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Abstract

This paper will examine Local Singular Arithmetical Congruence Monoids
(ACM’s) and determine if they are fully elastic. This process involves two
distinct and important tools. First, we will restrict our view to a sub-
monoid of the given ACM which is chosen so that only two prime num-
bers divide any element. This submonoid is carefully chosen so that it is
fully elastic on an interval. The second step involves defining a transfer
homomorphism between the submonoid and a subset of N2

0. This allows
us to more easily define which elements are in the submonoid, classify
irreducibles, and prove elasticity formulas. These tools are intregral in
classifying the full elasticity of monoids.
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2 Introduction

Our goal is to determine which singular local ACMs have full elasticity. Before
we can do that, we must go through the basics first to show how full elasticity
can be obtained from a generalized set.

An ACM,Arithmetic Congruence Monoid 3 , is an arithmetic progression, or
sequence, that starts with 1 and is closed under multiplication. It is denoted by
Ma,b = {1} ∪ {a + bN0}. Lets use M2,2 as an example. By following the given
formula, we start with 1 and continuously add increasing multiples of b to a.

Ma,b = {1} ∪ {a+ bN0}
Ma,b = {1, a, a+ b, a+ 2b, a+ 3b}
M2,2 = {1, 2, 2 + 2, 2 + 4, 2 + 6}

= {1, 2, 4, 6, 8, 10}

Now as much as we want to randomly choose a and b, that cannot be done.
There are two restirctions that must be fulfilled in order for an ACM to exist 2 .
First 0 < a ≤ b and secondly a2 ≡ a mod b. So we know that M2,2 is an ACM
by the fact that 2 ≡ 4 mod 2. Through this we know M10,20 or M3,4 are not
moniods though the same restriction.

Another aspect of monoids is their factorizations lengths. As with any given
integer, there exist different ways to break them down into the simplest forms.
In natural numbers, the simplest forms are primes. There is just one catch, an
element, g ∈ Ma,b, must be factored into elements of the monoid. Within the
monoid Ma,b, there exists two types of elements, reducibles and irreducibles.
An irreducible is an element within the monoid that cannot be broken down into
elements that are within the monoid and the opposite is implied for reducibles.

We have taken factorizations in account for two major reasons; to determine
the factorization lengths and to establish factorization length sets. Factorization
lengths deal with the number of irreducibles that an element within the monoid
can be factored down to. Dealing with g = 36 from M2,2, we can conclude
the following, 36 = (2)(18) = (6)(6). So the shortest factorization length, l(36)
and the longest factorization lengh, L(36) are equivalent. When an element has
two different factorizations, it is known as a nonunique factorization. With this
known, we can then conclude that the set of factorization lengths, L(36) = {2},
since there are two irreducibles in every factorization.

The factorizations lengths are used to determine the elasticity an element,
ρ(g). If Ma,b is an ACM, then the elasticity of an element 3 , g, is defined as
the following:

ρ(g) =
maxL(g)
minL(g)

.

The longest factorization length divided by the shortest factorization length.
The elasticity of the monoid 2 , Ma,b is given by

ρ(Ma,b) = sup
g∈Ma,b

ρ(g).
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In order to calculate the elasticity of a moniod, one must first take the elasticities
of the elements in the monoid into account. An ACM, Ma,b , is fully elastic if
for every rational number w with w ∈ [1, ρ(Ma,b)) there exists g ∈ Ma,b with
ρ(g) = w.

This presented a very broad spectrum when determing whether or not a
monoid was fully elastic. The following results are taken from Arithmetical
Congruence Monoids: A Survey. Recall, for Ma,b, we have defined gcd(a, b) = d.
If d = 1, then a = 1 since a < b and our monoid is actually M1,b. Such an ACM
is called regular. If d 6= 1 then such an ACM is called singular. A singular ACM
is local if d = gcd(a, b) = pα where pα is a power of a prime. For singular ACMs,
the elasticity of the monoid can be found: ρ(Ma,b) = α+β−1

α . Before beginning
research, we did have previously known results: Mb,b is fully elastic if and only
if b = p is a prime (because then Mb,b is half-factorial). If Ma,b is a global
singular ACM, then the elasticity of Ma,b is infinite and the ACM is NOT fully
elastic 1 . There is an infinite family of fully elastic, local singular ACMs 1 .
Let p be a prime number and b1 > 1 a positive integer with gcd(p, b1) = 1. If
k = ordb1(p), then Mpk,pkb1 is fully elastic 1 . Let p be a prime number and
b1 > 1 a positive integer with gcd(p, b1) = 1. If k = t(ordb1(p)) for t > 1,
then Mpk,pkb1 is not fully elastic 1 . With this known, we were left with local,
singular ACMs to investigate. Using these definitions, we developed a five-step
method for determining the full elasticity of local singular monoids. These five
steps are as follows:

(i) Define a submonoid, M ⊆Mxpα,yα

(ii) Classify the set of irreducibles

(iii) For an element of the submonoid, find the length of its shortest factoriza-
tion.

(iv) For an element of the submonoid, find the length of its longest factoriza-
tion.

(v) Show that for every w
v ∈ [1, ρ(Ma,b)), we can find an element g ∈M such

that ρ(g) = w
v

Let M = {piqk : i, k ∈ N0, i ≥ α} ∩Mxpα,ypα . We know 3 that Mxpα,ypα =
Mpα,pα ∩M1,y. The gcd(x, y) = 1, and 1 < x < y and p, q are prime.

Theorem 1. The submonoid M ⊆ Mxpα,ypα is closed. i.e. if c, d ∈ M , then
cd ∈M .

Proof. Assume c, d ∈ M . Then c = picqkc and d = pidqkd where ic, id, kc, kd ∈
N0, ic, id ≥ α, and c ≡ 1 mod y, d ≡ 1 mod y. Then cd = pic+idqkc+kd ,
ic, id, kc, kd ∈ N0, ic + id ≥ α since ic, id ≥ α, and cd ≡ 1 mod y since
cd ≡ (1)(1) ≡ 1 mod y. Thus cd ∈M .
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Theorem 2. The submonoid M ⊆ Mxpα,ypα is isolated. i.e. if fg ∈ M and
f, g ∈Mxpα,ypα , then both f, g ∈M .

Proof. Since fg ∈M , then fg = piqk for primes p and q, where i, k ∈ N0, i ≥ α
and fg ≡ 1 mod y. Then we can say by the Fundamental Theorem of Alge-
bra(needs a cite to something), which states that every positive integer n > 1 can
be represented in exactly one way as a product of prime numbers, that fg = f ∗g
implies f and g are products of primes p and q alone. Since f, g ∈ Mxpα,ypα

and f, g ∈ {pijk : i, k ∈ N0}, then f, g ∈ {pijk : i, k ∈ N0} ∩Mxpα,ypα = m.
Therefore, m is isolated.

3 Transfer Homomorphism

Let Mxp,yp be an ACM such that gcd (x, y) = 1, p is prime, ord(p) = β (i.e.
pβ ≡ 1 mod y), and q ≡ x mod y is a prime. LetM = {piqk : i, k ∈ N0}∩Mxp,yp.

Thus we define N ⊆ N0
2 in the following way:

N = {(i, k) : i, k ∈ N0, i ≥ 1, i ≡ k mod β}

.

Lemma 3. The order of q, ord(q), equals β, the minimal power of p such that
p is in Mxp,yp.

Proof. We know that ord(p) = β. So pβ ≡ 1 mod y and for all b < β, pb 6≡
1 mod y. Now q was defined so that pq ≡ 1 mod y so 1 ≡ (pq)β ≡ pβqβ ≡ qβ .
So ord(q) ≤ β. Suppose there exists b < β such that qb ≡ 1 mod y. Then
1 ≡ (pq)b ≡ pbqb ≡ pb 6≡ 1 mod y. So we have a contradiction and therefore
ord(q) ≡ β.

Lemma 4. If i ≡ k mod β and i ≥ 1, then the element piqk is in Mxp,yp.

Proof. Since i ≡ k mod β and i ≥ 1, there exist a, b, c ∈ N0 such that i = aβ+ c
and k = bβ + c where a + c ≥ 1. So piqk ≡ paβ+cqbβ+c ≡ (pβ)a(qβ)b(pq)c ≡
1a1b1c ≡ 1 mod y. So piqk ≡ 1 mod y. Therefore piqk ∈Mxp,yp.

Lemma 5. If i 6≡ k mod β or i < 1, then the element piqk is not in Mxp,yp.

Proof. (i) Let i < 1, then p 6 |piqk so piqk 6∈Mxp,yp.

(ii) Let i ≥ 1 and i 6≡ k mod β. So ∃a, b, c, d ∈ N0 with c 6= d and c, d < β
where i = aβ + c and k = bβ + d.

First consider c < d. Now piqk ≡ paβ+cqbβ+d ≡ (pβ)a(qβ)b(pq)cqd−c ≡
1a1b1cqd−c ≡ qd−c mod y. Since d− c < d < β it follows that qd−c 6≡
1 mod y. Since piqk 6≡ 1 mod y then piqk 6∈ Mxp,yp. Lastly consider
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d < c. Now piqk ≡ paβ+cqbβ+d ≡ (pβ)a(qβ)b(pq)dpc−d ≡ 1a1b1cpc−d ≡
pc−d mod y. Since c− d < c < β, then pc−d 6≡ 1 mod y and piqk 6≡
1 mod y. Consequently, piqk 6∈Mxp,yp.

Corollary 6. The element piqk ∈Mxp,yp if and only if i ≡ k mod β and i ≥ 1.

Proof. By Lemma 4 and Lemma 5.

Define ψ : M → N to be a function mapping the submonoid, M to the
subset N .

Lemma 7. The function ψ : M → N is bijective.

