ON THE ACCEPTED ELASTICITY OF ARTITHMETIC
CONGRUENCE MONOIDS

1. PRELIMINARIES

1.1. ACMs. An Arithmetic Congruence Monoid (ACM) is a monoid of the form
M(a,b) :={1} u (a +bNy) = {1,a,a + b,a + 2b,a + 3b, ...}

where a,b are integers with 0 < @ < b and a? = a (mod b). This last condition
ensures that M(a,b) is closed under multiplication, and hence is a monoid.

Let r € M(a,b). We say that r is irreducible if, whenever there are elements
s,t € M(a,b) such that r = st, either s = 1 or ¢t = 1. All elements of M (a,b), other
than 1, can be factored into irreducibles, but this factorization is not necessarily
unique.

Given a factorization of r into irreducibles, we call the number of irreducibles in
this factorization the length of the factorization. We define the length set of r to
be

£(r) :={n € N | 3 irreducibles ay, ..., a, € M(a,b) such that r = (a1) --- (an)},

and the elasticity of r to be

max£(r)
ming(r)

p(r) =
The elasticity of the monoid is defined as

p(M(a, b)) = sup{p(r) | r € M(a,b)},

and we say that the elasticity of the monoid is accepted if there is some r € M (a, b)
such that p(r) = p(M(a,b)).

This paper attempts to classify which ACMs have accepted elasticity and which
do not. There are three mutually exclusive types of ACMs: regular, global, and
local. An ACM is regular if ged(a,b) = 1. Regular ACMs always have accepted
elasticity, by theorem 3.4 of [1] for details. An ACM is global if ged(a,d) is not a
power of a prime. Global ACMs have infinite elasticity, hence they do not have
accepted elasticity. An ACM is local if ged(a, b) is a power of a prime, other than
1. Some local ACMs have accepted elasticities while others do not. We narrow our
focus to only consider local ACMs.

For the remainder of this paper, let p be a prime number, « € N, and z, y € N with
0<z<y,ged(z,y) =1, and (p®x)? = p®z (mod p*y). Define M := M (p®z, p®y).
We will also define 3 to be the least positive integer such that p® € M through the
rest of the paper. Given p, , x, and y, we wish to determine whether or not M has
accepted elasticity.
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1.2. Multisets. This paper uses the notion of a multiset, which is essentially a set
which may contain (finitely many) multiple copies of the same element. Formally,
it is a pairing (A, u) of a set A and a map u : A — N, where the multiplicity of
each element of A in the multiset is its image under p. We say that (A, p) is finite

if Ais finite. If A = {aq, ao, ...}, we can denote (A, u) by {{a’f(al),ag(m), }}, or by

a1y ...,A1 5, A2, ...,A2 , ...

—_— —

plar) times p(az) times
We say that (A1, p1) is a submultiset of (Ag, o), and write (Aq, pu1) € (Asg, po) if
Ay © As and, for all a € Ay, p1(a) < pa(a). The union (Aq, p1) U (As, pe) is defined
as (A1 U As, 1), where 7(a) = p1(a) if a € Ay — As, 7(a) = pa(a) if a € Az — Ay,
and 7(a) = p1(a) + po(a) if a € Ay N As.

Let S = {g7"",...,g} be a finite multiset of elements in an additive (resp.

multiplicative) group G. We let >, S (resp. | [ S) denote the sum > | m; - g; (resp.
the product | [\, ¢/"?) in G.

Notice that
DIAUB) =) A+)'B

Definition 1.2.1. Let S = {g7",...,g""} be a multiset of elements from an ad-
ditive (resp. multiplicative) group G, and let h € G. We say that h is an internal
sum (resp. internal product) of S if 3 a submultiset R € S such that >R = h
(resp. |[[R =h).
1.3. Machinery.

Definition 1.3.1. Let G be a finite abelian group, g € G, and k € Z~q. Define
B(G, g, k) to be the least multiple of ordg(g) that is at least k.

Lemma 1.3.1. 3 = 3(Zy,[p], ).

Proof. We must show that p® (Zy:[p):2) ig the least positive power of p contained in
M. To see this, we will use the fact, from lemma 4.1 of [1], that M = M (p®,p*) n
M(1,y). Notice that, if m is a positive integer, then p™ € M (p®,p%) < m = q,
and p™ € M(1,y) <= ordy(p) | m. Hence p™ € M iff m > a and ord,(p) | m.
Since B(Z;;, [p]; @) is the least multiple of ord,(p) that is at least a, pﬁ(ZJ’[T’]’O‘) is
the least positive power of p contained in M. Thus 8 = B(Z,, [p], ). |

Definition 1.3.2. Let G be a finite abelian group, g € G, and k € Z~y. We say
that the triple (G, g, k) is accepted if there exist positive integers e, f and multisets
Ai, .. A, Bi, ..., By of elements of G such that

(1) U?:l Ai = U{:l B;
(2) for j=1,..,e, Aj has no internal product in {g, g%, ...7gﬁ(G’g’k)_k}
(3) forj=1,...e, [[A; =g*7*
(4) fOTj = ]-(7 "'7f); HBJ = giky and

f _ k+B(G,g,k)—1
(5) 1 = £rBCl1L.
Otherwise, we say that (G,g,k) is not accepted.

From lemma 4.1 of [1], we know that p } y. Therefore, using square brackets to

denote equivalence classes modulo y, we have that [p] € Z,;. We can now state the
theorem that gives meaning to the above definition:
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Theorem 1.3.1 (Equivalence Theorem). M has accepted elasticity iff (Z;, [p], a)
is accepted.

Proof. Let r be an irreducible in M. We claim that a < v,(r) < a+ 8 — 1.
Since r € M(p®,p®), o < v,(r), proving the first inequality. To prove the second
inequality, assume that v,(r) = o + 8, and let 7 = p**#q for some integer g. Then
p? =p**Pg =1 (mod y) since p?,p**Pqg e M. Hence p*¢g = 1 (mod %), and thus
p®q € M. But then 7 = (p®)(p®q), contradicting the irreducibility of r. Therefore,
a < vp(r) < o+ — 1. Define an A-atom to be an irreducible in M with a p-adic
valuation of a+ 3 — 1, and define a B-atom to be an irreducible in M with a p-adic
valuation of a.

Now, let s be an element of M. Since each irreducible factor of s has p-adic
valuation of at least «, there are at most |v,(s)/a| irreducibles in a factorization
of s. And since each irreducible factor of s can have p-adic valuation of at most
a+ 3 —1, there are at least [v,(s)/(« + 8 — 1)] irreducibles in a factorization of s.

Thus
() 1o [us)
29 [ 200 ] << |2},
and
vp(s) v, (s
| 22| o) 11
PSS o = o
[oHrBfl‘I a+pB—1

For the first inequality, equality holds iff there are factorizations of lengths |v,(s)/a]
and [v,(s)/(ac + 8 — 1)]. For the second inequality, equality holds iff v,(s)/o and
vp(s)/(a+ B —1) are integers. Thus overall equality holds if there are factorizations
of lengths v, (s)/a and v,(s)/(a+B—1). The former occurs iff there is a factorization
of s into all B-atoms and the latter iff there is a factorization of s into all A-atoms.
Thus p(s) = (a+8—1)/a iff s has a factorization into all A-atoms and a factorization
into all B-atoms.

From Theorem 2.4 of [2], we know that p(M) = (a + 8 — 1)/a. Therefore, M
has accepted elasticity iff there exists s € M such that s has a factorization into all
A-atoms and all B-atoms.

Hence, the statement of this theorem is equivalent to the following: M contains
an element which has a factorization into all A-atoms and a factorization into all
B-atoms iff there exist positive integers e, f and multisets Ay, ..., Ac, By, ..., By of
elements of Z, such that

la) iy Ai = sz:1 B
2a) for j =1,...,e, A; has no internal product in {[p]7 [p]?, ... [p]ﬂ_a}
3a) for j =1,...e, [[Aj = [p]' ™
4a) for j =1,..., f, [1B; = [p]~*, and
ba) fle=(a+ B —1)/a.
We will prove this equivalent statement:
(=) Assume that Is € M such that s has a factorization s = (A;) -+ (A.) into
A-atoms and s = (By)---(By) into B-atoms. For each i=1,...,e, let A; have the
prime factorization Ai:po‘+'6_1(q¥)) e (qﬁ,ﬁ) over the natural numbers. Since each

A; is a unit mod y, so is each qj(-i)

1€ {l,....e} and j € {1,...,m;}. Define the multisets A; = {{[agi)],..., [a%{]}} for

(
(
(
(
(

, S0 let [ag-i)] denote the class of q](.i) in Zj; for all
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i =1,...,e. Similarly, define the multisets B; = {{ [bgi)], o [bﬁf}]}} where [b( )] is the
equivalence class of T’J(»Z) in Z) and B; = pa(rgl)) (r,(Z)) is the prime factorization
of B; over the natural numbers. We will show that these integers and multisets
satisfy conditions (1a)-(5a).

From the fundamental theorem of number theory, we know that s has a unique
prime factorization over the natural numbers, hence the two prime factorizations

(A1) (Ac) = prlot? HH%

and
fone
(Bl)"'(Bf)=pfaHH7“§-l)

are the same. Each prime factorization has the same number of p’s, hence e(a +
8 —1) = fa, so condition (5a) holds. Furthermore, each prime factorization has
the same primes when excluding p’s, thus

g

QU} - Q0 =

JU

i=17=1 %

o
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so condition (1a) holds.
Notice that, for i =1,...,¢e,

_ lﬁ q@]
= (A

= [

since A; = p® =1 (mod y). Therefore, condition (3a) holds. A similar argument
proves condition (4a).

We will show that condition (2a) holds by contradiction. Assume that for
some j € {1,...e}, 3S < A; such that [[S € {[p],[p]? ..., [p]°~®}. Say S =
{{[a%)], . ,[ayz)]}}, and [[S = [p]” for some vy € {1,...,8 —a}. Let g = q](-? . --q](-i)
and h = (¢\V---¢{?)/g. Then [g] = [p]”. Furthermore, A; = p*+5-lgh =
(pﬁ_“fg)(p7+“ 1h) Since 1 < v < 8 — a, we know that v,(p?~7g) = -7 > a and
vp (P77 h) = y+a—1 = a. We also know that [p®~7g] = [p]?[p]” = [p?] = [1],
and [p?To1h] = [A;]/[p®7g] = [1]. Therefore, A; = (p°~7g)(p?"*"'h) is a fac-
torization in M, contradicting the irreducibility of A;. Hence condition (2a) holds.



ON THE ACCEPTED ELASTICITY OF ARTITHMETIC CONGRUENCE MONOIDS 5

(<) Now assume that there are integers e, f and multisets Aq, ..., Ae, B, ..., By
of elements of Z,* which satisfy conditions (1a)-(5a). Let

A = {{laf?). - T2 1
Bi= {1, 1}

for i=1,...,f. Define qj(l), gl) to be the least prime natural number belonging to the

equivalence classes [a§ )], [b§ )], respectively. Notice that these primes necessarily
exist by Dirichlet’s theorem. Define 4; = p“*ﬁ’lqgi) . qfﬁ) for i = 1,...,e and
B-—pr(l) ()forz—l 7f.

Notice that, for i =1,.

for i=1,...,e and

[A] = [P g g
= [p] al ]--[as:g]
= I [[A =1

so A; = 1 (mod y). By a similar argument, B; = 1 (mod y) for i = 1,..., f.
Furthermore, since each A; and each B; has a p-adic valuation of at least «, they
are elements of M. Furthermore, conditions (la) and (5a) together ensure that
Ay---Ae = By--- By. Call this product s. It suffices to show that each A; and
each B; is irreducible, for then s € M would have a factorization into all A-atoms
and a factorization into all B-atoms.

Since any element of M with p-adic valuation less than 2« is irreducible, each
B, is irreducible. Assume that there is some k € {1, ..., e} such that Ay is reducible,
and say that A, = (p7g)(p*+tP~77'h) is a factorization in M. Pick a set of indices

{i1,.eyi,} = {1,...,my} such that g = qf ). ,and let § = {{[ (k)],...7 [a(k)]}}.

z iz

Then [[S = [a{¥]- --[a§f>] = ¢ q§f>] [p—7] since [A;] = [1]. Because
the two factors are in M, v > o« and a + 8 — v —1 = «, yielding a < 7 <
B —1. Therefore [[S = [p~] € {[p], [P]% -, [p]’~}, contradicting condition (2a).
Therefore each A; is irreducible. Hence s € M has a factorization into all A-atoms

and a factorization into all B-atoms, completing the proof. O

Theorem 1.3.2 (Isomorphism Theorem). Suppose v : G — H is an isomorphism
of finite abelian groups. Then (G, g,k) is accepted iff (H,¥(g), k) is accepted.

