. Let M be the (d + 1) × q2t matrix constructed as in Construc-

tion 2.2.1. Let µ =
⌊
qt

d+1

⌋
. Let M̃ be the (d + 1) × (µ(d+ 1)) matrix whose columns are

constructed as:

Cl =


lq +

(
(d+ 1)

⌊
l

d+1

⌋)
lq + 1 +

(
(d+ 1)

⌊
l

d+1

⌋)
...

lq + d+
(

(d+ 1)
⌊

l
d+1

⌋)

where 0 ≤ l < µ (d+ 1)

Let M̂ be the (d + 1) × (q2t + µ(d + 1)) matrix formed by appending the q2t columns of
M to the µ(d+ 1) columns of M̃ . Let M̂ be the helper matrix of a 0-indexed (d+ 1)qt ×
(q2t + µ(d+ 1)) binary matrix A.

A is d-disjunct and has columns of weight d+ 1.

Proof. Recall that any two columns of M share at most one entry. Notice that column Cm
of M̃ contains d+ 1 of the q elements from row Rm of M , whose elements are distinct from
the other rows of M . Thus, none of the columns of M̃ share any entries and each of the
q2t columns from M shares at most one entry with any of the columns of M̃ . Thus, each
column in M̂ will share at most one entry with any other column of M̂ .

Since no two columns in M̂ have more than one entry in common, any column in A
will have a product of weight at most d with any d-sum of any of the other columns in A.
Since every column in A has weight d+ 1, no column in A can be covered by the d-sum of
any of the other columns. Thus, A is d-disjunct.

Notice that for any column Cn of M̂ , the entries of Cn are distinct. So each column of
A has weight d+ 1.

Corollary 2.2.1. Let M be the matrix constructed as in Construction 2.2.1. If M is a
helper matrix for a binary matrix A, then A is d-disjunct and has columns of weight d+ 1.

Lemma 2.2.1. Let t be a natural number. For odd q, q2t ≡ 1 or 3 (mod 6).

Proof. We prove by induction.
Base case. Let q be odd. We prove q2 ≡ 1 or 3 (mod 6).
Notice q = 2m + 1 for some m ∈ Z. Thus, q2 = 4m2 + 4m + 1. Assume, by way of

contradiction, that 4m2 + 4m+ 1 ≡ 5 (mod 6). Thus,
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4m2 + 4m ≡ 4 (mod 6)
=⇒ 4(m2 +m− 1) ≡ 0 (mod 6)
=⇒ (m2 +m− 1) ∈ 3Z
=⇒ m2 +m− 1 = 3n for some n ∈ Z
=⇒ m2+m−1 ≡ 0 (mod 3), a contradiction, since 02 + 0− 1 ≡ 2 (mod 3), 12 + 1− 1 ≡ 1 (mod 3),
and 22 + 2− 1 ≡ 2 (mod 3). Thus, q2 6≡ 5 (mod 6). Since q2 is odd, q2 ≡ 1 or 3 (mod 6).

Inductive case. Assume q2t ≡ 1 or 3 (mod 6), where t is a natural number. We prove
q2(t+1) ≡ 1 or 3 (mod 6) by cases.

Case 1: Suppose q2t ≡ 1 (mod 6). Then q2(t+1) ≡ q2tq2 ≡

{
1(1) ≡ 1 (mod 6) if q2 ≡ 1 (mod 6)

1(3) ≡ 3 (mod 6) if q2 ≡ 3 (mod 6)

Case 2: Suppose q2t ≡ 3 (mod 6). Then q2(t+1) ≡ q2tq2 ≡

{
3(1) ≡ 3 (mod 6) if q2 ≡ 1 (mod 6)

3(3) ≡ 3 (mod 6) if q2 ≡ 3 (mod 6)

The following fact is well known, and can be found in [3].

Fact 1. Let v be a natural number. There exists a Steiner Triple System from a set of size
v if and only if v ≡ 1 or 3 (mod 6).

Lemma 2.2.2. Let q ≥ 3 be odd. If t is a natural number, then there exists a q2t× q4t−q2t

6
2-disjunct binary matrix whose columns are all of weight 3. This matrix may be formed
from the incidence matrix of a Steiner Triple System from a set of size q2t.

Proof. Let q ≥ 3 be odd. Let t be a natural number. By Lemma 2.2.1 q2t ≡ 1 or 3
(mod 6). By Fact 1, there exists a Steiner Triple System from a set of size q2t. Notice
that the incidence matrix of this Steiner Triple System will be a 2-disjunct binary matrix
A with q2t rows such that every pair of rows has a 2-product of weight 1 and all columns

are weight 3. Thus, A must have a uniform row weight of number of rows−1
column weight−1 = q2t−1

2 .