Proof. To be bijective, ψ must be injective and surjective.

(i) Let s, t ∈ M . Then s = pisqks and t = pitqkt and assume ψ(s) = ψ(t).
This implies:

(is, ks) = (it, kt)

pis = pit , qks = qkt

pisqks = pitqkt

s = t

Therefore we can say that ψ is injective.

(ii) Let y ∈ N . Then y = (i, k) where i ≥ α and i ≡ k mod β. Consider piqk,
since i ≥ 1 and i ≡ k mod β, piqk ∈ M so that ψ(piqk) = (i, k) = y ∈ N .
Since y was arbitrary, we can say that ψ is surjective.

Therefore ψ is bijective and ψ−1 exists.

Theorem 8. A transfer homomorphism exists within Mxp,yp, mapping M to
N .

Proof. (i) Let γ, δ ∈ M . Then γ = piγ qkγ , δ = piδqkδ , where iγ , kγ , iδ, kδ ∈
N0, iγ , iδ ≥ 1, and iγ ≡ kγ mod β , iδ ≡ kδ mod β.

Therefore

γδ = (piγ qkγ )(piδqkδ)

= piγ+iδqkγ+kδ

ψ(γδ) = (iγ + iδ, kγ + kδ)
= (iγ , kγ) + (iδ, kδ)
= ψ(γ) + ψ(δ)
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(ii) Let ψ(g) = s + t, such that s, t ∈ N ⊆ N2
0. Then ∃ is, ks, it, kt ∈ N0,

with s = (is, ks) and t = (it, kt). So is, it ≥ 1, is ≡ ks mod β , and
it ≡ kt mod β . We can find v, w ∈ M such that ψ(v) = s and ψ(w) = t,
, which will result in g = vw. Consider v, w ∈ M , where v = pisqks and
w = pitqkt . Now, ψ(v) = ψ(pisqks) = (is, ks) = s and ψ(w) = ψ(pitqkt) =
(it, kt) = t. Recall that

ψ(g) = s+ t

= (is + it, ks + kt)

g = ψ−1((is + it, ks + kt))

= pis+itqks+kt

So the transfer homomorphism exists, as desired.

Let Mxpα,ypα be an ACM such that gcd (x, y) = 1, p is prime, α ≥ 1, and
ord(p) = d (i.e. pd ≡ 1 mod y). Choose y such that Z×

y
∼= Zn, i.e., the group of

units of y is cyclic.
Define f : Z×

y → Zn such that f(g) = 1, f(p) = a and f(q) = b where g is a
generator of Z×

y and q is a prime not equal to p.
Let M = {piqk : i, k ∈ N0} ∩Mxpα,ypα . Let c = gcd (n, a), then d = n

c
and there exists an a′ ∈ N0 such that a = ca′. Since d is minimal and pd ≡
1 mod y, da ≡ 0 mod n. Let w = gcd (c, b) so that c = wc′ and b = wb′ where
gcd (b′, c′) = 1. Since piqk ∈M , piqk ≡ 1 mod y so ai+ bk ≡ 0 mod n and then
ai ≡ bk mod n. Now, ai ≡ −bk mod n so that a′i ≡ −b

c k mod d which implies
that a′i ≡ (−b′)( k

c′ ) mod d, finally implying that i≡ (−b′)(a′−1)( k
c′ ) mod d.

Thus we define N ⊆ N2
0 in the following way:

N = {(i, k) : i, k ∈ N0, c
′|k, i ≥ α, i ≡ (−b′)(a′−1)(

k

c′
) mod d}

.
Define ψ : M → N to be a function mapping the submonoid, M to the

subset N .

Lemma 9. The function ψ : M → N is bijective.

Proof. To be bijective, ψ must be injective and surjective.

(i) Let s, t ∈ M . Then s = pisqks and t = pitqkt and assume ψ(s) = ψ(t).
This implies:

(is, ks) = (it, kt)

pis = pit

qks = qkt

pisqks = pitqkt

s = t

Therefore we can say that ψ is injective.
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(ii) Let y ∈ N . Then y = (i, k) where i ≥ α and i ≡ (−b′)(a′−1)( k
c′ ) mod d.

Consider piqk, since i ≥ α and i ≡ (−b′)(a′−1)( k
c′ ) mod d, piqk ∈ M so

that ψ(piqk) = (i, k) = y ∈ N . Since y was arbitrary and we can say that
ψ is surjective.

Therefore ψ is bijective and ψ−1 exists.

Theorem 10. A transfer homomorphism exists within Mxpα,ypα mapping M
to N .

Proof. (i) Let γ, δ ∈ M . Then γ = piγ qkγ , δ = piδqkδ , where iγ , kγ , iδ, kδ ∈
N0, iγ , iδ ≥ α, and iγ ≡ (−b′)(a′−1)(kγ

c′ ) mod d , iδ ≡ (−b′)(a′−1)(kδ

c′ ) mod
d. Therefore

γδ = (piγ qkγ )(piδqkδ)

= piγ+iδqkγ+kδ

then, ψ(γδ) = (iγ + iδ, kγ + kδ)
= (iγ , kγ) + (iδ, kδ)
= ψ(γ) + ψ(δ)

(ii) Let ψ(g) = s+ t, such that s, t ∈ N ⊆ N2
0. Then ∃ is, ks, it, kt ∈ N0, with

s = (is, ks) and t = (it, kt). So is, it ≥ α, is ≡ (−b′)(a′−1)(ks

c′ ) mod d , and
it ≡ (−b′)(a′−1)(kt

c′ ) mod d . We can find v, w ∈ M such that ψ(v) = s
and ψ(w) = t, ,which will result in g = vw. Consider v, w ∈ M , where
v = pisqks and w = pitqkt . Now, ψ(v) = ψ(pisqks) = (is, ks) = s and
ψ(w) = ψ(pitqkt) = (it, kt) = t. Recall that

ψ(g) = s+ t

= (is + it, ks + kt)

g = ψ−1((is + it, ks + kt))

= pis+itqks+kt

4 Mxp,yp

Let Mxp,yp be a monoid with gcd(x, y) = 1 where p is prime and x > 1. Note
that if x = 1, then Mxp,yp is fully elastic since it’s half-factorial 1 . Define
β ∈ N to be the smallest natural number such that pβ ∈ Mxp,yp. So ∀b ∈ N
such that 0 < b < β, it follows that pb 6≡ 1 mod y and pβ ≡ 1 mod y. Let q
be a prime number such that q ≡ x mod y. Define the submonoid M to be
M = {piqk : i, k ∈ N0} ∩Mxp,yp

Lemma 11. The order of q modulo y is β.
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Proof. Let q be a prime such that q ≡ x mod y. Since q ≡ x mod y, then
pq ≡ 1 mod y and pq ∈ Mxy,yp. Suppose for contradiction that there exists a
γ ∈ N such that 0 < γ < β where qγ ≡ 1 mod y . Then 1 ≡ pq ≡ (pq)γ ≡
pγqγ ≡ pγ 6≡ 1 mod y, since γ < β, and β was defined to be the smallest natural
number such that pβ ≡ 1 mod y, so we have a contradiction. Therefore the
smallest power of q congruent to 1 mod y is β and thus the order of q is β.

Lemma 12. Let c = piqk. Then c ∈ M,x > 1 if and only if i ≡ k mod β and
i ≥ 1.

Proof. (=⇒) Show that if i ≡ k mod β and i ≥ 1, then the element piqk is in
M :

Since i ≡ k mod β and i ≥ 1, there exist a, b, c ∈ N0 such that i = aβ + c
and k = bβ + c where a + c ≥ 1. So piqk ≡ paβ+cqbβ+c ≡ (pβ)a(qβ)b(pq)c ≡
1a1b1c ≡ 1 mod y. So piqk ≡ 1 mod y. Therefore piqk ∈M

(⇐=) Show that if i 6≡ k mod β or i < 1, then the element piqk is not in
Mxp,yp:

(i) Let i < 1, then p 6 |piqk so piqk 6∈M .

(ii) Let i ≥ 1 and i 6≡ k mod β. So ∃a, b, c, d ∈ N0 with c 6= d and c, d < β
where i = aβ + c and k = bβ + d.

(a) First consider c < d. Now piqk ≡ paβ+cqbβ+d ≡ (pβ)a(qβ)b(pq)cqd−c ≡
1a1b1cqd−c ≡ qd−c mod y. Since d− c < d < β it follows that
qd−c 6≡ 1 mod y. Since piqk 6≡ 1 mod y then piqk 6∈M .

(b) Lastly consider d < c. Now piqk ≡ paβ+cqbβ+d ≡ (pβ)a(qβ)b(pq)dpc−d ≡
1a1b1cpc−d ≡ pc−d mod y. Since c− d < c < β, then pc−d 6≡ 1 mod y
and piqk 6≡ 1 mod y. Consequently, piqk 6∈M .

Lemma 13. There are exactly two types of irreducibles of the form c ∈ M
where c = piqk and x > 1:

(i) c = pq(mβ+1) for any m ∈ N0

(ii) c = pβ.

Proof. We will begin by showing that (i) and (ii) are irreducible. We will then
consider c ∈M where c = piqk and is not of the form (i) or (ii) and show that
it is either reducible or not in the monoid.

First, we will show that (i) is irreducible. Let m ∈ N and c = pq(mβ+1).
To show c ∈ M , we must show that p|c and c ≡ 1 mod y. Clearly since c =
pq(mβ+1), p|c. So c = piqk = pϕβpζqθβqζ = (pβ)ϕ(qβ)θ(pq)ζ ≡ 1ϕ1θ1ζ ≡
1 mod y. Therefore, c ≡ 1 mod y, so c ∈ M Assume c is reducible. Since c
has only one copy of p, one of the factors will not contain a copy of p and will
therefore not be in the monoid. Therefore c = pq(rβ+1) is an irreducible in M .