Proof. Suppose (G, g, k) is accepted. Then there exist positive integers e, f and
multisets Ay, ..., Ae, B1, ..., By of elements in G which satisfy conditions (1)-(5) from
the definition of an accepted triple. Let A% be the image of A; under ¢ fori =1, ...;e
and B; the image of B; under ¢ for i = 1, ..., f. We wish to show that the integers
e, [ and multisets A1, ..., A, By, ..., B satisfy

) Ui A =UL, B

(2') forj = 1,...,e, A} has no internal product in {w(g), ¥(g)?, ...,w(g)ﬁ(H*w(g)*k)’k}
(3" for j=1,...e, [[ A} =9(g)' "

(4) for j =1, £, [| B, = (g) ", and

(5) fle=(k+B(H,¥(g), k) —1)/k.
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Since ordg (¥ (g)) = ordg(g), we have B(H,v¥(g),k) = B(G, g, k). Hence condition
(5") holds. Conditions (2'), (3'), and (4’) also hold because isomorphisms preserve
the group operation. Finally, because | J A} and | J B} are images of | J A; and | B;,
respectively, under 1 (since we are looking at the union of multisets, not just sets),
condition (1’) holds as well. Therefore, (H,v(g), k) is accepted.

Now, suppose (H,(g), k) is accepted. Because 1~ : H — G is an isomorphism,
we can apply the argument in the preceeding paragraph to see that if (H,(g), k)
is accepted, then (G, g, k) is accepted. Thus (G, g, k) is accepted iff (H,1(g), k) is
accepted. (Il

Theorem 1.3.3 (Reduction Theorem). Suppose G is a finite abelian group and H
is a subgroup, with h € H. If (H, h, k) is accepted, then (G, h,k) is accepted.

Proof. Suppose (H,h,k) is accepted, and let positive integers e, f and multisets
Ai, .., Ae, Bi, ..., By of elements of H satisfy conditions (1)-(5). Because ordg(h)
= ordg(h), it is clear that the integers e, f and the multisets A4, ..., A¢, Bi, ..., By,
when viewed as multisets of elements of G, still satisfy conditions (1)-(5). Thus
(G, h, k) is accepted. O

Definition 1.3.3. Let G be a finite abelian group, g € G, and k € N. We
say that (G,g,k) is overaccepted if there exist positive integers e, f and multisets
Ai, .., Ae, Bi, ..., By of elements of G which satisfy conditions (1)-(4) from the def-
inition of an accepted triple, but also satisfy

= k+B8(G,g,k)—1
() £> ( 9 )

Theorem 1.3.4. (G, g, k) is overaccepted if and only if (G, g,k) is accepted.

Proof. The if statement is trivial, so we begin proving the only if statement. Sup-
pose (G, g, k) is overaccepted. Then there exist positive integers e, f and multisets
Aty .oy Ae, Bi, ..., By of elements of G which satisfy conditions (1)-(4) and (5).

Define ek multisets A; ; for i =1,...,e and j = 1,..., k, so that A; ;=A;. Define
fk multisets B; ; for i« = 1,...,f and j = 1,...,k so that B; ; = B;. Define fk
multisets S; for i = 1,..., fk so that Sj;_1)pep =Bjrfor j=1,... . fandk=1,.. k
(that is, the multisets S; are just a way of ordering the multisets B; ; in one list).
Since f/e = (k + B(G,g,k) — 1)/k, we have fk = e(k + 8(G,g,k) — 1). So we
can define e(k + 5(G, g, k) — 1) multisets B, ..., Bé( so that B} = S, for
i=1,..,e(k+p(G,g,k)—1)—1, and

k+B(G,g,k)—1)

fk

/ — .
B p(cgh)-1) = U Si-
i=e(k+B(G,g9,k)—1)

We wish to show that conditions (1)-(5) hold for the positive integers ek and e(k +
B(G, g,k) — 1) and the multisets A; ; and B;.
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Notice that

e(k+5(G,g,k)—1) e(k+h(Grg.k)—1)=1
B, = Bi|v B;(k+/3(G,g,k)—1)
i=1 =1
e(k+B8(G,g,k)—1)—1 [k
= U Sl V) U Sl
i=1 i=e(k+B(G,g9,k)—1)

- Us=00a -0y

hence condition (1) holds.
Conditions (2) and (3) follow directly from the fact that A; ; = A;. For i =
,e(k+B(G,g,k)—1)—1, B, = S, is equal to By, for some k = 1, ..., f, and hence
HB’ = g~*. Now we must consider Bl (g k)1

[T <n 5))
H (7€1+5(G>q, (H BY)
I (U £k+ﬁ(G g,k)—1) B/)

(gfk) e(k+B(G,g,k)—1)—1

k e
[1 (Uj:l Ui:l Ai,j)

= PR (recall gB(G’g’k) =1)
g*@ €

15 T, (TT A

gfeszrekJrk
(gkk)ek
gfek2+ek+k

= g%

hence condition (4) holds. Condition (5) holds trivially, concluding the proof. O

[ 1B wrsgm-1

Throughout the paper, we will also come across the following definition:

Definition 1.3.4. Fizx a finite abelian group G and an element g € G. If there
exists n such that for all n' = n, (G, g,n') is accepted, then define w(G,g) to be
the minimum such positive n. Otherwise, define w(G,g) = 0. Given an ACM M,
define w(M) = w(Z,, [p])-

2. GENERAL
1. Case z = 1.
Lemma 2.1.1. If ordg(g) | k then (G, g, k) is accepted.

Proof. Suppose ordg(g) | k. Then ¢g¥ = 15 and B(G, g,k) = k. So it suffices to
find & multisets Ay, ..., A and 2k — 1 multisets By, ..., Box_1 such that

1b Uz l‘A UQk 1
(2b) fori=1,. k]_[A =g, and
(3b) fori=1,..2k—1,[[Bi = 1c.
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(Notice that condition (2) from the definition of an accepted triple vanishes because
the set {g, 4>, ..., g?@9F)~F1 is empty when B(G,g,k) = k, and condition (5) is
trivially true.)

Let Ay = ... = A, = {g}, let By = {{gk}}, and let By = ... = Bop_1 = &. Then
one can easily see that these satisfy conditions (1b)-(3b), completing the proof. O

Theorem 2.1.1. Let 3 be the least positive integer such that p® € M. The following
are equivalent:

(i) v =1
(i) a =B
(iii) p* =1 (mod y)
(iv) p(M) <2
Furthermore, if (i) - (iv) are true, then M has accepted elasticity.

Proof. (1 =>1ii) If x = 1, then p® is the least element of M other than 1. Hence
8 =a.

(ii = iii) If @ = B, then p® € M, hence p* =1 (mod y).

(iii = i) Assume p® =1 (mod y). We also know that p®z € M, hence p*z =1
(mod y). Since ged(p®z,y)=1, we have x = 1 (mod y). Since 0 < = < y, we have
rz =1

(ii &< iv) From theorem 2.4 of [2], we know that p(M) = (o + 8 —1)/a. Since
p® divides all elements of M, p® | p?, hence o < 3. Thus p(M) <2 < a = 3.

Thus statements (i)-(iv) are equivalent.

Now, assume that (i)-(iv) are true. Then, from lemma 2.1.1 combined with the
equivalence theorem, M has accepted elasticity. ([

2.2. Varying «.

Theorem 2.2.1. If (G, g, k) is accepted, then (G, g,k +morda(g)) is accepted for
any positive integer m.

Proof. From lemma 2.1.1, the theorem holds if & | ordg(g). So assume other-
wise. Suppose (G, g, k) is accepted. Then there exists integers e, f and multisets
A, .., Ae, Bi, ..., By of elements of G satisfying conditions (1)-(5) from the defini-
tion of an accepted triple.

We claim that (G, g, k+m ordg(g)) is overaccepted, and that the positive integers
e, f and multisets Ay, ..., A¢, B1, ..., B satisty the conditions for over acceptance:
(1") Uf:l Ai = szzl B;
(2") for j =1,...,e, A; has no internal product in

{97927 ._.7gﬂ(G,g,k+mordc(g))—(k+m ordc(g))}

(3") for j = 1,...,e, [[ Aj = g'—(ktmorda(g))
4"y forj=1,..f, []B; = g~ (ktmorda(9)) and

(57) 1 5 et onda(a)+A(C.guk4m orda ()1
e (k+morda(g)) :

Suppose that 8(G,g,k) = r ordg(g) # k. Then (r — 1) ordg(g) < k < r
ordg(g) =

A\

(r+m—1)ordg(g) < k +mordg(g) < (r+m)orda(g),
so B(G, g,k +m ordg(g)) = (r + m) ordg(g). Thus
B(G,g,k) —k =rordg(g) — k = B(G, g,k + mordg(g)) — (k +morda(g)).
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Hence condition (2”) follows immediately from the acceptance of (G, g, k).
It is also clear that (17),(3”), and (4”) also follow directly from the acceptance
of (G, g,k). To see that (5”) holds, notice that

k +ﬁ(G7g7 k) -1 (k +’ITLOI‘dG(g)) +ﬂ(Gvg7k + mordg(g)) -1

>
k - k +mordg(g) =
k+rordg(g) — 1 < (k+morda(g)) + (r + m)ordg(g) — 1
k - k + morda(g)
rordg(g) — 1 (r+m)ordg(g) — 1
>
k - k +morda(g) =
(rordg(g) —1)(k+morda(g)) = ((r+m)orda(g) — 1)k <
(rordg(g) —1)mordg(g) = mordg(g)k <
rordg(g) —1 = Kk,
which is true because r ordg(g) > k and both sides are integers. (]

Theorem 2.2.2. If (G, g,1) is accepted, then (G, g, k) is accepted for any positive
integer k.

Proof. Suppose (G, g,1) is accepted. Then, by definition, e, f € N and multisets
Ay, .., Ae, Bi, ..., By of elements of G such that

(1c) Uiz A = UL B;

(2c) for j =1,...,e, A; has no internal product in {g, g2, ..., g°*de(9)~1}
(3c) for j=1,...,¢e, [[ A; = 1 (the identity)

(4c) for j=1,..,f, [IB; =g !, and

(5¢) f/e = ordg(g),

since (G, g,1) = ordg(g).

By theorem 2.2.1, it suffices to only consider 1 < k < ordg(g). Then (G, g, k) =
ordg(g). Fori=1,....e,j =1,...k, define A; ; = A; u {(g~)* 1} (that is, the
single element g~ ! with multiplicity k—1). For i = 1, ..., f, define B = Ule B; (the
union of k copies of B;), and for i = f +1,..., f + e(k — 1), define B, = { (g~ 1) }.
Then it suffices to show that

(1d) Uiz, U§=1 Ay = Ul B

(2d) fori=1,...,e,j=1,...,k, A;; has no internal product in {g,gz7 ...,gordc(g)_k}
(3d) fori=1,..,e,5=1,...k [[Ai; =g

(4d) fori=1,...f+e(k—1),[[B. =g *, and

(5d) (f +e(k—1))/(ek) = (k +orda(g) —1)/k.
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Observe that
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f+e(k—1)
= B,
1=1

hence condition (1d) holds.

Next, we will show that (2d) holds by contradiction. Assume that (2d) does not
hold. Then for some ¢ € {1,...,e} and j € {1,...k}, there exists S © A, ; such that
[1S € {g,9% ..., 9?49k} So let [[S = ¢° for § € {1,...,ordg(g) — k}. Since
Aij=A0{(g7H)* DL, we can write S = S’ U {{(g71)} for some S’ = A; and
some v € {0, ...,k — 1}. Since [[S =[[S'T[ {(g71)}, we have

[1s = TIs([T{un))
(¢°) (97)

+4
g’

However, since 1 < v+ ¢ < ordg(g) — 1, this contradicts condition (2¢). Therefore
condition (2d) holds.
To see that condition (3d) holds, notice that

H.Ai,j = H (Ai v {{(g_l)(k_l)}})
[T o)

=g

by (3c¢).
To see that condition (4d) holds, notice that for i =1, ..., f,
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by (4¢), and, for i = f+1,..., f + e(k — 1),

[T5- T ({e ™)) -

Finally, notice that (f + e(k — 1))/(ek) = (eordg(g) + e(k — 1))/(ek) = (k +
ordg(g) — 1)/k. Hence condition (5d) holds, completing the proof. O

3. CycLic UNIT GROUP

3.1. Case d < c. In this section, we will assume Z; is cyclic. Define d := ord,(p)
and ¢ := ¢(y)/d. We will also define @ to be the residue of @ modulo d contained
in {1,2,...,d}.

Theorem 3.1.1. M has accepted elasticity iff (Z.q,{c), ) is accepted.