Notice (number of rows)(row weight)
column weight =

(q2t)( q2t−1
2

)

3 = q4t−q2t

6 = (number of columns).

Proposition 2.2.1. Let q ≥ 3 be prime. If t is a natural number, then there exists a

3q2t ×
(
q4t + (q4t−q2t)

2

)
2-disjunct binary matrix whose columns are of weight 3.

Proof. Let q ≥ 3 be prime. Let t be a natural number. Let M be the 3× q4t constructed
as in Construction 2.2.1. Let M be the helper matrix for a 3q2t× q4t binary matrix A. By
Fact 1, since each row of M contains q2t different elements and none of these elements are
in any other row of M , there exists a Steiner Triple System from the elements of each row
of M . Let S1, S2, S3 be the three matrices representing these three Steiner Triple Systems.

Notice from the proof of Lemma 2.2.2, S1, S2, S3 are of dimensions 3 × q4t−q2t

6 . Let M⊆

be the matrix formed by appending the 3
(
q4t−q2t

6

)
= q4t−q2t

2 columns from S1, S2, S3 to
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M . Notice that none of the columns of M⊆ will share more than one entry with any other
column of M⊆.

Let M⊆ be the helper matrix of a 3q2t ×
(
q4t + q4t−q2t

2

)
0-indexed binary matrix A.

Notice that each column of A will be of weight 3. Since no two columns of M⊆ share more
than one entry, any column in A will have a product of weight at most 2 with the 2-sum
of any two of the other columns of A. Thus, no column in A is covered by the 2-sum of
any of the other columns of A. Thus, A is 2-disjunct.

Notice that for any column Cj of M⊆, the entries of Cj are distinct. So each column
of A has weight 3.

Lemma 2.2.3. If ρ ≥ 2 for some d-disjunct binary matrix A, no column of A can have
all but one of its entries be covered by any sum of d− 1 columns.

Proof. We prove by contradiction. Let’s say a column C in A had all but one of its entries
covered by a sum of d − 1 columns in A. Let the row that contains this entry be row R.
Since ρ ≥ 2, there must be a column other than C that has a 1-entry in row R. Therefore,
a sum of d columns can cover C, which implies a contradiction.

Theorem 2.2.1. Given a d-disjunct (n,q,k) Reed-Solomon construction M that used an
identity matrix for its inner matrix, choose a d-disjunct r × c matrix A with r = q. If
γ(A) ≥ d + 1 and ρ(A) ≥ 2, then n ∗ c columns can be concatenated with the original
Reed-Solomon matrix to form a new matrix that will be d-disjunct.

Proof. Let M be a d-disjunct binary matrix created by an (n,q,k) Reed Solomon construc-
tion that used a q × q identity matrix for it’s inner matrix. Now separate M into n block
matrices where M1 is the first set of q rows of M , M2 is the second set of q rows of M , and
so on, so that

M =


M1

M2
...
Mn


Each of the columns in these individual block matrices will have column weights of one,
since each block matrix refers to a specific row of the Reed-Solomon codeword matrix used
to construct it and an identity matrix was used for the inner matrix for the construction.
Now, choose a d-disjunct r× c matrix A with r = q such that γ(A) ≥ d+ 1 and ρ(A) ≥ 2.
Since A is d-disjunct, it’s clear that the matrix

Ā =


A 0 . . . 0
0 A . . . 0
...
0 0 . . . A
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will be d-disjunct as well where 0 represents an r× c zero matrix . Now we will show that
M∗ =

[
M Ā

]
is also d-disjunct. Note that M and Ā have the same number of rows

(nq) by nature of construction.

Since ρ(A) = 2, Lemma 2.2.3 implies that none of the columns of Ā are covered by a
d-sum of any of the columns of M∗, since each column of M can only cover one 1-entry of
Ā. Each column of Ā can only cover at most one 1-entry from any column in M , and each
row in every section Mi (where 1 ≤ i ≤ n) has a row weight of at least two by the nature of
the Reed-Solomon construction. Therefore, no column that wasn’t already covered in M
can be covered in M∗, and M is d-disjunct, so no column in M∗ is covered by the sum of
any other d columns in M∗, and M∗ is d-disjunct. By the nature of the construction, Ā has
dimensions nr×nc, so M∗ has dimensions nq× qk +nc (since r = q) and is d-disjunct.

Note that for constructing matrices with the Reed-Solomon process for a biological
application, using an identity matrix for the inner matrix is typically necessary to maintain
a low enough column weight. The above method of column concatenation will enable us
to improve best known dimensions for lower column weights pretty easily.