9



Now, we will show that (ii) is irreducible. Let c = pβ , then by the definition
of β, pβ ∈M . Suppose pβ was reducible. Then at least one of its factors would
be pb with 0 < b < β, which is not congruent to 1 mod y and is therefore not in
the monoid. So c = pβ is irreducible.

Let c ∈ M where c = piqk and c is not of the form (i) or (ii). There are
multiple cases to consider:

(a) 1 < i < β and k > 0

(b) i = β and k > 0

(c) i > β.

For case (a), for c ∈Mxp,yp, then k = i+rβ for some r ∈ N. So c is reducible
into c = piqk = (pq)i−1(pq1+rβ). For case (b) then either i 6≡ k mod β, and
therefore c /∈Mxp,yp or c is reducible into c = piqk = (pq)i−1(pq1+rβ). For case
(c) then either i 6≡ k mod β, and therefore c /∈Mxp,yp or c can be factored into
(pβ)(pi−βqk) and is therefore reducible.

In conclusion, there are exactly two types of irreducibles of the form c ∈
Mxp,yp where c = piqk:

(i) c = pq(mβ+1) for any m ∈ N

(ii) c = pβ

as desired.

Lemma 14. For all elements c ∈ M , where c = piqk and x > 1 , β|i, and
0 < k ≤ i, the shortest factorization of c into irreducibles is l(c) = i+β(β−1)

β .

Proof. A short factorization of c into irreducibles is

c = piqk = (pβ)(
i
β−1)(pq)(β−1)(pq(k−β+1))

which has length i+β(β−1)
β . It is valid since each of the terms are of form (i) or

(ii) from Lemma 13 and the factorization has exactly i copies of p and k copies
of q.

The shortest length worth considering is i
β , which would require all irre-

ducibles to be of the form (ii) in Lemma 13. However, this contradicts the
assumption that k > 0. Therefore the shortest length must be greater than i

β .
Since the length i

β is not possible and since we have only two categories
of irreducibles, the next shortest length possible must have i

β − 1 copies of
the (ii) irreducibles from Lemma 13 and then β copies of the (i) irreducibles
from Lemma 13. This has length i

β − 1 + β = i+β(β−1)
β . The factorization

above is a valid factorization into irreducibles and has this length. Therefore
the shortest factorization length for an element c ∈Mxp,yp where c = piqk , β|i,
and 0 < k ≤ i is l(c) = i+β(β−1)

β .
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Lemma 15. For all elements c ∈Mxp,yp, where c = piqk and x > 1 , β|i, and
0 < k ≤ i, the longest factorization of c into irreducibles is L(c) = i+k(β−1)

β .

Proof. A long factorization of c into irreducibles is

c = piqk = (pβ)
i−k

β (pq)k

which has length i+k(β−1)
β . This is valid since each of the terms are of form

(i) or (ii) from Lemma 13 and the factorization has exactly i copies of p and
k copies of q. Since this factorization has the maximum number of type (i)
irreducibles ie, each of the k copies of q from c = piqk is paired with a copy of
p, it will be the longest factorization possible.

Therefore the longest factroization length for an element c ∈ Mxp,yp where
c = piqk and x > 1 and β|i, is L(c) = i+k(β−1)

β

Theorem 16. Given a local, singular monoid Ma,b, if gcd(a, b) = p > 1 where
p is prime, then Ma,b is fully elastic.

Proof. Let c ∈ Mxp,yp, x > 1. The elasticity of c, defined previously, is ρ(c)
= L(c)

l(c) . Since ρ(Mxp,yp) = α+β−1
α = 1+β−1

1 = β, then given some arbitrary
w
v ∈ [1, ρ(Ma,b)) we immediately have βv > w ≥ v or, equivalently, β > w

v ≥ 1.
We define i = (β − 1)(β2v − β) and k = β2(w − v) + β and claim that i ≥ k.
Indeed,

k = β2(w − v) + β

≤ β2(βv − 1− v) + β

= β2βv − β2 − β2v + β

= β2v(β − 1)− β(β − 1)

= (β − 1)(β2v − β)
= i

Hence, i ≥ k. , we have ρ(c) = L(c)
l(c) = i+(β−1)k

i+(β−1)β and

i+ (β − 1)k
i+ (β − 1)β

=
(β − 1)(β2v − β) + (β − 1)(β2(w − v) + β)

(β − 1)(β2v − β) + (β − 1)β

=
β2v − β + β2w − β2v + β

β2v − β + β

=
w

v

Since w
v was arbitrary, we have shown that for any local, singular monoid

Mxp,yp = Ma,b where gcd(a, b) = p > 1 and p is prime, we can construct
c ∈ Ma,b such that ρ(c) = w

v . Therefore, the monoid Mxp,yp defined above is
fully elastic.

An alternate proof may be found here? .
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5 Mxpα,ypα with ord(p) = 2

We will show that a local singular Arithmetical Congruence Monoid (ACM)
of the form Mxpα,ypα , where pα is a prime power, gcd(x, y) = 1, x > 1, and
ord(p) = 2 modulo y is fully elastic. Note that if α is even, then pα ≡ 1 mod y.
Since 1 ≡ xpα ≡ x mod y, and x ≤ y it follows that x = 1. This case is fully
solved. 1 It follows that Mpα,ypα with ord(p) = 2 modulo y is fully elastic if
and only if α = 2.

So we are left with the case Mxpα,ypα , where x > 1, α odd, and ord(p) = 2
modulo y. Define q to be a prime such that q ≡ x mod y. So xpα ≡ qpα ≡
1 mod y. Also, p ≡ qpα+1 ≡ q mod y. Therefore, since ord(p) = 2 modulo y, it
follows that ord(q) = 2 modulo y.

Define the submonoid M = Mxpα,ypα ∩ {piqk : i, k ∈ N0} where x > 1, α
odd, q is prime, and ord(p) = ord(q) = 2 modulo y.

Theorem 17. An element g = piqk is in the submonoid M if and only if i ≥ α
and i+ k is even.

Proof. Let g ∈ M . Since Mxpα,ypα = Mpα,pα ∩M1,y, therfore pα|g and g ≡
1 mod y. Suppose i < α, then pα 6 |x. So i ≥ α. Now suppose i+ k = 2z + 1 for
some z ∈ N. Recall that p ≡ q mod y. So piqk ≡ pi+k ≡ (p2)zp ≡ p 6≡ 1 mod y.
This gives a contradiction, so i+ k is even.

Let g = piqk where i ≥ α and i + k is even. Since i ≥ α, it is clear that
g = pα(pi−αqk) and so pα|g. Now consider piqk ≡ pi+k ≡ (p2)

i+k
2 ≡ 1 mod y.

Therefore g ∈M .

Lemma 18. If g = piqk ∈M where α ≤ i < 2α, then g is irreducible.

Proof. Suppose g = piqk ∈ M with α ≤ i < 2α is reducible. So g factors into
at least 2 irreducibles in the monoid. Since i

2 < α it is not possible for pα to
divide both factors. Thus, g is irreducible.

Lemma 19. If g = piqk ∈M where i = 2α and k = 0, then g is irreducible.

Proof. Suppose g ∈ M where g = p2α is reducible. So g factors into at least 2
irreducibles in the monoid. Then either one irreducible has less than α copies
of p and one has more than α copies of p or both have α copies of p. If one
irreducible factor has less than α copies of p, then it is not in the monoid and
so not an irreducible in the monoid. If both irreducible factors have α copies of
p, since there are no copies of q in g, there are no copies of q in either factor.
Therefore in each factor, the number of copies of p plus the number of copies
of q is odd, and thus it is not in the monoid. So we have a contradiction and
g = p2α is irreducible.

Lemma 20. If g = piqk ∈ M where g is not of the form of Lemma 18 or
Lemma 19, then g is reducible.

Proof. Let g = piqk ∈M . There are two cases not covered:
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(i) i = 2α and k 6= 0

(ii) i > 2α

In case (i), then k is even and at least 2. So g is reducible into pαq and
pαqk−1. In case (ii), then g is reducible into pα+1 and pi−α−1qk. The second
term may or may not be an irreducible, however this is enough to show that g
is reducible.

Lemma 21. The shortest factorization length for an element g = piqk ∈ M
where 2α | i and k 6= 0 where ω = b i

2αc is l(g) = i
2α + 1.

Proof. Let g = piqk ∈ M where 2α | i and k 6= 0. Recall that i ≥ α and i + k
must be even. Let ω = b i

2αc .
Suppose 2α | i and k 6= 0. Then a short factorization of x into irreducibles

is (p2α)ω−1(pαq)(pαqk−1). This cannot be shortened because i+ k must remain
even in each factorization and the factorizations must, of course, remain irre-
ducible. If 2α | i, then i

2α is an integer and i = 2αω. Thus we can factor out
ω − 1 number of p2α’s. Since k 6= 0, the remaining p2α can only be divided
into two single pα terms in order to remain irreducible. This is because if there
are more than two terms, some term does not have alpha copies of p, but if we
condense them into one term, then the term is immediately reducible. The first
of these terms is pαq, and the second contains the remaining terms in the form
pαqk−1. This gives a length of l(g) = ω + 1 = b i

2αc+ 1 = d i
2αe+ 1 = i

2α + 1.
Although slight variations may be made on the factorizations, their length

will only be greater than or equal to the length of either l(g) depending on i.

Lemma 22. The longest factorization for g = piqk ∈ M with k ≤ b i
αc has

length L(g) = k + b i−αk
α+1 c.