Proof. From the equivalence theorem, we know that M has accepted elasticity iff
(Z;,[p], @) is accepted. Then, from the isomorphism theorem, it suffices to show
that there exists an isomorphism v : Z; — Zcq such that ¢ ([p]) = {c).

Let [g] be a generator of Z), and let [p] = [¢]*. The order of [¢g] modulo y
is ¢(y) = cd, and the order of [p] modulo y is d. Then [g]*¢ = [p]¢ = [1]] =
cd | kd = ¢ | k. Solet k = em. Let b = ged(m,d). Then [p]¥® = [g]°™/* =
[1] = d | d/b = b= ged(m,d) = 1. Let the prime factorization of ¢ be
Pt pSegit - q,{‘, where each p; divides d and each g; does not divide d. Let ¢; =
pit---pSe and let ¢o = q{l ---q,{t. Then ¢ = ¢1co and ged(cr, m) = ged(co,d) = 1.
Choose n such that nd = 1—m (mod ¢3). Let [h] = [g]™T"4. Then ged(m +nd, d)
= ged(m, d) = 1. This also tells us that ged(m+nd, ¢;)=1. Furthermore, m+nd = 1
(mod ¢2), so ged(m + nd, co) = 1. Hence ged(m + nd, cd)=1. Therefore, if [h]" =
[g]"(m+7d) = [1], then cd | 7(m+4nd) = cd | r. Hence the order of [h] must equal
cd, and [h] is a generator of Z, . Furthermore, [h]® = [g]ctmtnd) = [g]°™ = [p].
Thus, if ¢ takes [h] to (1), then 4 is an isomorphism taking [p] to {c). O

Theorem 3.1.2. If ordy,(p) < A/¢(y) then M has accepted elasticity.

Proof. The condition that ord,(p) < +/¢(y) is equivalent to saying d < c¢. From
theorem 3.1.1 and theorem 2.2.2, it suffices to show that (Z.q,{c), 1) is accepted.

Forj =1,...d, let A; = {1 — je)D, (je — 1)} containing d copies of (1— jc)
and d copies of (je — 1). Also let

Bi=..=8B; = {{-1),{d-0¢)}
Bd+1 =..=Byy = g<—1 + C>,<1 — 20>}
Baas1 = ... =Bsa = {(=1+2¢),{1-3c)}
Bia-1yar1 = . =B = {{(-1+(d—-1)c),{1—dc)}
Then > A; = {0) for each A; and >, B; = {—c) for each B;. Also,
d d d d?
- (fla-soho Qfoe-o} - G

Furthermore, 5(Zcq,{c),1) = ord({c)) = d. Therefore, conditions (1), (3), (4), and
(5) of the definition of an accepted triple are satisfied.
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All that remains is to prove, for any j = 1, ...,d, that A; has no internal sum in
{{c),{2¢), ...,{(d—1)c)}. Any submultiset of A; is of the form {{1 — o) Ge—1H® %
with s, < d < ¢. This submultiset has a sum of {1 — je) + t(je — 1) =
{Je(t—s)+(s—t)). Thus, if this internal sum were to be in {{c),(2¢), ...,{(d—1)c)},
then we would have ¢ | s —t. But since s,t are nonegative and less than ¢, we
have s —t = 0, so {{1 — jco)®), je — 1)} would have a sum of 0. Thus A; has no
internal sum in {{¢),{2¢),...,{(d — 1)cy}, and (Z.q,{c),1) is accepted, completing
the proof. a

3.2. ¢ and d Relatively Prime.

Theorem 3.2.1. If ¢ and d are relatively prime, then M has accepted elasticity iff
(Ze x Z4,0,1), ) is accepted.

Proof. From 3.1.1 and the isomorphism theorem, it suffices to show that there is
an isomorphism from Z.q to Z. x Z4 taking {cy to {0,1). The chinese remainder
theorem tells us that the map ¢ : Z.g — Z. x Zq defined by (n) — {(n,n) is
an isomorphism. Let ¢’ be an integer such that ¢¢’ = 1 (mod d). Then the map
7T Le X Lg — ZLe % ZLq defined by {s,t) — {s,c't) is an automorphism, since it
has the inverse 71 : {(s,t) = {(s,ct). Thus the map 7 0t : Z.qg — Zc x Zq is an
isomorphism taking {¢) to {c,cc’y = {0, 1). O

Lemma 3.2.1. If ged(c,d) = 1, a < d and d < ac — «, then M has accepted
elasticity.

Proof.
d < ac—a
d < ca—a+1
a+d—2 < ca-—1
ad—a+d>—2d+1 < cdoa—d—a+1
a+d-1 - cdao—d—a+1

e a(d—1)

We will show that Z. x Z4,{0,1), « is overaccepted by showing that there are
positive integers e, f and multisets Ay, ..., Ae, Bi, ..., By which satisfy conditions

(1)-(4) and, additionally, f/e can be arbitrarily close to %17_’1”;“. This will
ensure that condition (5) will hold.
Let n be any nonnegative integer. Let k be a positive integer such that kc—d+1 >

0. Define
A= =Migamye = LD 0, - Y

A2,1 [ A2,a — {{<170>(C(C—1)kn)7<07 _1>(a_1)}}
Bii=-=Biae-1n@-nn = §{=1,-a),<1,0>}
Boji= =Bog(eyn = {<La>(d—1)7 <1,0>(kc—d+1)}}
B3 =+ = B3 @-1)[1+d=1)n] = {{(0, —1>(a) }}

Then we have

U4-Us-
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{{<_1, _a>(5(c71)(d71)n)7<1,a>(5(c71)(d71)n)7<07 _1>(5(571)[1+(d71)n])’ <1,0>(ac((;71)k'n)}}7

so condition (1) holds.

We will show that condition (2) holds by contradiction. Assume that A;; has an
internal sum in {0, 1),...,<0,d — a)}. Then there is a submultiset S < A;; such that
3.8 =<0,7) for some v € {1, ...,d — a}. S must be of the form

{{<_17 _a>(m1)7<1’ a>(m2)7 <O7 _1>(m3)}}

where m1, ma, m3 € Z=o0, mi1,m2 < c— 1, and ms < a— 1. Looking at the first coordinate
of 3§ yields ma —mi = 0 (mod ¢), and the restrictions on m; and mg yield m; = mao.
Hence >, S =0, —ma) € {{0,1),...,{0,d — a}, and therefore ms > «, contradiction.

Now assume that As; has an internal sum of {0,~) for some v € {1,...,d — a}. Then
there is some submultiset S € B,; such that > S =<0,v). S must be of the form

ECUSERUESMES

Here ma < a — 1. But looking at the second coordinate of Y S yields ms > «, contradic-
tion. Therefore, condition (2) holds.

It is straightforward to check that conditions (3) and (4) also hold. Finally, we will
show that as n gets large, f/e approaches ¢42=4=a+l VYo have

a(d—1)
;o _ (ale=1(d=1n) + (afc=n) + ((a = D[1 + (d — 1)n])
e (a(d—1)n) + («)
. alfc—1)(d—-1)+alc—1)+ (a—1)(d—1)
a(d—1)
_cda—d—a+1
B a(d—1)
as n approaches infinity. This completes the proof. O

Theorem 3.2.2. If ged(c,d) = 1 and @ > %, then M has accepted elasticity.

Proof. From theorem 2.2.1, it suffices to assume that % <a<d Then g=d If
c =1, then a = d and we can apply theorem 2.1.1, so assume ¢ > 2. From the
above lemma, we know that the elasticity is accepted when d < ac — a, so assume
ac—a < d < ac. But since ¢ = 2, and ged(e,d) = 1, d # ac. Thus d = ac — w for
some w € {1,...,a — 1}. From theorem 3.2.1 and theorem 1.3.4, it suffices to show
that (Z. x Z4,{0,1), ) is overaccepted in these cases.

Let’s first examine the case where d = ac — (o — 1). This means that
atac (a7l — ¢ Choose n € Zso and define e = an + (o — 1) + 1, f = an(2c —
1)+n+(a—1), and

a+p—-1 _
«

A = {0, -1)*71 (~1,0)*"}

Ag1 = =As01 = {{0,1—-0a),{(~1,0>"}
A= =U30n = {,—a)* 7" 1, -D}
Bii=-=Bia1 = {0,-1),0,1—-0a)}
Bai=:=Byan@e—1y = {{1,—a),{~1,0p}
Byi=-=Bs, = {{1,-1)%(-1,0)"}

To see that condition (1) holds, notice

JAa=JB

= {0, =170, 1 = @y (=1,007%, (1, —ay e 1, — 1 )
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Next we will show that condition (2) holds. Notice that for Ay, the second
component of any internal sum will always be between 0 and —(« — 1), and hence
can never be in {{0,1),...,<0,d — a)}. The same is true for each Az ,.

We will use two cases of proof by contradiction to prove that condition (2) holds
for each As;. Assume that 3S < As; such that ;S € {(0,1),...,{0,d — a)}. For
Case 1, say S = {{1,—a)*}, and that }S = {0,r), where 1 < r < d — . This
summation gives the relationship s{1, —a) = <0,r) meaning that s = 0 (mod c)
and —sa = r (mod d), where 0 < s < 2¢ — 1. The first congruence yields s = 0 or
s = c. We know that s # 0 because then 0 = r (mod d) and that contradicts the
bound of r. If s = ¢ then

ZS = {c,—acy
= {,—ac+ac—(a—1))
= <C, 1- Oé>
‘We now have the second component of the order pair as 1 — «, which contradicts
the bound of r. So therefore case 1 holds.
For case 2 say S = {{1, —a)®,{1,—1)}, and that > S = <0,r), where 1 < r <
d — . Here, the summation gives the relationship s(1,—a) + {1,—1) = <0,7)
meaning
s+1=0 (modc¢)=s=-1 (modc)
and
—sa—1=r (mod d).
The first congruence yields s = ¢ — 1 or s = 2¢ — 1. By plugging in the values of s
into the second congruence, we have
—ac+a—1=r (modd) = —(a—1)+a—1=r (modd)
0=7r (mod d)

y

or
—2ac+a—1=r (modd) = —-2(a—1)4+a—1=r (modd)
= —2a+24+a—-1=r (modd)
= —a+1l=r (modd).
Here we use the fact that ac = a—1 (mod d) because d | ac—(a—1). Furthermore,
since « > 1, both of these congruences are outside the range of 1 <r < d— a. As

a result, case 2 holds. We have thus proven that condition (2) is true.
To see that condition (3) holds as true, notice that

DA (a —1){0, =1 + (2en){~1,0)
= (=2cn,1—-a)
= (0,1—-c)

and

DiAri = {0,1—a)+ (2en)(~1,0)
{(—=2cn,1 —a)
0,1 —a)
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and
ZAB,i = (2c— 1)1, —a)+{1,-1)
= (2¢,—2ca+a—1)
= {2¢,-2(a-1)+a—-1)
= (0,1 — ).

Similarly, condition (4) holds true because

DB = 0,-1)+0,1-a)
<0> _a>

and
ZBQ,i = {1, -a)+{-1,0)
= 0,-a)
and
ZBS,i = (a)1,-1)+ (a){-1,0)
= (0,—a).

Finally, to prove condition (5) we use lim,, % Notice that by substituting in
the values of e and f we have
an(2¢c—1) +n+ (a—1) al2c¢—1) +1

li =
o an+(a—1)+1 «

1
2c—1+4+ —
o

C

Therefore, there exists an n large enough so that g > c¢. By showing that conditions
(1)-(5) hold true, we have proven that (Z. x Z4,{0,1),«) is overaccepted for the
d = ac — (aw — 1) case. Therefore, by theorem 1.3.4, the elasticity of M is accepted.

We now are left with the final case d = ac — w, where 1 < w < o — 2. Again we
will prove accepted elasticity by showing that (Z. x Zg4,<0, 1), «) is overaccepted.
Observe that a+£_1 = O‘+O‘Ca_w_1 =c+1-— wTH Again choose some n € Z~g.