2.3 Fast Decoding Using Reed Solomon Matrices

We make use of the celebrated Reed Solomon concatenation technique to describe a fast
decoding algorithm for a group testing regime.

First, we define the notion of separability and disjunctness for q-ary matrices. A matrix
is said to be q-ary if its entries are among some set S with |S| = q. By a convenient abuse
of notation we associate each entry value with the singleton set containing that value. We
define the union of two columns by taking the union entry by entry, ie

a1

a2
...
ak

 ∪

b1
b2
...
bk

 =


{a1}
{a2}

...
{ak}

 ∪

{b1}
{b2}

...
{bk}

 =


{a1} ∪ {b1}
{a2} ∪ {b2}

...
{ak} ∪ {bk}


Similarly we define the finite union of columns. For two vectors v1, v2, we say v1 ⊆ v2 if
each entry of v1 is a subset of the corresponding entry of v2.

Equivalently we may view q-ary matrices as the subset of M(P(S)) whose matrices have
singletons as entries. Note that this coincides with our definition of binary matrices if for
a binary matrix we associate 0 with the empty set and 1 with {1}.

With these definitions, the notions of d-disjunctness and of d-separability are precisely
the same as in the binary case, namely, a matrix is said to be d-separable if and only if the
union of d columns (not necessarily distinct) is equal to no other union of d columns. A
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matrix is d-disjunct if and only if the union of any d columns does not contain any other
column.

We now turn our attention to Reed Solomon codes.
An (n, q, k) Reed Solomon codeword matrix M is an n×qk q-ary matrix where k < n ≤

q, produced via the following construction: Associate to each column a distinct polynomial
p(x) ∈ GF (q)[x] of degree less than k and to each row a distinct field element a ∈ GF (q).
The entries Ma,p(x) are given by the evaluation of p(x) at a, ie Ma,p(x) = p(a).

We also define the concatenation operation on a Reed Solomon outer matrix and a
binary inner matrix. Let Mout be an n× qk q-ary Reed Solomon matrix whose entries are
from some set S with |S| = q and let Min be a t × q binary matrix. Define a bijection φ
from S to the set of columns of Min and construct a tn × qk binary matrix by replacing
each entry a in Mout with the column φ(a). Denote this matrix by Mout ◦Min.

Theorem 2.3.1. If Mout is a q-ary d-separable matrix and Min is a binary d-separable
matrix with q columns, then the concatenation Mout ◦Min is d-separable.

Proof. Let M = Mout ◦Min. For a column c of M , let c[k] be the restriction of c to the kth

row section of M corresponding to the kth row of Mout. Let cout be the column of Mout

that corresponds to c and cout[k] the element in row k of cout.
Suppose we have two sets of d columns in M , {v1, . . . , vd} and {u1, . . . , ud}, such that

d⋃
1

vi =

d⋃
1

ui

This must also hold for each row section, so for each k we have

d⋃
1

vi[k] =
d⋃
1

ui[k]

Now each vi[k] and ui[k] is a column of Min, so by definition, since Min is d-separable,
there are no two distinct unions of d columns that are equal so we must have

{v1[k], . . . , vd[k]} = {u1[k], . . . , ud[k]}

As there is a bijection between the possible entries of Mout and the columns of Min, we
have

{v1
out[k], . . . , vdout[k]} = {u1

out[k], . . . , udout[k]}

Thus,
d⋃
1

viout[k] =
d⋃
1

uiout[k]
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Since this is true for every k, it follows that

d⋃
1

viout =
d⋃
1

uiout

But since Mout is d-separable, we must have

{v1
out, . . . , v

d
out} = {u1

out, . . . , u
d
out}

Consequently, {v1, . . . , vd} = {u1, . . . , ud}. Thus, M is d-separable.

In general, we will choose our outer matrix to be d-disjunct and the inner matrix to
be d-separable, though there is some work that could possibly be done to describe d-
separable q-ary matrices. We now present our construction of d-separable matrices using
Reed Solomon matrices.

By using Reed Solomon Concatenation, we can form large d-separable matrices which
decode faster than the naive disjunct decoding algorithm on a similarly sized matrix. We
begin by choosing Min, a d-separable, t× q inner matrix with analysis time O(f(t, q)) for
some function f(t, q). We concatenate using Mout, the (n, q, k) Reed Solomon codeword
matrix with parameters n and k chosen to ensure d-disjunctness; for optimal dimensions,
we fix k and set n = d(k − 1) + 1. Let M = Mout ◦Min

We now describe the analysis algorithm of M . Denote any vector v restricted to the
ith row section by v[i]. Let r be the result vector. Then r is the union of some d columns
(not necessarily distinct) of M ; denote these vectors as c1, c2, . . . , cd. We wish to identify
the indices of these columns.