Proof. Let g = piqk ∈ M with k ≤ b i
αc. So i ≥ α and i+ k even. Let t = b i

αc
and s = b i−αk

α+1 c.
Suppose k ≤ b i

αc. The explicit factorizations for g must be in cases depen-
dent on if k is odd or even.

Since k is even, then a long factorization of g is

(pαq)k(pα+1)s−1(pi−αk−(s−1)(α+1)).

Since each irreducible with α copies of p must be paired with a q, there are as
many irreducibles with α copies of p as possible. Also, since

α ≤ i− αk − (s− 1)(α+ 1) < 2α,

were there one more irreducible with α + 1 copies of p, there would be an
irreducible with less than α copies of p, which would not be in the monoid. So
this factorization of g is as long as possible. Thus, L(g) = k + b i−αk

α+1 c.

13



Corollary 23. The elasticity for an element g = piqk ∈ M with k ≤ b i
αc and

2α | i and k 6= 0 is ρ(g) =
k+b i−αk

α+1 c
i

2α +1
.

Proof. Since ρ(g) = L(g)
l(g) and by Lemma 21 we know l(g) = i

2α + 1. Also, by

Lemma 22 we know L(g) = k + b i−αk
α+1 c. Therefore ρ(g) =

k+b i−αk
α+1 c

i
2α +1

.

Theorem 24. An Arithmetical Congruence Monoid of the type Mxpα,ypα where
x > 1, α > 1 is odd, and ord(p) = 2 modulo y is fully elastic.

Proof. For an element of the submonoid g = piqk ∈ M , we have the elasticity
of g defined as ρ(g) = L(g)

l(g) . Then given some w
v ∈ [1, ρ(Mxpα,ypα)), we have we

have 2v > w ≥ v or, equivalently, 2 > w
v ≥ 1 since ρ(Mxpα,ypα) = α+β−1

α = 2
when x > 1 and ord(p) = 2 modulo y. Consider i = 2α(v − 1) and k =
w(α+ 1)− 2α(v − 1). We claim that i ≥ k which implies that:

2α(v − 1) ≥ w(α+ 1)− 2α(v − 1)

⇐⇒ 4α
α+ 1

≥ w

v − 1

Assume not, then i < k and we have:

=⇒ 4α
α+ 1

<
w

v − 1

⇐⇒ 4α
α+ 1

<
w

v − 1
<

2v
v − 1

⇐⇒ 4α
α+ 1

< (
3
3
)

2v
v − 1

=
6v

3v − 3
<

6v
3v − 1

But α > 1 and α is odd, so α ≥ 3. Then, since f(α) = 4α
α+1 is an increasing

function (confirmed by the derivative test) on [3,∞), it attains its minimum at
α = 3. We also note that h(v) = v

3v−1 is a decreasing function (confirmed by
the derivative test) on [1,∞) and attains its maximum value at v = 1. Hence,

4α
α+ 1

=
4(3)

(3) + 1
= 3 < 3 = 6(

1
3(1)− 1

) =
6v

3v − 1

but 3 < 3 is a contradiction and since 4α
α+1 >

6v
3v−1 >

2v
v−1 >

w
v−1 for all other

values of α and v, we must have i ≥ k. Since 2α | i and k 6= 0, we have

ρ(g) =
k+b i−αk

α+1 c
i

2α +1
.
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k + b i−αk
α+1 c

i
2α + 1

=
w(α+ 1)− 2α(v − 1) + b 2α(v−1)−α(w(α+1)−2α(v−1))

α+1 c
2α(v−1)

2α + 1

=
w(α+ 1)− 2α(v − 1) + b 2α(v−1)+2(α)2(v−1))−(αw(α+1))

α+1 c
v

=
w(α+ 1)− 2α(v − 1) + b 2α(α+1)(v−1))−(αw(α+1))

α+1 c
v

=
(wα) + (w)− 2α(v − 1) + 2α(v − 1)− (wα)

v

=
w

v

Therefore for all w
v ∈ [1, 2) the element g = p2α(v−1)qw(α+1)−2α(v−1) has an

elasticity of ρ(g) = w
v . So Mxpα,ypα where x > 1, α > 1 is odd, and ord(p) = 2

modulo y is fully elastic.

6 Mxp2,21p2

It can be shown from the group structure of Z×
21 = Z2×Z6, that for Mxpα,21pα to

be a monoid, one of the following must hold: p ≡ 1 mod 21, p2 ≡ 1 mod 21, p3 ≡
1 mod 21, p6 ≡ 1 mod 21. Recall that if the ord(p) modulo 21 divides α then it
follows that x = 1 and so the case has been solved. 1 Further, ord(p) mod 21
divides α then Mxpα,ypα is fully elastic if and only if ord(p) = α.

Consider Mxp2,21p2 . There are four cases, the ord(p) modulo 21 can be either
1, 2, 3 or 6. Note that since α = 2 if ord(p) = 1, 2 then the case has been solved
and if ord(p) = 3, 6 then the case is open.

Corollary 25. If the order of p modulo 21 is equal to 1, then Mxp2,21p2 is not
fully elastic. If the order of p modulo 21 is equal to 2, then Mxp2,21p2 is fully
elastic.

Proof. Lemma 3.1, 3.2 in On the Arithmetic of Arithmetical Congruence Monoids.

Now we will be considering the full elasticity of Mxp2,21p2 when the order of p
modulo 21 is equal to 3. Therefore the elasticity of the monoid is ρ(Mxp2,21p2) =
α+β−1

α = 2+3−1
2 = 2.

Define r to be a prime such that r ≡ p2 mod 21. So pr ≡ 1 mod 21 and the
order of r modulo 21 is also 3. Now define the submonoid M1 = {pirj : i, j ∈
N0} ∩Mxp2,21p2 .

Lemma 26. The element g = pirj ∈M1 if and only if i ≥ 2 and i ≡ j mod 3.
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Proof. Let g = pirj ∈ M1. Then p2|g so i ≥ 2. Suppose without loss of
generality i ≥ j. Since g ∈M1, then 1 ≡ g ≡ pirj ≡ (pr)j(p)i−j ≡ pi−j mod 21.
The order of p modulo 21 is 3, it follows that 1 ≡ pi−j mod 21 exactly when
i ≡ j mod 3. So when g ∈M1, then i ≥ 2 and i ≡ j mod 3.

Let g = pirj where i ≥ 2 and i ≡ j mod 3. Since i ≥ 2, then it is clear that
p2|g. Since i ≡ j mod 3, there exist A,B,C ∈ N0 such that i = 3A + C and
j = 3B+C. So pirj ≡ (p3)A(pr)C(r3)B ≡ (1)A(1)C(1)B ≡ 1 mod 21. Therefore
g ∈M1.

Lemma 27. The following are the only irreducibles in M1:

(i) p2r2+3m where m ∈ N0

(ii) p3r3m where m ∈ N0

(iii) p4r

Proof. For (i) and (ii), clearly i ≡ j mod 3 and i ≥ 2, so they are in M1.
Suppose they are reducible. Then at least one factor would not be divisible
by p2, and would therefore not be in the monoid. Therefore, (i) and (ii) are
irreducible. For (iii) suppose it was reducible. Then, either one factor will have
more than 2 copies p and one will have less, in which case not both factors
will be in the monoid. The other case is both will have exactly 2 copies of p.
However, since there is only one copy of q, it is not possible for both factors to
satisfy the condition that i ≡ j mod 3. So (i), (ii) and (iii) are irreducible.

There are two cases not considered, first p4r1+3m where m ∈ N0 and m > 0,
and second pirj with i ≥ 5. Consider p4r1+3m where m ∈ N0 and m > 0.
Then there are at least four copies of r. So p4r1+3m where m ∈ N0 and m > 0
is reducible into (p2r2)(p2r2+3(m−1)). Now consider pirj with i ≥ 5. This is
reducible into (p3)(pi−3rj).

Therefore the following are the only irreducibles in M1:

(i) p2r2+3m where m ∈ N0

(ii) p3r3m where m ∈ N0

(iii) p4r .

Lemma 28. For any element g = pirj ∈ M1 where i = 2(2φ + 1) and j =
3t+ φ+ 2 with φ, t ∈ N, the shortest length factorization is l(g) = φ+ 1.

Proof. The absolute shortest factorization length is i
4 since our irreducible that

utilizes the most copies of p is p4r. Any element in the monoid with factorization
length shorter than this would necessarily have some factor with more than 4
copies of p in it, and would then be reducible. Now, i

4 = 2(2φ+1)
4 = φ + 1

2 .
Consider the element g ∈ M where g = pirj = (p4r)φ(p2r2+3t). Since φ is an
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integer, φ + 1
2 is not an integer and we have, φ < φ + 1

2 < φ + 1. Therefore,
φ+ 1 is the shortest length factorization.

Lemma 29. For any element g = pirj ∈ M1 where i = 3γ + 2θ and j = 2θ
with γ, θ ∈ N, the longest length factorization is L(g) = γ + θ.

Proof. We show that L(g) = γ+θ is maximal. Let t,m ∈ N0, then with reference
to lemma 27, we find the following; A longest factorization can have at most one
type (iii) irreducible since (p4r)(p4r)m = (p2r2)(p3)2(p4r)m−1, where m ∈ N.

If there is one type (iii) and one type (ii) with m ≥ 1 in the factor-
ization, then the factorization length is not maximal since (p4r)(p3r3m) =
(p4r)(p3r3(m−1)+3) = (p2r2)2(p3r3(m−1)).

If the maximum length factorizaion contains a type (iii) irreducible, then it
is of the form (p3)γ(p4r) and can only contain one copy of r:

(a) Both (p3r3m)γ(p4r) and (p3)γ(p4r)θ, θ > 1 are addressed at the beginning
of this proof.