Next, define m such that mw > a, but (m —1)w < . Define e = (wm —a + 1)n +
1+(a—1)+(a=1)n, f=(mc—1)(a—1)n+ (a—1)n+ (a—1), and

A= =A wm-oatin1 = {O0,-D* '}
./42,1 == A27a71 = 4g<0, 1-— Ol>, <—1, 0>mcn}}
A371 == ./43704” = {{<1, —Oé>mcil, <1, wm — 2o + 1>}}
Bip==Bra1 = {{0,-1),0,1-a)}
Bai = =By (me—1)(a-1)n = {1, —),{=1,0)}
Bsi=:=Bs0-1n = {{-1,0),{,wm—2a+1){0,—-1)*" >}

To see that condition (1) holds, notice that

U4-Us-
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{{<07 _1>(a—1)[(wm—a+1)n+1],<O’ 1— a>a—17 <_1, O>mcn(o¢—1)}} U

{1, —ayentmed (1 wm — 20+ 1y}

Next we will show that condition (2) holds. Notice that for each A; ; and A ;,
the second coordinate of any internal sum will always be between 1 —a and 0, and
hence there will be no internal sum in {0, 1),...,{0,d — a)}. Once again, we will
use two cases of proof by contradiction to prove that condition (2) holds for each
As ;. Assume that 3S < As; such that > S € {{0,1),...,<0,d — a)}. For case 1 say
S = {{,—a)*}, and that >.S = (0,r), where 1 < r < d — . This summation
gives the relationship s{1, —a) = <0, 7) meaning that s = 0 (mod ¢) and —sa =r
(mod d), where 0 < s < mc— 1. Thus s = tc for some 0 < ¢ < m — 1. Hence

ZS = {c,—atc)
= (0, —tw),

since ac = w (mod d). But we have 0 < tw < (m — 1)w < «, hence {0, —tw) ¢
{€0,1),...,<0,d — a)}. Therefore, case 1 holds.

For case 2, say S = {1, —a)*,{1,wm —2a + 1)} and }|S = (0,r), where 1 <
r < d— «. Here, the summation gives the relationship s(1, —a)+<{1,wm—2a+1) =
{0,7), so

s+1=0 (modc¢)—>s=-1 (modc)
and
—sa+wm—2a+1=r (modd)

where 0 < s <mc — 1. Let s =tc — 1, where 1 <t < m. By plugging in this value
of s into the congruence of r (mod d), we have

= «a—teca+wm—2a+ 1.
Since ac = w (mod d) we have
= a—tw+wm-—2a+1
= wim—t)+1—-«
This gives the inequality
OSwim—t)<a<=l-a<wm-1t)+1l-a<l

which is outside the bound of 1 < r < d—«. As a result, case 2 holds and condition
(2) is true.
To see that condition (3) holds, notice that
DAL = (a—1)0,-1)
= 0,1-a)
and
DAz = {0,1—a)+ (men)(—1,0)

{(—men,1 —a)
0,1 —a)
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and
ZAg,i = (mc—1)}1,—a)+<{1,wm — 20 + 1)
= {(mc,—mea+ o +wm —2a + 1)
= {(me,—mw +wm—a+1)
= (me, 1 —a)
= (0,1 —a).

Similarly, condition (4) holds because

B = 0,-1)+0,1-a)
= 0~
and
ZBQ,i = (1, -a)+{-1,0)
= 0,-a)
and
ZBSJ = (-1,00 +{Q,wm —2a+ 1)+ (wm — o+ 1)<0,-1)
= O,um—wm-—-2a+a+1-1)
= (0, —a).

Finally, to prove condition (5) we will use lim,, g Notice that by substituting
in the previously stated values of e and f we have

lim (me—1D(a—1)n+(a—1)n+(a—1) _ me(a — 1)
now (wm—a+1)n+1+(a—1)+(a=1)n wm
_ cla—1)

Therefore, there exists an n large enough so that g Zc+1-— “’TH because

-1 1
M > C+1_i:}
w «
—w—1 —w—1
c—i-i(a v Je > c+7(a v )
w «

(a—w—1)c - (a—w—l).

w o
The last inequality holds because o > w, ¢ > 0, and & —w — 1 > 0, hence condition

(5) holds true. Thus (Z. x Z4,{0, 1), ) is overaccepted for the d = ac — w case,
completing the proof. O

3.3. Fixing c.

3.3.1. The Case ¢ = 1. The condition that ¢ = 1 is equivalent to p being a primitive
root modulo y. The conditions for when these ACMs have accepted elasticity
have already been proven in [3]. We restate the proof using our new notation and
machinary.

Lemma 3.3.1. For any integer n = 3, and any integer k such that k (mod 2n) €
{n+1,..,2n}, (Zon,{1), k) is accepted.
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Proof. From theorem 2.2.1, we may assume that k € {n + 1,...,2n}. Let

L
A = D i+ 1-B)
Bi=-=Buaa = {Dmf
Brsan-1 = {{(-DOTImGmben= gaseiokants g gyl

It is clear that each A; is well-defined. By, ..., B2, o are each well-defined because
k > n. To show that Bjyo,_1 is well-defined, we must show that (k — 1)% — (k —
n)(k +2n —2) > 0 and 8n% — k — 2n + 3 > 0. For the former, we have
(k=1 —=(k—n)(k+2n—2) = Kk —2k+1—[k>+2nk — 2k —nk —2n° + 2n]
= 2n—2n+1—nk
n2n—2—k)+1
> nn+1-k)+1>0,

because 2n — 2 > n + 1 when n > 3. For the latter, we have

82 —k—2n+3 > 8n?—3n+3
3
= 8n(n—§)+3
> 0,

again because n > 3. Thus each of these multisets is well defined. We claim that
these multisets satisfy conditions (1)-(5) from the definition of an accepted triple.

k+2n—1

s = e i 01—} = 1 B

proving that condition (1) holds.

Notice that 3(Zay,{1),k) = 2n because k < 2n. So condition (2) amounts to
showing that no A; has an internal sum in {(1),...,(2n — k)}. Fori =1,.. k — 1,
this is clear because the only internal sums are (—1),{—2),...,{—(k — 1)). For Ay,
the only internal sums are {1 — k) and (n + 1 — k). The former is clearly not
in {{1),...,{(2n — k)}. To see that the same is true for {(n + 1 — k), notice that
n+l1<k<2n = 1—-n<n+l1-k<0 = m+1-ke{{n+1),..,2n)}.
Since 2n —k <n, (n+ 1 —k)y ¢ {{1),...,(2n — k)}. Hence condition (2) holds.

It is easy to see that condition (3) holds, and that condition (4) holds for
Bi,...,Bxion_2. We also have that

Z Bk+2n—1 =

[(k=1)° =k =n)(k+2n—-2)K=1>+ 8n° —k—2n+3)n)+{(n+1—k)
= ((k=n)(k=2) = (k= 1]+ [n(3 — k)] + [n + 1 —k])
= k*—nk+2k—nk—K +2k—1+3n—nk+n+1—k)
= (—2nk+2n-k)
= (k)
hence condition (4) holds for all B;. Finally, since 5(Zap,{1),k) = 2n, condition
(5) holds, and (Za,,{1), k) is accepted. O



ON THE ACCEPTED ELASTICITY OF ARTITHMETIC CONGRUENCE MONOIDS 19

Corollary 3.3.1. For any M with Z;; cyclic, if d > 6, d is even, and @ > %, then
M has accepted elasticity.

Proof. We know that M has accepted elasticity if (Z.q,{c), @) is accepted, and we
can apply the reduction and isomorphism theorems to the group generated by {c)
to see that M has accepted elasticity if (Zg4, (1), &) has accepted elasticity. O

Theorem 3.3.1. Assume ¢ =1 and @ # d. Then M has accepted elasticity iff

(I) d =6 and
(I) @ > d/2.

Proof. The if statement follows directly from the above corollary. We will prove
the only if statement. From theorem 3.1.1, this amounts to showing that if either
(I) or (II) is false, then (Zg4,{1), @) is not accepted.

First suppose that (IT) is false. Let positive integers e, f and multisets Ay, ..., A,
B, ..., By satisfy conditions (1)-(4) from the definition of an accepted triple. Then
we will show that condition (5) will not be satisfied.

Define a function v : Zg — Z by v({(—n)) = nforn = 0,1, ...,d—1. For a multiset
S of elements of Zg, let v(S) = > . sv(s). Notice that v(S) = v(},S) (mod d).
Since no A; has an internal sum in {{1), ..., {8 — )}, there is no submultiset S c A;
such that v(S) = @,a+1,...,d—1. Furthermore, for any a € A;, v(a) € {0,1,...,a—
1}. Since we are assuming @ < %, we have 2(a — 1) < d, hence it is impossible for
v(A;) to be more than &@ — 1. Since v(A;) = v({(1 —a)) =a —1 (mod d), we have
v(A;) = @ — 1 for each A;. Furthermore, since v(B;) = v({—a)) = @ (mod d), we
have v(B;) = @ for each B;. Thus we have

(Us)

<
<. N
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>
N——
I

1
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>
~

Il

gl

1
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&
~

=1 =1
e(@—1) =2 fa =
a—1 1
e P Pt
e Q «

since & < /3 by theorem 2.1.1. Thus condition (5) cannot hold, and (Zg4,{1), ) is
not accepted.

All that remains is to consider when (II) holds but (I) does not. From number
theory, we know that d = 1 or d is even. Combined with the restrictions that
d < 6 and g < @ < d, the only remaining case to check is d = 4 and @ = 3.
Suppose that the integers e, f and multisets Ay, ..., Ae, B1, ..., By satisfy conditions
(1)-(5) from the definition of an accepted triple. Then f/e = 2. Since >, B; = (1),
each B; contains an odd element. Since no 4; has an internal sum of (1), each B;
contains a (3. Since 3(3) = (1), each A; contains at most 2 copies of {3), and
since each f/e = 2, each A; contains exactly 2 copies of (3). Then no A; contains
a (2) because (3) + (2) = (1). Hence each B; contains exactly one (3) and no {2)
or (1), contradicting the fact that >,B; = (1). Thus (Z4,{1), @) is not accepted,
completing the proof. O

Corollary 3.3.2. Ifc=1 and d > 1, then w(M) = 0.
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Proof. If d > 1, then 1 < ¢, hence (Z;,[p], @) is not accepted when @ = 1. Thus,
w(Zy,[p]) = 0. 0
3.3.2. The Case c = 2.

Theorem 3.3.2. If ¢ =2 and @ > d/2 then M has accepted elasticity.

Proof. If d is odd, then this follows directly from theorem 3.2.2. If d is even, and
d = 6, then this follows from corollary 3.3.1. If d = 2, then @ = 2, and acceptance
follows from theorem 2.1.1. If d = 4, then we would have ¢(y) = 8, which is not
true for any integer y, hence the proof is complete. (I

Theorem 3.3.3. If ¢ =2, d is even, and
1++/4d—3
T

then M does not have accepted elasticity.

Proof. First, observe that

0 < (d=1)%+1
0 < d*>—2d+2
4d—3 < d*+2d+1
Vdd -3 < d+1
14++4d -3 - d+2
2 2
1++/4d—-3 - d
2 N

soozsg.

Claim: let A be a muliset of elements of Z24\{{0)} such that A has no internal
sum in {(2),{4),...,<{2(d — a&))}. Then |A| < 2a.

To prove this, we will use strong induction on «. For o = 1, A contains no
evens. If there are three distinct odds, say a1, a9, ag, then either a; + as or a; + as
is contained in {(2),{4),...,{(2(d — a))}, so A contains at most two distinct odds. If
A contains two copies of the same element, say a, then 2a = {0) which means a = 0
or d, and hence a is even, contradiction. Thus |4| < 2, completing the base case.

Now, assume that the claim holds for a = 1, ...,k — 1, with k < g. Assume that
there is some multiset A of elements of Z24\{{0)} such that A has no internal sum
in {{2),{4),...,<2(d — k))} and |A| = 2k + 1.

Assume that A contains an even element. Then for some m € {1,....k — 1},
(—2my e A. Let A" = A\ {{(—2m)}. If A’ had an internal sum in

{Q@ld = k) +1]), ..., C2[(d = k) + m])},

then A would have an internal sum in

{Q2[(d—Fk) —m +1]),...,2(d — k))}.
Sincem <k—1land k< g, wehavem+k<2k—1<d,so(d—k)—m+1>1.
Thus 1 < (d—k)—m+1 < d—k. Hence A has no internal sum in {(2[(d—k) —m +
1P, ...,{2(d—k))}, so A’ has no internal sum in {2[(d—k)+1]), ..., 2[(d—k)+m])}.
Since A’ c A, it also has no internal sums in {(2),...,{2(d — k)>}. Thus A’ has
no internal sum in {(2),...,<2[(d — k) + m])}. Thus, by the inductive hypothesis,
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|A'| < 2(k —m), and therefore |A| < 2k —2m +1 < 2k —1 < 2k + 1, contradiction.
So A contains no even elements.

Suppose A contains three distinct odds, say a1, as, a3. Then ay +asq, a1 + a3, and
a2 + ag are three distinct elements of {{0),{—2),...,{—=2(k —1)}}, so we may assume
that k > 2. Let A” = A\ {a1,a2,a3}. Since {a1, a2, a3} contains an internal sum
of (—2m) for some 2 < m < k — 1. Thus, by the same argument as in the previous
paragraph, |A”| < 2(k—m) = |A| < 2k—2m+3 < 2k—1 < 2k+1, contradiction.
So A contains at most two distinct elements, both odd.