Since
⋃
j c
j = r, it is also true that for each row section i, we have

⋃
j c
j [i] = r[i]. As

each cj [i] is a column of the inner matrix, let us, decode Minvi = r[i] for each row section
i where vi is the unknown defective vector. This takes time O(nf(t, q)), and gives sets Siin
of size at most d of candidate column types for defectives for each row section.

We now characterize the defective items in M .

Theorem 2.3.2. A column c of M is defective if and only if c[i] ∈ Siin for all i.

Proof. If c is defective, then there are other columns c2, . . . , cd such that c ∪
⋃d

2 c
j = r, so

certainly for each row section i we have c[i] ∪
⋃d

2 c
j [i] = r[i]. By separability of the inner

matrix, we must have c[i] ∈ Siin for each i.
Suppose c is not defective. Denote the defectives as c1, . . . , cd so that

⋃
j cj = r. We

naturally lift this equation to the outer matrix:
⋃
j c
j
out = rout. By disjunctness of the outer

matrix, we have cout *
⋃
j c
j
out, or equivalently cout * rout, so for some row i we must have

cout[i] * rout[i]. The entries of rout are sets of at most d symbols that correspond to the
defective column types in the row sections of M , so lifting back to M we have c[i] /∈ Siin.
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This theorem is useful because to identify the defectives in M , we need only find those
columns with defective column types in every row section.

The column types in the row sections naturally correspond to symbols of the outer
matrix so we will define Siout to be the set of symbols corresponding to the column types
in Siin.

We now recover the indices of the defectives in Mout, which are the same as the defective
indices of M .

First, pick row sections (possibly overlapping) in Mout of size k so that every row is
contained in some row section. Since n = d(k − 1) + 1, we can do so with d different row
sections. For each of these row sections, choose an element of the corresponding Siout for
every row. There are dk choices for each section. By Lagrange Interpolation we can find
the unique polynomial over GF (q) of degree less than k that attains those values at the
field elements corresponding to the chosen rows. This takes time O(dk+1k2).

Each row section gives us a set of polynomials, and the intersection of these sets over
the d sections gives precisely the polynomials that attain defective symbols in every row.
By the above theorem, these are precisely the defectives. Intersecting d sets of size dk using
hashes takes time O(dk+1). Since Mout is indexed by these polynomials, we are done!

The overall time complexity is O(nf(t, q) + dk+1k2 + dk+1), and if we fix k, d, and n,
it is O(f(t, q)), which is generally much faster than naive disjunct decoding.

2.4 Appendix

The following tables gives lower bounds on the maximum number of rows, t, for which
there is no t× (t+ 1) d-separable binary matrix.

d t

2 4

3 8

4 13

5 19

6 26

7 34

8 43

9 53

10 63

11 75

d t

12 88

13 102

14 117

15 133

16 149

17 167

18 186

19 206

20 226

21 248

d t

22 271

23 294

24 319

25 344

26 371

27 398

28 427

29 457

30 487

31 519

d t

32 551

33 585

34 619

35 655

36 691

37 729

38 767

39 807

40 847

41 888

d t

42 931

43 974

44 1019

45 1064

46 1111

47 1158

48 1206

49 1256

50 1306

51 1358

d t

52 1410

53 1463

54 1518

55 1573

56 1630

57 1687

58 1745

59 1805

60 1865

61 1926

The following tables gives lower bounds on the maximum number of rows, t, for which
there is no t× (t+ 1) d-disjunct binary matrix.
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d t

2 8

3 13

4 18

5 24

6 31

7 39

8 48

9 57

10 68

11 80

d t

12 93

13 107

14 122

15 138

16 154

17 172

18 191

19 211

20 231

21 253

d t

22 276

23 299

24 324

25 349

26 376

27 404

28 432

29 462

30 492

31 524

d t

32 556

33 590

34 624

35 660

36 696

37 734

38 772

39 812

40 852

41 894

d t

42 936

43 980

44 1024

45 1070

46 1116

47 1163

48 1212

49 1261

50 1312

51 1363

d t

52 1415

53 1469

54 1523

55 1579

56 1635

57 1692

58 1751

59 1810

60 1870

61 1932

Tables and Data regarding Fast Decoding with Reed Solomon Matrices:

For d = 2:
Inner Matrix: 8× 11 from S(3,2,13), Outer Matrix: (n, 11, k) R-S codeword matrix.

k n Dimensions D Best known disjunct dimensions C.W. ≤ R.W. ≤
2 3 24× 121 0.1212 24× 253 9 45