(b) (p3)γ(p4r)(p2r2) = (p3)γ+1(p3r3), which does not contain any (p4r).

(c) (p3)γ(p4r)(p2r2+3t) = (p3)γ−1(p2r2+3(t−1))(p2r2)2(p3), which does not
contain any (p4r).

If a longest factorization contains a type (i) irreducible and a type (ii) irre-
ducible, it can be written with all copies of r in the type (ii) irreducible since,
(p3r3m)(p2r2+3t) = (p3)(p2r2+3(m+t)) have equal lengths.

A longest factorization cannot be written as (p3)a(p2r2)b(p2r2+3t) if both
a ≥ 2 and t ≥ 2 since this factorization length can be increased:

(p3)a−2(p2r2)b+3(p3r2+3(t−2))

.
Therefore, all longest factorizations can be written as (p3)a(p2r2)b(p2r2+3t)

if a < 2 or t < 2, where a, b ∈ N. Therefore, g = (p3)γ(p2r2)θ is maximal
length since i = 3γ + 2θ > 2θ = j implies t = 0 in (p2r2+3t) and a = γ and
b = θ − 1.

Lemma 30. M1 is fully elastic on the interval [ 32 , 2).

Proof. First note that, g ∈M1 implies that g = (p4r)φ(p2r2+3t) = (p3)γ(p2r2)θ.
Hence, γ = φ− t and θ = 1

2 (φ+ 3t+ 2) since,

g = (p3)γ(p2r2)θ

= (p3)φ−t(p2r2)
1
2 (φ+3t+2)

= p3φ−3t+φ+3t+2rφ+3t+2

= (p4r)φ(p2r2+3t)
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Therefore,

ρ(g) =
γ + θ

φ+ 1

=
φ− t+ 1

2 (φ+ 3t+ 2)
φ+ 1

=
(2φ+ 2) + (φ+ t)

2φ+ 2

= 1 +
φ+ t

2(φ+ 1)

Therefore, it suffices to show that 0 ≤ w
v < 1

2 for w, v ∈ N. Set φ = 2v − 1 and
t = 4w − 2v + 1. Then we have,

φ+ t

2(φ+ 1)
=

2v − 1 + 4w − 2v + 1
2(2v − 1)

=
4w
4v

=
w

v

Therefore, M1 is fully elastic on [ 32 , 2).

Now let us consider a different submonoid. Define q to be a prime such that
q ≡ p mod 21. So p2q ≡ q2p ≡ 1 mod 21 and the order of q modulo 21 is also 3.
Now define the submonoid M2 = {piqk : i, k ∈ N0} ∩Mxp2,21p2 .

Lemma 31. The element g = piqk ∈M2 if and only if i ≥ 2 and i ≡ 2k mod 3.

Proof. Let g = piqk ∈ M2. Then p2|g so i ≥ 2. Since g ∈ M2, then 1 ≡
g ≡ piqk ≡ pi+k mod 21. So i + k ≡ 0 mod 3. This is equivalent to saying
i ≡ 2k mod 3. So if g ∈M2 then i ≥ 2 and i ≡ 2k mod 3.

Let g = piqk where i ≥ 2 and i ≡ 2k mod 3. Since i ≥ 2, then it is clear
that p2|g. Since i ≡ 2k mod 3, there exist A,B,C ∈ N0 such that i = 3A+ 2C
and j = 3B + C. So piqk ≡ (p3)A(p2q)C(r3)B ≡ (1)A(1)C(1)B ≡ 1 mod 21.
Therefore g ∈M2.

Lemma 32. The following are the only irreducibles in M2:

(i) p2q1+3m where m ∈ N0

(ii) p3q3m where m ∈ N0

Proof. For (i) and (ii), clearly i ≡ 2k mod 3 and i ≥ 2, so they are in M1.
Suppose they are reducible. Then at least one factor would not be divisible
by p2, and would therefore not be in the monoid. Therefore, (i) and (ii) are
irreducible.

There are two cases not considered, first p4q2+3m where m ∈ N0, and sec-
ond piqk with i ≥ 5. Consider p4q2+3m where m ∈ N0. This is reducible
into (p2q)(p2q1+3m). Now consider piqk with i ≥ 5. This is reducible into
(p3)(pi−3qk).

Therefore the following are the only irreducibles in M2:
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(i) p2q1+3m where m ∈ N0

(ii) p3q3m where m ∈ N0.

Lemma 33. For any element g = piqk ∈ M2 where i = 3n and k = 3r with
n, r ∈ N, the shortest length factorization is l(g) = n.

Proof. Since the most copies of p possible in an irreducible is 3, the shortest
conceivable factorization length is n. Consider the following factorization of
g = piqk:

(p3)n−1(p3q3r)

which has length n. Therefore, the shortest length factorization for an element
g = piqk ∈M2 where i = 3n and k = 3r with n, r ∈ N is l(g) = n.

Lemma 34. For any element g = piqk ∈ M2 where i = 3n and k = 3r with
n, r ∈ N and 2r ≤ n, the longest length factorization is L(g) = n+ r.

Proof. Consider the following factorization of piqk:

(p2q)3r(p3)n−2r

which has length L(g) = n+ r. Since p2q is minimal for both p’s and q’s, and it
was used as many times as possible, this is the longest length factorization.

Corollary 35. For any element g = piqk ∈ M2 where i = 3n and k = 3r with
n, r ∈ N and 2r ≤ n, the elasticity is ρ(g) = n+r

n .

Proof. Since l(g) = n and L(g) = n+ r, it follows that ρ(g) = n+r
n .

Theorem 36. M2 is fully elastic on [1, 3
2 ).

Proof. Let w
v ∈ [1, 3

2 ]. Now consider g = piqk with i = 3n where n = v and
k = 3r where r = w − v. Note since 1 ≤ v ≤ w, r and n are in N. Also, since
w ≤ 3v

2 , then r ≤ v
2 , and 2r ≤ n. So ρ(g) = n+r

n = v+w−v
v = w

v . Therefore, M2

is fully elastic on [1, 3
2 ).

Theorem 37. Mxp2,21p2 where the order of p modulo y is 3 is fully elastic.

Proof. Recall that ρ(Mxp2,21p2) = 2. Also, the submoniod M1 is fully elastic on
[ 32 , 2) by Theorem 30. Similarly, the submoniod M2 is fully elastic on [1, 3

2 ) by
Theorem 36. Therefore Mxp2,21p2 where the order of p modulo y is 3 is fully
elastic.
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Now we will be considering the full elasticity of Mxp2,21p2 when the order of p
modulo 21 is equal to 6. Therefore the elasticity of the monoid is ρ(Mxp2,21p2) =
α+β−1

α = 2+6−1
2 = 7

2 .
Define r to be a prime such that r ≡ p5 mod 21. So pr ≡ 1 mod 21 and the

order of r modulo 21 is also 6. Now define the submonoid M1 = {pirj : i, j ∈
N0} ∩Mxp2,21p2 .

Lemma 38. The element g = pirj ∈M1 if and only if i ≥ 2 and i ≡ j mod 6.

Proof. Let g = pirj ∈ M1. Then p2|g so i ≥ 2. Suppose without loss of
generality i ≥ j. Since g ∈ M1, then 1 ≡ g ≡ pirj ≡ (pr)j(p)i−j ≡ pi−j mod y.
The order of p modulo y is 6, it follows that 1 ≡ pi−j mod y exactly when
i ≡ j mod 6. So when g ∈M1, then i ≥ 2 and i ≡ j mod 6.

Let g = pirj where i ≥ 2 and i ≡ j mod 6. Since i ≥ 2, then it is clear that
p2|g. Since i ≡ j mod 6, there exist A,B,C ∈ N0 such that i = 6A + C and
j = 6B + C. So pirj ≡ (p6)A(pr)C(r6)B ≡ (1)A(1)C(1)B ≡ 1 mod y. Therefore
g ∈M1.

Lemma 39. The following are the only irreducibles in M1:

(i) p2r2+6m where m ∈ N0

(ii) p3r3+6m where m ∈ N0

(iii) p6

(iv) p7r

Proof. For (i) and (ii), clearly i ≡ j mod 6 and i ≥ 2, so they are in M1.
Suppose they are reducible. Then at least one factor would not be divisible
by p2, and would therefore not be in the monoid. Therefore, (i) and (ii) are
irreducible. For (iii) and (iv), suppose they were reducible. Then, at least one
factor will have less than 6 copies p with no copies of q. So the i ≡ j mod 6
condition is broken and the factor is not in the monoid. So (i), (ii), (iii) and
(iv) are irreducible.

There are three cases not considered, first phrh+6m where m ∈ N0 and h = 4
or 5, second p7r1+6m where m ∈ N0 and m > 0 , and third pirj with i ≥ 8.
Consider phrh+3m where m ∈ N0 and h = 4 or 5. So phrh+3m where m ∈ N0

and h = 4 or 5 is reducible into (p2r2)(ph−2rh−2+6m). Now consider p7r1+6m

where m ∈ N0 and m > 0. So there are at least 7 copies of q. So p7r1+6m

where m ∈ N0 and m > 0 is reducible into (p2r2)(p5r5+6(m−1). Now consider
pirj with i ≥ 8. This is reducible into (p6)(pi−6rj).

Therefore the following are the only irreducibles in M1:

(i) p2r2+6m where m ∈ N0

(ii) p3r3+6m where m ∈ N0

(iii) p6
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(iv) p7r

Lemma 40. For any element g = pirj ∈M1 where i = 7γ+3 and j = γ+3+6m
for some γ,m ∈ N0, the shortest factorization length is l(g) = γ + 1.