Let A = {{agnl),agnz)}} where a1, a9 are odd and ni + no = 2k + 1. Let &1 =

{{agnl)}} and Sy = {{agnz)}}. Neither S; can contain a nontrivial internal sum of

{0y, for, if it did, let s be the minimal element of {1,...,n;} such that sa; = {0).
Then s must be even, and $a; = (d). But since k < £, {d) € {{2),....<2(d — k))},
so A can’t have an internal sum of {d), contradiction. Additionally, neither S;
can have two multisubsets with the same sum, for if 30 < s < t < n; such that
a$ = at, then a'fs = ({0) is a nontrivial interal sum of S;, contradiction. Therefore,
each S; has n; distinct nonzero internal sums, |% | of them even. Thus, by the
pigeonhole principle, one of these internal sums must lie in {{—2[%|),...,{—2(k —
1))}. Since ny +ng = 2k + 1, we have | %] + |52 ] > k, so A has an internal sum in
{{=2k), ...,(=2(2k — 2))} < {{2),...,{2(d — k))}, contradiction. This completes the
proof of the claim.

Now, we will show that (Zsg4,{2),«) is not accepted. Assume that this triple
is accepted, and that the integers e, f and multisets Ay, ..., A, By, ..., By satisfy
conditions (1)-(5) from the definition of an accepted triple. By the claim, then, we
know that each A; contains at most 2« nonzero elements. Since Y B; = {(—2a),
but A; can’t have an internal sum of (—2a), each B; needs at least two nonzero

elements. Thus, f/e < a =

a+d—1
@
a? > a+4+d-1
?—a+l—d = 0
1++/4d—3
a > —Y=°
2
completing the proof. ([

Theorem 3.3.4. If c =2, d is odd, and
a<Nd—1
then M does not have accepted elasticity.

Proof. Let @« < \/d—1, ¢ = 2, d odd. Because the theorem is vacuously true if
d =1, we will assume d > 3. First observe that

(d-=2)? > 0
d>—4d+4 = 0

> d—-1

WV

d2
4
d
— d—1.
2
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Thus o < %.

We must show that (Z. x Zg4,<0,1), a) is not accepted. Define g : Z. x Zg — Z
by taking an element (s,t) to the element of {0, 1,...,d — 1} that is congruent to
t modulo d. Given a multiset S of elements of Z. x Zg4, define g(S) = >, .5 9(s).
Notice that g(S) = g(3;S) (mod d).

Claim: If A is a multiset of elements of Z. x Zy with no internal sum in
{0,1),...,{0, « — d)}, then g(A) < (a+ 1)(d — 1).

We will prove this claim by induction on «. Suppose @ = 1. Call an element
of Z. x Zg = 7o x Zq type 0 if its first coordinate is 0 and type 1 if its first
coordinate is 1. If A has no restricted sums in {0, 1),...,{0,d — 1)}, then its only
type 0 element is {0,0). Suppose A had three type 1 elements, aj,as, and as.
Then a1 + as = a1 +az = {0,0) => as = ag, and as + az = {0,0) = 2ay =
0,0 = a1 = az = ag = {1,0). Thus if A has three type 1 elements, g(A) = 0.
Thus, A can have at most two elements with a nonzero g-value, and therefore
g(A) <2(d—1) = (a+1)(d—-1).

Suppose that the claim holds for a = 1,..., k — 1, where k < % For the sake of
contradiction, suppose that there is some multiset A of elements of Z. x Zg4 such
that A has no internal sums in {{0,1),...,{0,d — k)} and g(A) > (k + 1)(d — 1).

Suppose A contains a nonzero type 0 element {0, —s) for some s € {1,...,k — 1}.
Let A" = A\ {€0, —s)}. Then A’ has no internal sum in {{0,1),...,€0,d — k + s)}.
Thus by the inductive hypothesis applied to o = k — s, we have g(A’') < (k — s +
N(d—-1) = g(A) < (k—s+2)(d—1) < (k+1)(d—1), contradiction. Thus all
nonzero elements of A are type 1.

Suppose A contains three distinct type 1 elements, a1, as,a3. Then ay +as, a1 +
as,az + ag are three distinct elements of {<0,0),0,—1),...,<0,—(k — 1))}. Let
A" = A\{a1,az2,a3}. If0,—s) € {a; +as,a; + a3, as + az}, then, by the argument
in the above paragraph, g(A”) < (k—s+1)(d—1) = g(A) < (k—s+4)(d—1).
We also have (k —s+4)(d—1) < (k+1)(d—1) if s = 3. Hence it must be that
{a1 + ag,a1 + as,az + az} = {0, O> {0,—1),{0,—2>}. But then, solving, we get
{a1,a2,a3} = {0, 4150, 452, < 4-3%}. Then, since g(A") < (k — 1)(d — 1), we
have g(A) < (k—1)(d—1)+ 4L 923 = (k—1)(d—1)+2(d—-1) < (k+1)(d—1),
contradiction. Thus A contalns at most two distinct type 1 elements.

Since we can ignore 0, 0) elements of A, let A = {{1,a;)™),{1,a5)("2) }. Since
g(A) > (k+1)(d—1), it must be that n; +ns > k+2. WLOG, assume n; > 2. Let
2{1,a1y =<0, —s), where s € 1,...,k — 1. Let A” = A\ {{<l,a1>(2)}}. Then, by the
argument in the above paragraphs, g(A”) < (k—s+1)(d—1) = g(A) < (k—s+
3)(d—1). We also have (k—s+3)(d—1) < (k+1)(d—1) when s > 2, so it must be
that s = 1. But then g(A”) < k(d—1) and a; = 45 = ¢ {{(1,(11} W) =d-1,
hence g(A) < (k+ 1)(d — 1), contradiction. This completes the proof of the claim.

Now, we will show that (Z. x Z4,{0,1),«) is not accepted. For suppose it
were. Then let the integers e, f and multisets Ay, ..., Ae, By, ..., By satisfy conditions
(1)-(5) from the definition of an accepted triple. Then, for each A;, we know
g(A;) < (a+1)(d—1). Since g(A;))=1—a (mod d) and d(1 +a)+1—a—-d<
(a+1)(d—1) <d(l+a)+1—a, we have g(A;) <d(l+a)+1-a—d=da—a+1.
Furthermore, for each B; we have g(B;) = —a (mod d), and thus g(B;) = d — a.
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Hence e(da —a+1) = f(d—a) =

S < dao—a+1
e d—o
a+d-—1 < da—a+1
« = d—«
d>—a®>—d+a < do*—a*+a
d—1 < a?
d—1 < aq,
which is a contradiction, completing the proof. ([l

Corollary 3.3.3. Assume c = 2.
If d =1 then M has accepted elasticity for all .
If d = 2 then M has accepted elasticity iff a = 2.
If d = 3 then M has accepted elasticity iff @ = 2 or 3.
If d = 4 then M has accepted elasticity iff @ = 3 or 4.

Proof. The above two proofs can be altered to show that M does not have accepted
elasticity when

(a) dis even and %ﬂ_l > q, or

(b) dis odd and @21 > ad-atl

Then algebra gives the result. (]

Theorem 3.3.5. If c =2 and d > 1, then w(M) = .

Proof. Using the above results, it is clear that M does not have accepted elasticity
when ¢ =2,d > 1, and @ = 1, hence w(M) = o0. |

3.3.3. The Case ¢ = 3.

Lemma 3.3.2. Let q be a prime and let S be a multiset of q-1 nonzero elements
of Zy. Then S contains an internal sum of a for any a € Z,\{0}.

Proof. Let S = {m1, ..., mq_1} be a multiset, where m; € Z,\{0} fori =1, ...,¢—1.
Define n1, ...,ng—1 as follows: let ny = mq, and if ny, ..., n;—1 has been defined, de-
fine n; = km;, where k is the smallest natural number such that km; ¢ {n1,...,n;_1}.
Because ¢ is prime, m;, 2m;, ..., (¢ — 1)m,; are all distinct in Z,;, hence k exists and
is less than ¢, since i < ¢ — 1. Thus n4,...,ng—1 are distinct nonzero elements
of Zq. Therefore, every nonzero element of Z,, and specifically a, is contained in
{ni,...,np—1}. Hence it suffices to show that n, is an internal sum of S for each
i=1,...,p— 1L

We will show that each n, is an internal sum of the multiset {my,...,m,} by
induction. This is trivially true if = 1. For r > 1, assume that n; is an internal
sum of {my,....,m;} for each i = 1,...,r — 1. Let n, = km,., where 0 < k < ¢. If
k = 1, then n, = m,, and n, is an internal sum of {ni,...,n,.}. So assume that
1 <k <gq. Then 3s € {1,...,r — 1} such that ny = (k — 1)m,.. From the inductive
hypothesis, ns is an internal sum of {my, ..., ms}, hence 3{i1, ...,7,} < {1, ..., s} such
that m;, +---+m;_ = ns. Hence m;, +---+m;_ +m, = (k—1)m,+m, = km, = n,,
and thus n,. is an internal sum of {mj, ..., m, }, completing the induction.

Therefore, n1,...,n4—1 are all internal sums of .S, and hence a is an internal sum

of S. O
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Lemma 3.3.3. Let g be a prime. Given an element a € Zy2, let @ denote its residue
class modulo q. Let {ai,...,aq+1} be a multiset of elements of Z2\{0} which has
no internal sum in {q,2q,...,(¢ — 1)q}. Then for any i,j € {1,...,q + 1} such that
a; = a;, we have a; = a;.

Proof. The internal sum condition implies that any internal sum with a residue
of 0 modulo ¢ must be 0 modulo ¢?. Let b = @; = a;. By lemma 3.3.2, since
b# 0, H{ky,....kn} < {1,....,q + 1}\{4, 5} such that @z, +--- + @z, = —b. Thus
E+W+"'+Wn:0 = a; tag, +---+ag, =0 = q; = —(akl +"'+akn)~
Similarly, a; = —(ax, + - -- + ag, ), hence a; = a;. O

Lemma 3.3.4. If a multiset A of elements of Z,2\{0} have a size of at least g + 1
and no internal sum in q,2q, ...,(q — 1)q. Then for any be {1,...,q — 1}, there are
at most g — 1 elements of A with a residue of b modulo q.

Proof. For the sake of contradiction, suppose there are g elements ai,...,a; € A

such that @y = .- = @5 in Z;. Then from lemma 3.3.3, a; = -+ = a,. Hence
a1 + -+ + ag = gap is an internal sum of A. Since ga; is a multiple of ¢ and an
internal sum of A, ga; = 0. Hence a; =0 (mod ¢), contradiction. (]

Theorem 3.3.6. If c =3 and 3 | d, then w(M) = oo.

Proof. Suppose that the elasticity were accepted. Then, by the definition of an
accepted triple and the equivalence theorem, there exist integers e, f and multisets
Ai, ..., Ae, Bi, ..., By of elements of Z.q such that

(1) U§=1 Ai = Uzj‘c:l B;

(2") for i =1,...,e, A; has no internal sum in {{c),2¢),...,{(d — 1)c)}

(3) fori=1,...,¢e, >, A; =0)

(4) fori=1,...f, X B ={-—c¢

(5) fle=(a+pB—1)/a

Given an element (n) € Zq, let (n) denote its residue class modulo ¢? (since ¢? | cd)
and let 7 denote its residue class modulo c.

We claim that for ¢ = 1,...,e, A; contains at most 2¢ — 2 nonzero elements.
For assume that A; did contain at least 2¢ — 1 nonzero elements. Since A; has
no internal sum in {{c),...,{(d — 1)cy}, when the elements are viewed as elements
of Z.z, there is no internal sum in {(c), ..., ((c — 1)c)}. Since when ¢ = 3, we have
c+1<2c—1, lemma 3.3.4 states that there are at most ¢ — 1 elements with the
same nonzero residue modulo ¢. However, since there are 2¢c— 1 nonzero elements in
A; and ¢ — 1 nonzero residues modulo ¢, the pigeonhole principle tells us that there
are three elements in A; with the same nonzero residue modulo ¢. Since ¢ = 3, this
is a contradiction, proving the claim.

Now, for each B;, we have > B; = (—c) = {(d — 1)¢) is not an internal sum of
any A;, therefore each B; contains at least two nonzero elements. Combining this
with the above claim, we see that f/e <c—1=2.