3 5 40× 1331 0.0128 40× 1170 15 499

4 7 56× 14641 0.0016 60× 8100 21 5490

5 9 72× 161051 0.0002 75× 74088 27 60394

6 11 88× 1771561 0.0000 90× 371293 33 664335

Inner Matrix: 12× 25 from S(3,2,13), Outer Matrix: (n, 25, k) R-S codeword matrix.

k n Dimensions D Best known disjunct dimensions C.W. ≤ R.W. ≤
2 3 36× 625 0.0432 36× 730 9 156

3 5 60× 15625 0.0018 60× 8100 15 3906

4 7 84× 390625 0.0001 85× 314432 21 97656

5 9 108× 9765625 0.0000 108× 3200000 27 2441406

6 11 132× 244140625 0.0000 132× 64000000 33 61035156

7 13 156× 6103515625 0.0000 153× 5159780352 39 1525878906

8 15 180× 152587890625 0.0000 180× 25600000000 45 38146972656

9 17 204× 3814697265625 0.0000 204× 512000000000 51 953674316406

10 19 228× 95367431640625 0.0000 228× 10240000000000 57 23841857910156

11 21 252× 2384185791015625 0.0000 unknown 63 596046447753906

12 23 276× 59604644775390625 0.0000 unknown 69 14901161193847656

13 25 300× 1490116119384765625 0.0000 unknown 75 372529029846191406

For d = 3:

Inner Matrix: 15× 19 from S(4,2,16), Outer Matrix: (n, 19, k) R-S codeword matrix.
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k n Dimensions D Best known disjunct dimensions C.W. ≤ R.W. ≤
2 4 60× 361 0.0707 65× 520 16 96

3 7 105× 6859 0.0045 unknown 28 1829

4 10 150× 130321 0.0004 unknown 40 34752

5 13 195× 2476099 0.0000 unknown 52 660293

6 16 240× 47045881 0.0000 unknown 64 12545568

7 19 285× 893871739 0.0000 unknown 76 238365797

Inner Matrix: 24× 49 from S(4,2,25), Outer Matrix: (n, 49, k) R-S codeword matrix.

k n Dimensions D Best known disjunct dimensions C.W. ≤ R.W. ≤
2 4 96× 2401 0.0221 unknown 16 400

3 7 168× 117649 0.0005 unknown 28 19608

4 10 240× 5764801 0.0000 unknown 40 960800

5 13 312× 282475249 0.0000 unknown 52 47079208

6 16 384× 13841287201 0.0000 unknown 64 2306881200

7 19 456× 678223072849 0.0000 unknown 76 113037178808

8 22 528× 33232930569601 0.0000 unknown 88 5538821761600

Notice that Proposition 1.3.1 gives us a maximum number of columns for a given num-
ber of rows if column weight is d+1. Note that Proposition 1.3.1 implies that the matrices
derived from the affine family of Steiner Systems with n = 2 are the first matrices to beat
the identity whenever d+1 is a prime power, if you intuitively assume that the first matrix
to beat the identity will have column weights of d + 1, which we suspect but have been
unable to fully prove. See how it compares to the best known d-disjunct matrix dimensions
for a given number of rows once we’ve beaten the identity:

d Rows Maximum Columns Best known

2 8 8 8

2 9 12 12

2 10 13 13

2 11 18 17

2 12 20 20

2 13 26 26

2 14 28 28

2 15 35 42

We believe the 15 × 35 has a column weight of 5, hence it beats the bound set by
Proposition 1.3.1.

Below is a similar table for d = 3, but we aren’t as convinced that the matrices listed
as best-known truly are the best known. If so, we can beat various best knowns easily with
Reed-Solomon constructions, but these constructions will all have a higher column weight
than d+ 1, making Proposition 1.3.1 irrelevant.
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d Rows Maximum Columns Best known

— 3 13 13 13

3 14 14 14

3 15 15 15

3 16 20 20

3 17 21 21

3 18 22 22

3 19 28 25

3 20 30 30

3 21 31 31

3 22 38 37

3 23 40 40

3 24 42 42

3 25 50 50

3 26 52 52

3 27 54 54

3 28 63 63

3 29 65 65

3 30 67 67

3 31 77 76

3 32 80 80

3 33 82 82

3 34 93 92

3 35 96 96

3 36 99 99

3 37 111 111

3 38 114 114

3 39 117 117

3 40 130 130

3 41 133 133

3 42 136 136

3 43 150 149

3 44 154 154

3 45 157 157

3 46 172 171

3 47 176 176

3 48 180 180

3 49 196 196

3 50 200 350
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