Proof. The shortest consevable length of factorization is i
7 = γ + 3

7 since the
most copies of p in any irreducible is 7. However, this is not an integer. So
the shortest possible length is γ + 1. Consider the following factorization of
g = pirj :

(p7r)γ(p3r3+6m)

which has length γ+1. Therefore for any element g = pirj ∈M2 where i = 7γ+3
and j = γ + 3 + 6m the shortest factorization length is l(g) = γ + 1.

Lemma 41. For any element g = pirj ∈M1 where i = 2θ+ 6φ and j = 2θ for
some θ, φ ∈ N0, the longest factorization length is L(g) = θ + φ.

Proof. Recall the irreducibles,

(i) p2r2+6m where m ∈ N0

(ii) p3r3+6m where m ∈ N0

(iii) p6

(iv) p7r.

The longest irreducible can have at most one irreducible of type (ii) or at
most one type (iv) since

(p3r3+6m1)(p3r3+6m2) = (p2r2)2(p2r2+6(m1+m2))

(p7r)2 = (p2r2)(p6)2

(p7r)(p3r3+6m) = (p6)(p2r2)(p2r2+6m).

If a longest factorization contains a type (i) and a type (iii) irreducible, then
m = 0. Suppose m > 0, it can be made longer by the following,

(p2r2+6m)(p6) = (p2r2)3(p2r2+6(m−1))

Consider the following factorization of g = pirj :

(p2r2)θ(p6)φ

which has length θ + φ. Since we have an even number of r’s, if we had a type
(ii) or a type (iv) irreducible, we would need two. But this could be made
longer. So our longest factorization must contain only type (i) and type (iii)
irreducibles. Since for all factors m = 0, this is the longest factorization.
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Corollary 42. Any element g = pirj ∈M1 that satisfies Lemma 40 and Lemma
41 has elasticity ρ(g) = 3γ+4m+3

2γ+2 .

Proof. Solving the system of equations:

i = 7γ + 3
i = 2θ + 6φ
j = γ + 3 + 6m
j = 2θ.

We see that φ = γ −m, so γ ≥ m. We also see that θ = (1/2)(γ + 3 + 6m), so
γ must be odd.

The clear elasticity is ρ(g) = θ+φ
γ+1 . And substituting gives ρ(g) = θ+φ

γ+1 =
γ−m+(1/2)(γ+3+6m)

γ+1 = 2γ−2m+γ+3+6m
2γ+2 = 3γ+4m+3

2γ+2 .

Theorem 43. M1 is fully elastic on ( 3
2 ,

7
2 ).

Proof. Let w
v ∈ ( 3

2 ,
7
2 ). So 3v < 2w < 7v and 2w ≤ 7v− 1. Consider γ = 4v− 1,

and m = 2w − 3v. Therefore m = 2w − 3v ≤ 7v − 1− 3v = 4v − 1 = γ, and γ
is odd.

So ρ(g) = 3γ+4m+3
2γ+2 = 3(4v−1)+4(2w−3v)+3

2(4v−1)+2 = 12v−3+8w−12v+3
8v−2+2 = 8w

8v = w
v .

Therefore, M1 is fully elastic on ( 3
2 ,

7
2 ).

Now let us consider a different submonoid. Define q to be a prime such that
q ≡ p4 mod 21. So p2q ≡ 1 mod 21 and the order of q modulo 21 is 3. Now
define the submonoid M2 = {piqk : i, k ∈ N0} ∩Mxp2,21p2 .

Lemma 44. The element g = piqk ∈M2 if and only if i ≥ 2 and i ≡ 2k mod 6.

Proof. Let g = piqk ∈ M2. Then p2|g so i ≥ 2. Since g ∈ M2, then 1 ≡
g ≡ piqk ≡ pi+4k mod 21. So i + 4k ≡ 0 mod 6. This is equivalent to saying
i ≡ 2k mod 6. So if g ∈M2 then i ≥ 2 and i ≡ 2k mod 6.

Let g = piqk where i ≥ 2 and i ≡ 2k mod 6. Since i ≥ 2, then it is clear
that p2|g. Since i ≡ 2k mod 6, there exist A,B,C ∈ N0 such that i = 6A+ 2C
and k = 3B + C. So piqk ≡ (p6)A(p2q)C(r3)B ≡ (1)A(1)C(1)B ≡ 1 mod 21.
Therefore g ∈M2.

Note that since i ≡ 2k mod 6, it must be true that i is even.

Lemma 45. The following are the only irreducibles in M2:

(i) p2q1+3m where m ∈ N0

(ii) p6
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Proof. For (i), clearly i ≡ 2k mod 6 and i ≥ 2, so it is in M2. Suppose they
are reducible. Then at least one factor would not be divisible by p2, and would
therefore not be in the monoid. Therefore, (i) is irreducible. Suppose p6 was
reducible. Since i must be even, one of the factors will contain 2 copies of p,
but no copies of q. Therefore the factor would not be in the monoid. So (i),
and (ii) are irreducible in M2.

There are two cases not considered, first p4q2+3m where m ∈ N0, and sec-
ond piqk with i ≥ 8. Consider p4q2+3m where m ∈ N0. This is reducible
into (p2q)(p2q1+3m). Now consider pirj with i ≥ 8. This is reducible into
(p6)(pi−6rj).

Therefore the following are the only irreducibles in M2:

(i) p2q1+3m where m ∈ N0

(ii) p6.

Lemma 46. For any element g = piqk ∈ M2 where i = 6n and k = 3r with
n, r ∈ N, the shortest length factorization is l(g) = n+ 2.

Proof. Since the maximum copies of p possible in an irreducible is 6, the shortest
consevable factorization length is n. Since the next largest number of copies
of p possible in an irreducible is 2, the next shortest facotrization length is
(n−1)+3 = n+2. Further, since k 6= 0, it is not possible to have a factorization
length of n. Consider the following factorization of piqk:

(p6)n−1(p2q)2(p2q2+3(r−1))

which has length n + 2. Therefore, the shortest length factorization for an
element g = piqk ∈M2 where i = 6n and k = 3r with n, r ∈ N is l(g) = n+2.

Lemma 47. For any element g = piqk ∈ M2 where i = 6n and k = 3r with
n, r ∈ N and r ≤ n, the longest length factorization is L(g) = n+ 2r.

Proof. Consider the following factorization of piqk:

(p2q)3r(p6)n−r

which has length L(g) = n+2r. Since p2q is minimal for both p’s and q’s, and it
was used as many times as possible, this is the longest length factorization.

Corollary 48. For any element g = piqk ∈ M2 where i = 6n and k = 3r with
n, r ∈ N and r ≤ n, the elasticity is ρ(g) = n+2r

n+2 .

Proof. Since l(g) = n+ 2 and L(g) = n+ 2r, it follows that ρ(g) = n+2r
n+2 .

Theorem 49. M2 is fully elastic on [1, 3).
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Proof. Let w
v ∈ [1, 3). Now consider g = piqk with i = 6n where n = 2v − 2

and k = 3r where r = w − v + 1. Note since 1 ≤ v ≤ w, r and n are in N.
So ρ(g) = n+2r

n+2 = 2v−2+2w−2v+2
2v−2+2 = 2w

2v = w
v . Therefore, M2 is fully elastic on

[1, 3).

Theorem 50. Mxp2,21p2 where the order of p modulo 21 is 6 is fully elastic.

Proof. Recall that ρ(Mxp2,21p2) = 7
2 . Also, the submoniod M1 is fully elastic on

[3, 7
2 ) by Theorem 43. Similarly, the submoniod M2 is fully elastic on [1, 3) by

Theorem 49. Therefore Mxp2,21p2 where the order of p modulo 21 is 6 is fully
elastic.

Theorem 51. Mxp2,21p2 is fully elastic if and only if the order of p modulo 21
is not equal to 1.

Proof. By the group structure of Z×
21 the order of p modulo y must be 1, 2, 3, 6 to

be a monoid. By Corollary 25 if the order of p modulo 21 is 1 then Mxp2,21p2 is
not fully elastic. By Corollary 25 if the order of p modulo 21 is 2 then Mxp2,21p2

is fully elastic. By Theorem 37 if the order of p modulo 21 is 3 then Mxp2,21p2

is fully elastic. By Theorem 50 if the order of p modulo 21 is 6 then Mxp2,21p2

is fully elastic. Therefore Mxp2,21p2 is fully elastic if and only if the order of p
modulo 21 is not equal to 1.

7 Mxpα,ypα with α ≤ ord(p)
2

In this section we will show the full elasticity of Mxpα,ypα with α ≤ ord(p)
2 . Note

that since α < 2α ≤ ord(p), it follows that the smallest power of p such that
pβ ∈Mxpα,ypα is β = ord(p). Let q be prime such that q ≡ x mod y. Define the
submonoid M1 = Mxpα,ypα ∩ {piqk : i, k ∈ N0}.

Lemma 52. For α ≤ β
2 the irreducible with the largest power of p in M1 is pβ.

Proof. Since α ≤ β
2 it follows that β ≥ 2α. Let piqk be an element of the sub-

monoid such that i ≥ 2α with k 6= 0. Then piqk is reducible into (pαq)(pi−αqk−1).
Since piqk ≡ pαq ≡ 1 mod y it follows that pi−αqk−1 ≡ 1 mod y. Also, since
i ≥ 2α it follows that i − α ≥ α and so pα|pi−αqk−1 and pi−αqk−1 ≡ 1 mod y.
Therefore piqk is reducible when i ≥ 2α and k 6= 0. Let piqk be an element
of the submonoid such that i ≥ 2α with k = 0. Then β|i, suppose not. Then
pi = (pβ)

i
β but i

β is not an integer. Let i = mβ + r where m, r ∈ N0 and

0 < r < β. Then, (pβ)
i
β = (pβ)m(pr). We know that pβ ≡ 1 mod y is minimal,

and since 0 < r < β, we have pr 6∈M . So i = θβ where θ ∈ N. So piqk = (pβ)θ.
Therefore if θ > 1, then the element is reducible. Therefore any piqk in the
submonoid with i ≥ 2α and i 6= β is reducible. So the irreducible with the
largest power of p is pβ .
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Lemma 53. Given some Arithmetical Congruence Monoid (ACM) Mxpα,ypα

where pβ ≡ 1 mod y and α > 1, let c = gcd(α, β) so that there exists some
n,m ∈ N such that β = cm and α = cn. Then m is minimal for qm ≡ 1 mod y.