It now suffices to show that (¢ + 5 —1)/a>c—1=2 < S —a > 1. Since
@ = 1, we have o = kd + 1 for some nonnegative integer k, and so g = (k + 1)d.
Hence f — a = d — 1. Since 3 | d, we have § — a > 2. Hence we always have
(o + B —1)/a > ¢ — 1, completing the proof. O
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Lemma 3.3.5. Assume gcd(c,d)=1 and d > 1. For any € > 0 there exist inte-

gers e, f and multisets Ay, ..., Ae, B1,..., By of elements of Z. x Zq which satisfy

conditions (1)-(4) of the definition of an accepted triple, and additionally satisfy
f cda—-d—a+1

(ba) > a(d—1)

Proof. Using the isomorphism from theorem 3.2.1, conditions (1)-(4) become
(1a) Ui Ai = U{=1 B

(2a) for i =1,...,e, A; has no internal sum in {0, 1,0, 2), ...,<0,d — @)}
(3a) fori=1,...,e, > A; =(0,1 —@)

(4a) for i =1,...,f, X B; =0,—a)

Let n be any nonnegative integer. Let k be a positive integer such that kc—d+1 >
0. Define

€.

Arg == Aiaaene = L= A 0, -]
Ayi=-=Apg = {{<170>(C(c—1)kn)7<07 _1>(a_1)}}
Bii=-=Bige-n@-nn = {{=1,-),{1,0)}
Bai=-=Bogienn = Q@D 0
B3 = =By @-nl+@-nn = {{<0, —1)® }}

Then we have

Ua=Us-=
{{<_1’ _a>(5(c71)(d71)n)’<1,a>(5(cfl)(d71)n)7<0’ _1>(E(E—1)[1+(d—1)n])7 <1’0>(ac(cfl)kn)}}’

so condition (1la) holds.

We will show that condition (2a) holds by contradiction. Assume that A4;; has an
internal sum in {{0,1),...,{0,d — @)}. Then there is a submultiset S < A;; such that
> S8 =<0,v) for some v € {1,...,d —a}. S must be of the form

{{<—1, —@™) (1, @)™ (0, 1)) }}

where m1, ma, m3 € Z>0, mi,mz2 < c—1, and m3 < @ — 1. Looking at the first coordinate
of .S yields ma —mi1 = 0 (mod ¢), and the restrictions on mq and ms yield mi1 = mo.
Hence >, S =<0, —ms) € {{0,1),...,{0,d — @)}, and therefore ms > @, contradiction.

Now assume that Ay ; has an internal sum of {0,~) for some v € {1,...,d —@}. Then
there is some submultiset S € By ; such that 'S = (0,v). S must be of the form

ECUSERUESMES

Here ma < @ — 1. But looking at the second coordinate of Y| S yields ms = @, contradic-
tion. Therefore, condition (2a) holds.

It is straightforward to check that conditions (3a) and (4a) also hold.

Finally, we will show that some value of n yields condition (5a). We have

f _ (@(c—1)(d—1Dn) + (@(c—1n) + ((@— D1+ (d— 1)n])
e (@(d—1)n) + (a)
. alc—1D(d—1)+alc—1)+@—1)(d—1)
a(d—1)

cda—d—a+1
a(d—1)

as n approaches infinity. Therefore, for some sufficiently large n, condition (5a) holds. O
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Theorem 3.3.7. If c =3 and 3 t d, then w(M) is finite. If d > 4, then
d—3
w(M) < {ZJ d+ 2.

Ifd=1 or2, then w(M) = 1.

Proof. From theorem 3.3.6, we know that if 3 | d then w(M) = oo.

If d = 1 or 2, then theorem 3.1.2 combined with theorem 2.2.2 yields w(M) = 1.
So assume d > 4.

From lemma 3.3.5 and theorem 1.3.4, we know that M has accepted elasticity if

cda—d—a+1 a+p8-1
— > .
a(d—1) !

Let o = kd + @, so that 8 = (k + 1)d. Then, plugging in ¢ = 3 and rearranging
terms, we get

3da—d—a+1 - (kd+a)+ ((k+1)d) — 1
a(d—1) (kd + @)
kd[3da —d—a+1]+a[3da—d—-—a+1] > a(d—1)[2kd+a+d—1]
kd[(3da —d —a + 1) — 2a(d — 1)] af(d—1)(@+d—1)— (3da—d—a+1)]
kdlda —d+a+1] > a[d®>—d— 2da]
a(d—2a — 1)

\

ko= (@-1d+a+1’
hence M has accepted elasticity when k > %.
If @ > 1, notice that
a ad-2a—1)  FZgl@-Dd+@—-1)+2]-a(d-2a-1)
a-1 (@-ld+a+1 (@-1)d+a+1

af(d+1+=25)— (d—2a—1)]
(@—1ld+a+1
2a(@+1+ =L)
(@—1Dd+a+1
> 0.

and, since 2 > =%, we conclude that M has accepted

Hence =% > a(d—2a-1)
a1 ( a1’

@ Ddta+1l’
elasticity when @ > 2 and k > 2.

We also know that when @ = 1 and k& > %, then M has accepted elasticity.
Hence, if % > 2, then M has accepted elasticity for all o > [%J d+2. Therefore,
if d>7and 3 f d, then w(M) < |42 d + 2.

It can be shown in the specific cases of d = 4 and d = 5 that w(M) = 2, so the

desired bound is still correct. O

3.3.4. The Case c = 4.

Lemma 3.3.6. There exist integers e, f and multisets Ay, ..., A, Bi, ..., By which
satisfy conditions (1)-(4) from the definition of an accepted triple, and additionally
satisfy

) fle=c—1.
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Proof. We will let e =d and f = (¢ — 1)d. Let

- {{<1 +icdED (=1 —ie)eD) (1 — a)c>}}
for i = 1,...,d, let
Bit = {1 +ich,(—1 — (i + 1)), {(1 — a)ed}
for i = 1,...,d, and let
Bi; = {1 +ic),(~1 — (i + a)c)}

fori=1,..,dand j = 2,...,c — 1. Then we claim that A4; for i = 1,...,d and B, ;
fori=1,..,dand j = 1,...,c — 1 satisfy conditions (1)-(4) and (5').
To see that (1) holds, notice that

[

i=1 =1

- (Utoroep) o (Ut} ) (Qrca-am)
{

Il
=

{{<1+w><c V(-1 - w><6*1>7<(1—a)c>}}

i=1

d d d
&+ ic)}) U (U f(—1—-(G+ 1)c>}> (U = a)c>}>

i=1

f«
u< U{<1+ic>}>u<DU f<-1—( z+ac>}>

We will show that (2) holds by contradiction. Assume (2) does not hold. Then
there is some k € {1, ..., d} and some m € {1, ..., § — a} such that A; has an internal
sum of {(mc)y. Suppose S < Ay, is such that > S = {mc). Then S is either of the form
{0+ k)™ (=1 — ke)® § or the form {{1 + ke)™, (=1 — ke)®), (1 — a)c)}. First
suppose S is of the first form. Then {1+ kc)+ s{—1—kc) = {mc)y, so (r—s)+ (r—
s)kc = mc (mod ed). Then ¢ | r — s. But since r, s € {0, ...,c — 1}, it must be that
r =s. Thus me =0 (mod cd), and hence m = 0 (mod d), which is a contradiction
since § — a < d. If § is of the second form, we can similarly conclude that r = s.
Then we get (1 — a)e =mc (mod ¢d) = m=1—«a (mod d). Since no element
of {1, ..., 8—a} has residue 1 —a modulo d, this is again a contradiction. Therefore,
condition (2) holds.

Checking that conditions (3), (4), and (5’) hold is routine, completing the proof.

O

c—2

Theorem 3.3.8. If ¢ >4, then w(M) < [d_l]. In particular, w(M) < d —1..

Proof. By theorem 1.3.4 combined with lemma 3.3.6, it suffices to show that p <
¢ — 1 whenever o = (d — 1)/(¢ — 2). Let a = kd + @. Since S is the least multiple
of d such that 8 > «, we have 8 = (k + 1)d, and hence

at+p—-1 (k+1l)d+a—1
a N kd +a :
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Thus, if £ > 1, then
2k+1Dd+a@ < (2k+1)d  2k+1
kd+a — kd k
Therefore, for k > 1, p <c—1.
Now, we will consider the case where k = 0, so that « = @ and 8 = d. Then

<3< c—1.

p < c—1
a+d—-1
arezl o< oot
a
d—1 < a@(c—2)
d—1 _
< @
c—2
Thus for any a = (d —1)/(c —2), p < ¢ — 1, as desired. O

4. NonNcycLic UNIT GROUP
Assume Z, is noncyclic.
4.1. General Noncyclic Case.

Theorem 4.1.1. Zgj is canonically isomorphic to Zy, X +++ X Ly, , where n; | niz1
fori=1,...k—1. If ordy(p) | nx—1, then M has accepted elasticity.

Proof. Let d = ordy(y), let [p] € Z; represent the residue class of p modulo y, and
let ¥([p]) =<a1, ..., ary, where a; € Z,, for i = 1,...,k. Define

Nkg—1
a = d
Nk
g2 = q
hi = k1
g1
h2 = %
g2
m = ged(hy, ho)
h
bl = 71
m
h
b2 = i
m

By assumption, d | ng_1, and thus d | ng, hence g1, g2 € Z. Since d{aq,...,ar) =
0,...,0), we have dap_1 = 0 (mod ng_1) = qid | ap_1d = ¢ | ax_1,
so hy € Z. Similarly ho € Z. Hence m is well defined, and clearly by,bo € Z
with ged(by,b2)=1. Let u,v be integers such that uby — vb; = 1, and observe that
ged(u,v) = 1.

From theorem 2.2.2, it suffices to assume that @« = 1. Then 8 = d. From
theorem 1.3.1, it suffices to find positive integers e and f, along with multisets
Ay, ..., Ae, By, ..., By of elements of Z,, x --- x Zy, such that
(1) Uf:l Ai = Ule B;

(2") for j =1,...,e, A; has no internal product in {r{ai,...,axy |1 <r < d—1}
(3) forj=1,....,e, A =<0,...,0)
@) forj=1,..., f, 2B =<{—a1, ..., —ax), and
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(5") f/e=d.
Define e = 2, f = 2d, and

A = {{(—ah ooy —Qk—2, —UJ1, —vgz>(2d) }}
Ay = {{(07 w00, (u = h1)gn, (v — h2)g2y*? }}

Bi=-=Bs = {{—ai,...,—ar—2,—ugi,—vg2)<0,...,0, (u— h1)gi, (v — h2)g2)} .
Conditions (1’) and (5") hold trivially, hence it suffices to show that these multisets
satisfy conditions (2'),(3’), and (4').

Since ordy(p) = d, da; =0 (mod n;) for i = 1,..., k, we have
Z -Al = 2d<_a1, vy —Ap—2, —UYG1, _U92>
= (0,...,0,—2ud*2, —2vd%€>

= <0,...,0).
DA = 2d0,...,0, (u—hy)gr, (v — ha)ga)
- <o,...7o,2(u—hl)d"’“d*172(u—hz)d%>

= {0,...,0).
DBi=-=Bog = (a1, ., —ar 2, —ugi,—vgs) +
{0,...,0,(u — h1)g1, (v — ha)g2)
= {(—ay,...,—ap—2,—g1h1, —gohs)
= {(—=ay,...,—ag).

Therefore, conditions (3') and (4’) hold.

Now, for the sake of contradiction, suppose that A; had an internal sum con-
tained in {r{ai,...,agxy | 1 < r < d—1}. Then there exist positive integers r, s, with
1 <r <d—1such that

r{ay, ., agy = {—a1, ..., —Qp—_2, —Ug1, —Vga).
Looking at the last two coordinates gives us the congruences

rag_1 = —sug; (modng_1) = rhy=-su (mod d)

ray = —svge (mod ng) == rhy=-sv (mod d)

which gives us

rhou = —suv
= rhv
rmuby = rmuby
rmub; +rm = rmuob;
rm = 0 (mod d).

Therefore, rhy = rmby = 0 (mod d) == su = 0 (mod d). Similarly, sv = 0
(mod d). Then d | s, for, if it didn’t, then there would be some factor of d, greater
than 1, which divides both u and v, and this is impossible since ged(u,v) = 1. And
since d{—ay, ..., —ak—_2, —ugi, —ugsy = 0, we have s{—ay, ..., —ar_2, —ugi, —ugs) =
0 = r{ay,...,ary = 0. Since the order of {ay, ..., ary is d, this implies that d | r,
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which contradicts 1 < r < d — 1. Therefore, A; has no internal sums contained in
{rlay,..;apy |1 <r<d—1}.
If we let ' = u — hy and v’ = v — ha, then

wby —v'by = (u—hy)bs — (v —ha)b
uby — mbiby — vby + mbibsy
ubs — vby
= 1,

and so the argument for why Ay, = {{(0, oy 0,07 gy, v g YD }} has no internal sums
contained in {r{ay, ...,ary | 1 < r < d—1} is nearly identical to the arument for A; =
{{~a1,....—ax—2, —ugr, —ugs)*¥}. Therefore, condition (2') holds, completing
the proof. ([l

Corollary 4.1.1. If y = 8,12,24,63, 80,126, 240, 252,504, 513, 544, 1026, 1632, or
2107, then M has accepted elasticity.

Proof. For each of these values of y, when Z; is canonically written as Z,, x --- x
Zn,,, it happens that ng_1 = ng, hence it is always true that ord,(p) | ng—1. O

4.2. Case Study: Z; ~ Tio X Lg ~ Loy X Ly X Zs.

Theorem 4.2.1. Assume Z; ~ Zo X Zo X Zs. Then the elasticity of M is not
accepted iff (Z;,[p], @) is not accepted iff

(1) ordy(p) =3 anda =1, or

(2) ordy(p) =6 anda =1 or2.

The following lemmas and corollaries are necessary before proceeding to the
proof of theorem 4.2.1.

Let y € N such that Z; ~ Zy x Zy x Z3, with ¢ an isomorphism mapping
Zy — Zg x Ly x L3, and for multisets S of elements of Z, let S’ be the image of
S under .

Let 0 = 0,0y € Zs x Zy. Then if ¢ € Zs, then (0, ¢),{a,c),{b,c),{a + b,c) €
Zy X 7o X Zs3, where a and b are distinct nonzero elements of Zs X Zs.

Lemma 4.2.1. If (Z),[p], @) is accepted, ordy,(p) = 3, and a =1 (mod 3), then
¥([p]) =<0, z) with x =1 or —1, and A, takes one of the following forms:

(1) {{a,z),<b,x),{a +b,2),<0,0)"}, n e N,

(2) {{a,—x),<b, —x),{a + b, —),{0,0)"}, ne N,

(3) {<a, IIZ>, <a7 —$>, <ba £U>, <ba —_ZL’>, <07 O>n}: ne No

(4) {{<a7 $>7 <a7 —:U>, <b7 0>2m7 <Oa 0>n }}; m,n €N,

(5) {{<a7 1’>,}<b7 —z),{a + b, 0>2mf1, <0, 0>"}}, m,n €N,, or

(6) {<a,0)7,<b,0)%,{a+b,0)!,<0,0)"}, j =k =1 (mod 2), neN,,

where a and b are distinct nonzero elements of Zo x Zs.

Proof. Suppose (Z; ,[p], @) is accepted, ord,(p) = 3, and o = 1 (mod 3). Then
there exist positive integers e, f and multisets Ay, ..., A, Bi, ..., By of elements of
Z;; which satisfy conditions (1)-(5) from the definition of an accepted triple. Let
i€{l,...,e}. Since a =1 (mod 3), and 3(Z,;, [p], @) = mord,(p) for some positive
integer m such that mord,(p) = o > (m — 1)ord,(p), then B(Z), [p],a) = o + 2.
By condition (2') of theorem 1.3.2, we have for j = 1,...;e, A’ has no internal
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sum in {([p]),¥([p]?)}. Further, by conditions (3') and (4') of theorem 1.3.2, we
have ZA' P([p]'~*) = ¥([1]) = €0,0) for j = 1,...;e, and 3 B; = ([p] *) =
P([p]™1) = ¥([p]?) for i = 1,..., f. Note that if ¢([p]) = <a,0) for some a # 0,
then 9 ([p]? ) = (0,0), and ord ( ) = 2. It ¥([p]) = {a,z) with a # 0,z # 0,
then 1/)([p] ) = <a,0), and ord,(p) = 6. If ¥([p]) = <0,z) with = # 0, then
Y([p]?) = €0,0) and ord,(p) = 3. So fix 1 ([p]) = {0,z). Note that for all n € N,,
inserting (0, 0)™ into any of the following arguments does not change any internal
sums of the A’, nor does it change Y A’ as a whole. So (0,0)" € A’ fori =1, ...,¢,

(1) Suppose A} contains more than two elements with a Zs component of x.
Since {a,z)* = {0, —x) = ¥([p]?) for all a € Zy x Zs, then no {a,x) occurs
twice in A by (2’) of theorem 1.3.2. But A} contains more than two
elements with = as the Z3 component by assumption, so {a, z),<{b, z),{a +
by e AL And o, —a)b,2Xa + b, £y = a, 0%, 2 = 0, 2) = B([p]), 0
{a,—x),{a,0) ¢ A, for all a € Zs x Zg, and hence A} = {{a, x),{b, z),

{a + b,x),{0,0)"}, with a and b distinct nonzero elements of Zy x Zs.

(2) Similarly, (a, —2)* = {0, x) = ¥([p]) and {a, z)b, —x){a + b, —z) = {a, 0)
{a,—z) = 0,—x) = ([p]?) for all a € Zy x Zy, so by (2') of theorem
1.3.2, if A} contains more than two elements having Zs component equal
to —x, then {a, —x)? {a,x),{a,0) ¢ A’ for all a € Zy x Za, and therefore
“4; = {{a, —z),{b, —x),

{a +b,—x),{0,0)"}, with a and b distinct nonzero elements of Zy x Zs.

(3) If AL contains exactly two elements with Z3 component equal to x, then
A’ must also contain two elements with a Zs component of —z to obtain
M AL =<0,0). Say {a,x),{b,z)€ A for a and b distinct nonzero elements
of Zg X Zg, then {a+b, —x) ¢ A} as shown in part (1). So {a, —z),{b,—z) €
Al Further, {a,0),¢b,0), {a + b,0y ¢ A; by (2') of theorem 1.3.2 since
<a’7 0><a7 l‘> = <b7 0><b’ .Z‘> = <CL +0b, 0><aa —l‘><b, _$> = <0a l‘> = '(/)([p])

(4) Now suppose A} contains exactly one element having a Zs component equal
to z. Then since Y} AL = (0,0) by (3') of theorem 1.3.2, A, contains 3n + 1
elements with —z as their Z3 component for some n € N,. But A} may
contain at most three elements of this form, so A contains exactly one
such element. If {a,x),{a,—2x) € A for some a # 0, then {a,0) ¢ A
since {a,0)Xa,z) = {0,z) = ¥([p]). If (b,0) € A, for some b # 0, a, then
{a +b,0) ¢ A, since {a,z)b,0)Xa + b,0) = {0,z) = ¥([p]). And Y} A} =
0,0y = Y {a,z),{a,—x),<{b,0)>"} for m € N,, with a and b distinct
nonzero elements of Zgy X Zs.

(5) If still A% contains exactly one element having x as its Zg, but now {a,z) €
Al and {a,—z) ¢ A’ for some a # 0, then let (b, —z) € A} with b # 0, a.
Then {a, 0),{b,0) ¢ A} by (2') of theorem 1.3.2, but {a + b,0) € A} since
{a, x)b,xy # {0,0) and {a+b,0) is the only element which can yet be a part
of this A} under these conditions. To maintain .4} = <0, 0), we can have
{a+b,0)> T e A, for m e N, so A} = {{a,z),<b, —x),{a + b, 0)*™+1,
0,0)"}.

(6) Suppose now each element of A} has Zz component equal to 0. So A} =
{{(a7 0)7,¢{b,0%* {a + b, 0) }} for some j, k, 1 € N, and a and b distinct nonzero
elements of Zy x Zs, and A} has no internal sums equal to 1 ([p]) or ¥([p]?).
Without loss of generality, suppose 5 = 1 (mod 2), so {(a,0y = {a,0). If
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k =1=0 (mod 2), then ¢b,0)* = (a + b,0)! = (0,0), and >, A’ = {a,0).
So let k¥ = 1 (mod 2). Then {a,0Y¢b,0)* = {a + b,0), and we must
also have [ = 1 (mod 2) to have Y AL = {a,0)7(b,0)%{(a + b,0) = <0, 0).
Conversely, if j = 0 (mod 2), then {a,0Y = <0,0), and we must have
(b,0¥%¢a + b,0)" = (0,0), and hence k =1 = 0 (mod 2). In either case,
j=k=1 (mod 2).

(]

Lemma 4.2.2. If (Z;, [p], @) is accepted, ord,(p) = 6, and o = 1 (mod 6), then
Y([p]) = {a,z) with x = 1 or —1, and A} takes one of the following forms:

(1) {<b, ), <b, —x),0,0)"}, n e N,, or
(2) {<b,0)*™,<0,0)"}, m,n e N,,

where a and b are distinct nonzero elements of Zo X Zs.

Proof. Suppose (Z,;,[p], @) is accepted, ord,(p) = 6, and @ = 1 (mod 6). Then
there exist positive integers e, f and multisets Aq, ..., A, By, ..., By of elements of
Z;; which satisfy conditions (1)-(5) from the definition of an accepted triple. Let
i€{l,...,e}. Since « =1 (mod 6), and B(Z;, [p], @) = mord,(p) for some positive
integer m such that mord,(p) = o > (m — 1)ord,(p), then B(Zy, [p],a) = o + 5.
By (2) of theorem 1.3.2, A has no internal sum in {2)([p]), ¥ ([p]?), ..., ¥([p]*)} =
{{a,x),<0, —x),{a,0),{0,z),{a,—x)}. Further, by conditions (3') and (4’) of the-
orem 1.3.2, we have Y A = ¢([p]' *) = ¢([1]) = <0,0) for j = 1,...,e, and
M B =([p]*) = ¥([p]°) = {a,—z) for i = 1,..., f. It can be seen then that the
only elements of Zy x Zy x Z3 which can be in A} are of the form (b, 0), (b, z), (b, —x),
or 0,0 for some b # 0,a. Note that of these, only ¢(b,0),(0,0) may be repeated
within the same A} since (b, z)? = (0, —z) = ¥([p]?), b, —z)* = <0, z) = ¥([p]*).
Further, for all n € N, inserting (0,0)" into any of the following arguments does
not change any internal sums of A%, nor does it change >} A%. So (0,0)" € A, for
1=1,...,e,n; = 0.
(1) If (b, z) € Al then: (b,0) ¢ A’ since (b,0%b,z) = {0, z), and {a + b, c) ¢ A,
for any c € {0, 1, 2} since {a+b, c)Xb, z) = {a, c+z) € {{a,0),{a, x),{a,—x)}
{w([p)), ¥([p]?), ---»¥([p]?)}. We must have (b, —x) € A. to have Y} A, =
0,0). So (b,z)y € A iff (b, —x) € A} iff A} = {(b,z),<b,—x),<0,0)"} for
b#(),anQ XZQ,HENO.
(2) If <b,0) € A, for some b # 0,a then {a + b,0) ¢ A, since {a + b,0){b,0) =
{a,0). Then A; = {{b,0)",0,0)"} for some t,n € Ny, and since Y, A; =
<0,0), then t = 2m for some m.
O

Lemma 4.2.3. If (Z;,[p], @) is accepted, ord,(p) = 6, and o =2 (mod 6), then
¥([p]) =<a,z) with x =1 or —1, and A} takes one of the following forms:

(1) H<a7 —£L'>, <b7 LL‘>, <b7 —$>, <Oa O>nB’7 ne No

2) {<a,—x),{b,0)*™,<0,0)"}, m,neN,

(3) {<b,x),{a +b,x),{0,0)"}, neN,, or

(4) {<b, —z),{a + b,0)*™T1.<0,0)"}, m,n e N,,

where a and b are distinct nonzero elements of Zo X Zs.

Proof. Suppose (Z; ,[p],«) is accepted, ord,(p) = 6, and o = 2 (mod 6). Then
there exist positive integers e, f and multisets Ay, ..., A, By, ..., By of elements of
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Z, which satisfy conditions (1)-(5) from the definition of an accepted triple. Let
i€{l,...,e}. Since @ =2 (mod 6), and B(Z}, [p], o) = mord,(p) for some positive
integer m such that mord, (p) = a > (m—1)ord,(p), then B(Z;, [p],a) = a+4. By
(2') of theorem 1.3.2, A’ has no internal sum in {¥([p]), ¥ ([p]?), ¥ ([p]?), ¥ ([p]*)} =
{{a, x),{0,—x),{a,0),{0,z)}. Further, by (3’) and (4') of theorem 1.3.2, we have
DA = 9([p°) = {a,—x) for j = 1,...;e, and Y} B} = ¢([p]*) = <0,z) for i =
1,...,f. It can be seen then that the only elements of Zs x Zs x Zs which can
be in A} are of the form (a, —x),{b,0),{b, z),{b,—z), or {0,0) for b # 0,a. As
before, only ¢b, 0),¢0,0) may be repeated within the same A%, and (0, 0)" € A’ for
1=1,...,e,n; = 0.