Proof. Assume that c = gcd(α, β), β = cm and α = cn. Then, immediately we
have gcd(m,n) = 1 and the lcm(α, β) = cmn. Consider,

qm ≡ qm(pβ)n ≡ qmpαm ≡ (qpα)m ≡ 1 mod y

Therefore, qm ≡ 1 mod y. Now, suppose there exists m′ ∈ N such that 0 <
m′ < m and qm′ ≡ 1 mod y. Then,

(qpα)m′
≡ qm′

pαm′
≡ pαm′

≡ pcnm′
mod y

We have cnm′ < cnm, but β - cnm′ since, β = cm | cnm′ implies m | nm′ but
gcd(n,m) = 1 so that we have m | m′ which is a contradiction, for m′ < m.
Hence, pcnm′ 6≡ 1 mod y. Thus, qm ≡ 1 mod y where m is minimal.

Lemma 54. The element pαq1+θm ∈M1 where ord(q) = m is irreducible.

Proof. First, we will show that pαq1+θm ≡ 1 mod y. So pαq1+θm ≡ (pαq)(qm)θ ≡
(1)(1)θ ≡ 1 mod y. Suppose pαq1+θm was reducible. Since there are exactly α
copies of p, at least one of the factors would not be divisible by pα and thus not
be in the monoid. Therefore pαq1+θm is irreducible, as desired.

Lemma 55. If β ≥ 2α then the shortest length factorization of c ∈ M ⊂
Mxpα,ypα is l(c) = i

β + 1− α
β .

Proof. First note that the shortest possible factorization length of any element
c ∈ M ⊂ Mxpα,ypα is i

β . This is seen by noting the lemma above, that is, the
irreducible that utilizes the most copies of p is pβ . Therefore, for any element
c ∈Mxpα,ypα , none of the individual factors of c can contain more than β copies
of p. Hence, a shorter factorization of c ∈Mxpα,ypα does not exist.

To find the shortest factorization length of an element c ∈ M , we choose i
such that β | i − α. Then, a shortest factorization of c ∈ Mxpα,ypα of the form
c = piqk is (pβ)

i−α
d (pαq1+ωm) with ω ∈ N0. Here l(c) = i−α

β + 1 = i+β+α
β =

i
β + 1− α

β . Since β > α, clearly α
β < 1. Therefore, 0 < 1− α

β < 1. But this also
implies β - i since 1− α

β is not an integer. Therefore, i
β is not an integer. Since

l(c) must be an integer, and i
β < i

β + (1− α
β ) < i

β + 1, l(c) is a minimal length
factorization of c.

Lemma 56. If β ≥ 2α then the longest length factorization of c ∈Mxpα,ypα is
L(c) = k + i−αk

β .

Proof. First note that the longest possible factorization length of any element
c ∈ Mxpα,ypα is i

α . This is seen by noting the lemma above, that is, the ir-
reducible that utilizes the least copies of p is paq since we must have pα|c.
Therefore, for any element c ∈Mxpα,ypα , none of the individual factors of c can
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contain less than α copies of p. Hence, a longer factorization of c ∈ Mxpα,ypα

does not exist. To find the longest factorization length of an element c ∈ M ,
we choose i such that i ≥ αk. Then, a longest factorization of c ∈ Mxpα,ypα of
the form c = piqk is (pαq)k(pβ)

i−αk
β . Here L(c) = k + i−αk

β . This factorization
length is maximal since we have a maximal number of factors pαq. We note that
the factor pαq has minimal copies of p and of q. Any other irreducible must
have at least α copies of p and at least one copy of q. The only exception is the
irreducible, pβ . Since we have exhausted our copies of q, any additional copies
of p must be put into the form pβ which is precisely what we have.

Lemma 57. M1 is fully elastic over the interval [1, β
α ).

Proof. For c ∈ M1, we have the elasticity of c defined as ρ(c) = L(c)
l(c) . Then

given some w
v ∈ [1, β

α ). We define i = (β − α)(βv − 1) and k = β(w − v) + 1.
We claim that i ≥ αk, indeed,

αk = αβw − αβv + α

≤ β(βv − 1)− αβv + α

= ββv − β − αβv + α

= (β − α)βv − (β − α)
= (β − α)(βv − 1) = i

Therefore, i ≥ αk. Then,

ρ(c) =
i+ k(β − α)
i+ β − α

=
(β − α)(βv − 1) + (β(w − v) + 1)(β − α)

(β − α)(βv − 1) + (β − α)

=
(βv − 1) + (βw − βv + 1)

βv

=
βw

βv

=
w

v

Thus, M1 is fully elastic over the interval [1, β
α ).

Let Mxpα,ypα be a monoid such that α ≤ ord(p)
2 = β

2 . Let r be prime
such that r ≡ pβ−1 mod y. Then pr ≡ 1 mod y. Define the submonoid M2 =
Mxpα,ypα ∩ {pirj : i, j ∈ N0}.

Lemma 58. The order of r modulo y is β.

Proof. Since 1 ≡ pr ≡ (pr)β ≡ pβrβ ≡ rβ mod y, it follows that ord(r) ≤ β.
Suppose there was a b < β such that the order of r modulo y was b. Then
1 ≡ pr ≡ (pr)b ≡ pbrb ≡ pb 6≡ 1 mod y, and we have a contradiction. Therefore,
it follows that ord(r) = β.
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Lemma 59. The element g = pirj is in M2 if and only if i ≥ α and i ≡
j mod β.

Proof. Let g = pirj ∈M2. Then pα|g, and so i ≥ α. Suppose that i ≥ j. Since
g = pirj ∈ M2, then 1 ≡ g ≡ pirj ≡ (pr)j(p)i−j ≡ (p)i−j mod y. Since the
order of p modulo y is β, it follows that i−j ≡ 0 mod β. Therefore i ≡ j mod β.
Suppose that i < j. Since g = pirj ∈ M2, then 1 ≡ g ≡ pirj ≡ (pr)i(r)j−i ≡
(r)j−i mod y. Since the order of r modulo y is β, it follows that j−i ≡ 0 mod β.
Therefore i ≡ j mod β.

Let g = pirj where i ≥ α and i ≡ j mod y. Clearly, pα|g. Since i ≡ j mod y,
there exist A,B,C ∈ N0 such that i = Aβ + C and j = Bβ + C. Therefore
pirj ≡ (pβ)A(rβ)B(pr)C ≡ 1A1B1C ≡ 1 mod y. So g ∈M2.

Lemma 60. Any element in M2 can be written as g = pirj = (pβ)u(pr)v(rβ)w

where βu+ v ≥ α and uw = 0.

Proof. Since for all pirj in the submonoid, i ≡ j mod β, it follows that there
exist u′, v′, w′ ∈ N0 such that i = βu′+v′ and j = βw′+v′. If u′ ≥ w′, then pirj

can be written as (pβ)u(pr)v(rβ)w where w = 0, u = u′−w′ and v = v′+βw′. If
u′ < w′, then pirj can be written as (pβ)u(pr)v(rβ)w where u = 0, w = w′ − u′

and v = v′ + βu′.

Lemma 61. An irreducible in M2 is one of the following:

• u = 0 and α ≤ v < 2α and w ∈ N0

• u = 1 and 0 ≤ v < α and w = 0

Proof. Let g = pirj = (pβ)u(pr)v(rβ)w where βu+ v ≥ α and uw = 0 be in the
submonoid.

Suppose u = 0, then since uw = 0, it follows that w ∈ N0. If v < α,
then g is not in the monoid since pα 6 |g. If v ≥ 2α, then g is reducible into
(pαrα)(pv−αrv+wβ−α). Consider the first factor. Clearly, i ≥ α and i ≡ j mod
β. Consider the second factor. Since v ≥ 2α, then v−α ≥ α and so i ≥ α. Also,
i ≡ j mod β. So if v ≥ 2α, then g is reducible. If α ≤ v < 2α, then suppose g
was reducible. Then since there are less than 2α copies of p, one of the factors
must have less than α copies of p and therefore not be in the monoid. So we
have a contradiction. Therefore if u = 0 and w ∈ N0, then g is irreducible if
and only if α ≤ v < 2α.

Suppose u = 1, then since uw = 0, it follows that w = 0. If v ≥ α then g
is reducible into (pβ)(pvrv) If 0 ≤ v < α, then g is irreducible. Since there are
less than α copies of r, then it is not possible to factor g where one factor has
α ≤ i < β copies of p. This is because i ≡ j mod β. So any irreducible with
α ≤ i < β copies of p requires i copies of r which are not available. Therefore,
all factors must have at least β copies of p. Since i = β + v < β + α < 2β, it
follows that g is irreducible. Therefore if u = 1 and w = 0, then g is irreducible
if and only if 0 ≤ v < α.
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Suppose u ≥ 2, then g is reducible into (pβ)u−1(pβ+vrv). It is clear that for
all factors i ≥ α and i ≡ j mod β. So if u ≥ 2 then g = pirj = (pβ)u(pr)v(rβ)w

is reducible.

Lemma 62. The shortest factorization for an element g = pirj ∈ M2 where
i = (α+ β − 1)γ + 2α− 1 and j = (α− 1)γ + 2α− 1 +mβ for some γ,m ∈ N0

is l(g) = γ + 1.

Proof. Note that the most copies of p present in any one irreducible comes from
the case where u = 1, w = 0, and v = α− 1. Therefore it is not possible for an
irreducible to have more than α+β−1 copies of p. So the shortest factorization
length comes from every factor having exactly α + β − 1 copies of p. So the
shortest length possible to factor an element of M2 is i

α+β−1 . Since the length
of factorization must be an integer, the shortest length possible to factor an
element of M2 is d i

α+β−1e.
Consider the following factorization of g:

(pα+β−1rα−1)γ(p2α−1r2α−1+mβ)

which has length γ + 1. Now, d i
α+β−1e = d (α+β−1)γ+2α−1

α+β−1 e = dγ + 2α−1
α+β−1e =

γ + 1. Therefore, there is a valid factorization with length d i
α+β−1e. So l(g) =

γ + 1.

Lemma 63. The longest factorization for an element g = pirj ∈ M2 where
i = αθ + βφ and j = αθ for some θ, φ ∈ N0 is L(g) = θ + φ.

Proof. Recall the types of irreducibles:

(i) u = 0 and α ≤ v < 2α and w ∈ N0

(ii) u = 1 and 0 ≤ v < α and w = 0.

Also, consider the following factorization of g:

(pαrα)θ(pβ)φ

which has length θ+φ. Also note that the factorization has θ type (i) irreducibles
and φ type (ii) irreducibles. Suppose a longer factorization was possible. Then
that factorization would either have to have more than θ type (i) irreducibles
or more than φ type (ii) irreducibles.

Now, note that it is not possible to have a type (i) irreducible with less
than α copies of r. Therefore the maximum number of type (i) irreducibles
is j

α = αθ
α = θ. So the longer factorization must have more than φ type (ii)

irreducibles so that the factorization length is greater than θ + φ.
Since 2α ≤ β and a type (ii) contains at least β copies of p and a type (i)

irreducible may not contain more than β copies of p, it would take at least one
type (i) irreducibles from the previous factorization to create one new type (ii)
irreducible. Therefore if the number of type (ii) irreducibles is more than φ,
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then there is an A ∈ N so that the number of type (ii) irreducibles is φ+A. And
the factorization length L̂(g) is L̂(g) ≤ (θ − A) + (φ + A) = θ + φ. Therefore
it is not possible to create a longer factorization with more than φ type (ii)
irreducibles.

Therefore the longest factorization for an element g = pirj ∈ M2 where
i = αθ + βφ and j = αθ for some θ, φ ∈ N0 is L(g) = θ + φ.

Corollary 64. The elasticity for any element g = pirj ∈ M2 where i = (α +
β − 1)γ + 2α − 1 = αθ + βφ and j = (α − 1)γ + 2α − 1 + mβ = αθ for some
γ,m, θ, φ ∈ N0 is ρ(g) = (2α−1)γ+(β−α)m+2α−1

γ+1 .

Proof. Solving the system of equations:

i = (α+ β − 1)γ + 2α− 1
i = αθ + βφ

j = (α− 1)γ + 2α− 1 +mβ

j = αθ

gives φ = γ −m and θ = γ + 2 + (1/α)(mβ − γ − 1).
By Lemma 62 the shortest factorization for an element g = pirj ∈M2 where

i = (α+ β − 1)γ + 2α− 1 and j = (α− 1)γ + 2α− 1 +mβ for some γ,m ∈ N0

is l(g) = γ + 1. Also, by Lemma 63 the longest factorization for an element
g = pirj ∈M2 where i = αθ+βφ and j = αθ for some θ, φ ∈ N0 is L(g) = θ+φ.
So ρ(g) = L(g)

l(g) = θ+φ
γ+1 = αγ+2α+mβ−γ−1+αγ−αm

γ+1 = (2α−1)γ+(β−α)m+2α−1
γ+1

Following the corollary above, we wish to show that for all rationals w
v ∈

[β
α ,

α+β−1
α ) there is an element g ∈ M2 such that ρ(g) = w

v . The first step in
proving this is to show that γ,m, θ, φ ∈ N0 for a given choice of γ and m.

Lemma 65. Given the constructions above, γ,m, θ, φ ∈ N0.

Proof. Let w
v ∈ [β

α ,
α+β−1

α ). Also let γ = (β−α)v−1 and m = αw−(2α−1)v =
α(w − 2v) + v. First we note that β ≥ 2α > α > 1. With this observation, we
examine:

γ = (β − α)v − 1

Since β ≥ 2α, (β−α) ≥ 1. Since v ∈ N, v ≥ 1. By the previous two observations,
(β − α)v > 1 which implies γ = (β − α)v − 1 > 0. Now consider,

m = αw − (2α− 1)v = α(w − 2v) + v

Since both α and v are positive integers, it suffices to show that w − 2v > 0.
Since w

v ∈ [β
α ,

α+β−1
α ), he have the following,

β

α
<
w

v
<
α+ β − 1

α
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βv < αw < v(α+ β − 1) (1)

But since β ≥ 2α > α > 1, we have,

2αv ≤ βv < αw

Thus, 2αv < αw which implies that 2v < w since α > 1. Therefore, m =
αw − (2α − 1)v > 0 as desired. From above, we know that both γ and m are
positive integers so it suffices to show that γ ≥ m to prove φ is also a positive
integer.

m = αw − (2α− 1)v
≤ v(α+ β − 1)− 1− (2α− 1)v from (1) above
= (α+ β − 1− 2α+ 1)v − 1
= (β − α)v − 1
= γ

Therefore, γ ≥ m as desired. Lastly, we show that

θ = γ + 2 + βw − 2vβ + v

is a positive integer. This is seen by noting that βw − 2vβ = β(w − 2v) ≥ 0.
Since γ, v ∈ N0, it follows that θ ∈ N0.

Lemma 66. Given m, γ and β from above, m ≤ γ ≤ βm.

Proof. We have already shown that m ≤ γ in the lemma 65 proof. Therefore,
it suffices to show that γ ≤ βm. Note that γ = βv− αv− 1 ≤ βv since 2v ≤ w,
αβ(w − 2v) ≥ 0.

γ = βv − αv − 1
≤ βv

≤ βv + αβw − 2αβv
= β(αw − v(2α− 1))
= βm

Therefore, γ ≤ βm.

Theorem 67. M2 is fully elastic on [β
α ,

α+β−1
α ).

Proof. Let w
v ∈ [β

α ,
α+β−1

α ). Consider g = pirj ∈ M2 such that i = (α + β −
1)γ + 2α− 1 and j = (α− 1)γ + 2α− 1 +mβ. Consider γ = (β − α)v − 1 and
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m = αw − (2α− 1)v = α(w − 2v) + v. So from the previous lemmas, we know

ρ(g) =
(2α− 1)γ + (β − α)m+ 2α− 1

α(γ + 1)

=
(2α− 1)((β − α)v − 1) + (β − α)(αw − (2α− 1)v) + (2α− 1)

α((β − α)v − 1 + 1)

=
(β − α)v(2α− 1)− (2α− 1) + (β − α)αw − (2α− 1)v(β − α) + (2α− 1)

α(β − α)v

=
α(β − α)w
α(β − α)v

=
w

v

Therefore M2 is fully elastic on [β
α ,

α+β−1
α ), as desired.

Theorem 68. Mxpα,ypα where the ord(p)
2 ≥ α is fully elastic.

Proof. Recall that the elasticity of the monoid is α+β−1
α . Also, by Theorem 57,

M1 is fully elastic on [1, α
β ). By Theorem 67, M2 is fully elastic on [β

α ,
α+β−1

α ).

Therefore, Mxpα,ypα where the ord(p)
2 ≥ α is fully elastic.

8 Conclusion

The question of whether or not a local singular ACM is fully elastic has proven to
be a very difficult. To construct elements such that every elasicity in the interval
[1, ρ(M)) is a very complex problem. In an attempt to simplify the problem, we
considered submonoids. Some monoids were fully elastic on the entire interval,
and some were fully elastic on only parts of the interval. Other submonoids
were restrictive in such a way that not all fractions in any interval were met.
The submonoid that seemed to be the most helpful in determining full elasticity
was when Mxpα,ypα ∩{pi, qk : q ≡ x mod y, q prime, and i, k ∈ N0}. The benefit
to a submonoid was that the prime factorization of any element included only
two primes. This avoided complicated interactions between different congruence
classes.

Another difficulty that this problem presented was that in general, it is very
difficult to classify what is and is not an element in the submonoid. We were
able to establish a transfer homomorphism between the submonoid and a subset
of N2

0 when the units of y were isomorphic to a cyclic group. This enabled us
to classify which elements were and were not in the monoid effectively and
efficiently. The goal was to use this transfer homomorphism to help classify
irreducibles in general, and hopefully find a submonoid which was fully elastic
on an interval. If different submonoids are fully elastic on different intervals,
and those intervals overlap, then the monoid is fully elastic.
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We were able to show that many monoids are fully elastic. First, Mxp,yp is
fully elastic. Also Mxpα,ypα where the order of p modulo y is 2 is fully elastic if
and only if x > 1 or α = 2. We were also able to show that Mxp2,21p2 is fully
elastic if and only if the order of p modulo y is not equal to 1. Also, we were
able to show that Mxpα,ypα with α ≤ ord(p)

2 has a submonoid that is fully elastic
on [1, α+β−1

α ) We also have some partial results. For example, we were able to
establish a transfer homomorphism between a submonoid and a subset of N2

0

when the units of y were cyclic. This should lead to some results regarding
full elasticity since all classifications of what is and is not in the monoid are
determined. Overall, we are pleased with the results from our research.
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