(1) Suppose <a,—z),{b,x) € A’ for some b # 0,a. Then ¢b,0),{a + b,z),{a +
b,0y,{a + b,—x) ¢ A’ since (b, x)b,0) = {a,—x)Xb,z)Xa + b,z) = {0, z),
(b, x)a+b,0y = {a,z), (b, x)a+b, —x) = {a,0). And {a,—z)? (b, z)* ¢ A,
but {a, —x)b, ) # {a,—x), so (b, —x) € AL, and A} = {{a, —x),<{b, x),

(b, —2),€0,0)"} with n € N,, and >, A} = {a, —z).

(2) Suppose now {a,—z) € A, and (b,z) ¢ A, for b # 0,a. If (b,—z) € A,
then {a + b, z),{a + b,0),{a + b, —x),{b,0) ¢ A’ since {a + b, zXb,—x) =
{a, 0y, {a+b,0%b, —x)Xa,—x) =0, x), (b, —x){b,0) = {0, —x), <b, —x)Xa +
b,—z) = {a,x). Then {(b,z) € A} for > A, = {a,—z), but we assumed
differently so (b, z),<{b,—z) ¢ A’ for b # a,0. If A = {{a,—z),<0,0)"},
then Y. AL = {a, —x). Also, if (b,0)*™ € A, for some m, then {a+b,0) ¢ A’
since <b,0){a + b,0) = {a,0), and A, = {{a,—z),{b,0)*™,<0,0)"} with
> AL = <{a, —z) still.

(3) If (a,—z) € A} then A/ is as in (1) or (2) above. So let {a,—z) ¢ A},
and <b,x) € AL. If (b,—z) € A} then we must also have {a,—z) € A}, so
{b,—z) ¢ A.. So the only remaining option is to have {a + b, z) € A} by the
argument in (1) above. And {b, z){a + b,x) = {a, —x), so this is sufficient
and A, = {{b, z),{a + b, z),{0,0)"} for some n € N,.

(4) Now let <b,—z) € A%, {a,—z) ¢ Al for some b # 0,a. So (b,x) ¢ A’
and as shown in (2) above, the only other element which may be in A} is
{a +b,0). Note (b, —x)Xa + b,0) = {a,—z), and {a + b,0)*™ = (0,0), so
Al = {b, —z),{a + b,0)*™+1 0,0)"} for some m,n € N,.

Note that if {a, —xz),{b,z),{b,—z) ¢ A, for b # a,0,i € {1,...,e} then > A} #
{a,—x), so there are no other cases. O

Definition 4.2.1. Given p,« from (Zy,[p],«), and {x,y,z) € Ly x Lz x Z3, if
ordy(p) > 2, @ = +1 (mod 3), and ¥([p]) = 1, pa. pay 50 V([P ) = (—a)u([p]) =
{—ap1, —aps, —aps), then define a function W : Zo xZoxZs — R and let the weight
of {x,y, z) be given by

if z=0
if z=aps (mod 3)
if z=—aps (mod 3)

W(<$, Y, Z>) =

== O

Since ord,(p) > 2, then ps = +1 (mod 3); with « = +1 (mod 3) also, then aps #
—aps (mod 3), and this function is well-defined.
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If A = {{z1,y1,21); -, {Tn, Yn, Zny} s a multiset in Lo x Lo X Zs, then let the
weight of A, denoted W(A), be given by

= Z W(zi, yir 2i))-
i=1
Note that for multisets S, ..., Sp in Lo x Lo x L3, W(U_,S,) = Z?:l W(Sy). Also,
if (Z;,[p], @) is accepted then W(B;) = 1 fori=1,..., f.

Corollary 4.2.1. If ordy(p) = 3, a = 1 (mod 3), ¥([p]) is given to be 0,z)
with x = +1, and (Z),[p], @) is accepted then W(A}) < 3 fori = 1,...,e, and
Sy W(AY) < 3e.

Proof. 1f ordy(p) = 3, a =1 (mod 3), ¥([p]) = €0, z) with 2 = +1 and (2}, [p], @)
is accepted, then lemma 4.2.1 holds, and A is restricted to one of six forms:

( ) (g<a7x>a<bv x),(a—i—b, 1‘>}}) = 1.5,
(2) W({<a7 _‘r>7 <ba _$>7 <a + bv _$>B) =3,
(3) W({{<av x>7 <a7 —(E>, <ba {E>, <b7 —1’>}) =3,
(4) W({{a, z),{a, -y, {b,0Y*™ }) = 1.5,
(5) W({<a,x),{b, —z),{a +b,0y>"+1}) = 1.5,
(6) W({<a,0)7,{b,0)F,{a+b,0)'}) = 0.
So W(A,) < 3, hence Y5, W(A}) < X5, 3 =3e. O

Corollary 4.2.2. If ord,(p) =6, a =1 (mod 6), ¥([p]) is given to be {a,z) with
a# 0,z = %1, and (Z),[p], o) is accepted then W(A;) < 1.5 fori =1,...;e, and
S W(AL) < 1.5e.

Proof. If ord,(p) = 6, a = 1 (mod 6), ¢([p]) = <{a,z) with a # 0,z = %1, and
(Zy,[p], @) is accepted, then lemma 4.2.2 holds, and A} is restricted to one of two
forms:

(1) W({<b, ZIJ>, <bv __x>’<(_)’0>n}) = 1.5,
W ({{<b, 0)°™,<0,0)" }) = 0.
So W(A!) < 1.5, hence Y, W(AL) < Y5 1.5 =1.5e. O

Corollary 4.2.3. If ordy(p) = 6, « =2 (mod 6), ¥([p]) is given to be {a,x) with
a # 0,z = =+1, and (Z,[p], @) is accepted then W(A}) < 2 fori =1,...e, and
Dot W(A)) < 2e

Proof. 1f ord,(p) = 6, a = 2 (mod 6), ¥([p]) = {a,z) with a # 0,2 = +1, and
(Z;,[p], @) is accepted, then lemma 4.2.3 holds, and A; is restricted to one of four
forms:

( ) W({la, =2, (b, xp, <b, —2),{0,0)"}) =
(2) W({{<a, =), (b,0*™,€0,0)" }) = 5
( ) W({<b, x),<a +b,2),{0,0)"}) =
(4) W({<b, =), {a + b,0)y*™+1 (0, 0>”}}
So W(AL) < 2e, hence ;| W(A)) < Y72 =2e. O

Lemma 4.2.4. If (Z), [p], @) is accepted, then > 5_ |A; —{<0,0)™ } | = 2pe, where
p= %’371 is the elasticity of M (p®x, p®y).
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Proof. 1f (Zy, [p], a) is accepted, then by condition (5) from the definition of an
accepted triple, f/e = (o + f — 1)/a = p. By condition (1) from the deﬁniton

offmn accepted triple, | Ji_; A; = Q;:l B;, so Ui, (A; — {40,001 }) = Uf
{<0,0)"}). Then Y7, |A; = £¢0,0)"}| = 3/_, 1B; — {€0,0)}| > 2f since
|B; — £€0,0)" } | =2 foralli =1,..., f. So > i, A — {<0,0)" } | = 2f =2pe. O
Lemma 4.2.5. If (Z;,[p],«) is accepted, ordy(p) > 2 and o = £1 (mod 3), then
Sy W(ALY) = pe, where p = %‘H is the elasticity of M (p®x, p“y).

Proof. 1f (Z}, [p], ) is accepted, then by (5') of theorem 1. 3 2, f/e = p, SO pe = f

And since 1 < W(B)), then pe = f = sz:l Z U Bi)
W(Ui_, A = 25, W(AL) by (1) of theorem 1. 3 2.

Corollary 4.2.4. (Z;,[p], @) is not accepted if one of the following is true:
(1) ordy(p) =3, @ =1
(2) ord,(p)=6,a=1, or
(3) ordy(p) =6, a =2

Proof. By way of contradiction, suppose (Z,, [p], @) is accepted.

(1) Let ord,(p) = 3, = 1 (mod 3). By corollary 4.2.1, since (Z;,[p], @) is
accepted, then >{_; W(A;) < 3e. If this is true, then by lemma 4.2.1 we
have |A; — {€0,0)"}| < 4 for i = 1,...,e, and we get 2pe < Y7_; |A; —
{<0,0>™} | < 4e by lemma 4.2.4, so 2p < 4and p < 2. But § = a +2
by lemma 4.2.1, so p = (o« + f —1)/a = (2a + 1)/ac > 2, and this is a
contradiction, so (Z,, [p], @) is not accepted.

(2) Let ordy(p) =6, a =1 (mod 6). So f = o+ 5 by lemma 4.2.2, and p =
(a—i—ﬂ—l)/a = (2a+4)/a > 2. Then we have 2e < pe < >i_, W(A}) < 1.5¢
by lemma 4.2.5 and corollary 4.2.2, and this is a contradiction so (Z,;, [p], @)
is not accepted.

(3) Let ordy(p) = 6, & =2 (mod 6). So f = o+ 4 by lemma 4.2.3, and p =
(a+p-1)/a = (2a+3)/a > 2. Then we have 2e < pe < >7_, W(A’) < 2e
by lemma 4.2.5 and corollary 4.2.3, and this is a contradiction so (Z;;, [p], @)
is not accepted.

O

We are now able to prove theorem 4.2.1.

Proof of Theorem 4.2.1. The if statement is done by corollary 4.2.4, so we begin
proving the only if statement by contradiction.
(1) If ordy(p) = 1, then p® =1 (mod y) for all a, and (Zj, [p], «) is accepted
by theorem 2.1.1.
(2) If ordy(p) = 2, then (Z,[p], @) is accepted by theorem ?7?.
(3) Let ord,(p) = 3, and fix ¥([p]) =<0, z) with = # 0.
If a =0 (mod 3), then p* =1 (mod y), and (Z,, [p], @) is accepted by
theorem 2.1.1.
If a =2 (mod 3), then S =a+1,s0 p=(a+8—1)/a =20/a = 2. By
(3') of theorem 1.3.2, 3, A} = ¢([p]'~*) = ¢([p]*) = 0, —x) for j = 1, .., e,
and Y, B = ([p]~*) = ¢([p]) = 0,z) for j = 1,..., f. Finally, by (2') of
theorem 1.3.2, for j = 1,...., e, A} has no internal sum in {1([p])} = {€0, z)}.
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So let Af = {{a,0),<{b,2)?,<b, —z),{a + b,z)}, A, = {{a,),{a,—x),
(b,0),<b,—x)}. And let Bf = {(b,0,<{b, x>}, B = {{a,0),{a,x)}, B =
{<a,—z),{b,x),{a + b,z)}, and B} = {b, —x)*}, where a and b are dis-
tinct nonzero elements of Zg x Zs.

Thene =2, f =4,s0 f/e =2, and Uz2 1AL = {{a,0),{a, x),{a, —x),{b,0),
(b, x)?, (b, )%, {a + b, z)} = |J;_, B, and conditions (1'), (5') of theorem
1.3.2 are met.

Both A, A} have no internal sum of ¥([p]) = <0, x), so condition (2') of
theorem 1.3.2 is met.

Meeting conditions (3') and (4’) of theorem 1.3.2, we have > A] =
S, = 0, —x) = 0([p] ), and X5} = $B, = X B} = X5, = 0,y =
P(lp]™").

So (Z;,[p], @) is accepted when ord,(p) = 3, « =2 (mod 3).

(4) Let ord,(p) = 6, and fix ¥([p]) = <a,x) with a # 0,z # 0.

If a =0 (mod 6), then p* =1 (mod y), and (Z,, [p], @) is accepted by
theorem 2.1.1.

If « = 3, then f = a +3 = 6 since ordy(p) = 6, dp—(a+5—
1)/a = 8/3. By theorem 1.3.2, Y A, = ¢([p]'™*) = ¥([p]*) = <0,z)
for j = 1,...e, and 3, B; = ([p] ) = ¢([p]°) = {a,0) for j = 1,..., f.
Further, by (2’) of theorem 1.3.2, for j = 1,..., e, Aj has no internal sum in
{w([p]), ¥ ([P]*), ¥ ([pP°)} = {<a, z), €0, =), {a, 0)}.

Solet A} = {<b, —z)?,{a + b,0)%}, A} = {<a,—2),{b,0)",{a + b, —z)},
and Ay = {0,z)}. And let By = By = ... = B, = {<b,0),{a + b,0)}, and
By = {<0,z),<a,—x),{b,—z)? {a + b,0),{a + b,—z)}, where a and b are
distinct nonzero elements of Zy X Zs.

Thene =3, f =8, s0 f/e =8/3 and U?=1 Al = {0, z),<{a, —x),{b,0)7,
b, —z)*,{a+b,0)",{a +b,—x)} = U§:1 B, and conditions (1’), (5') of
theorem 1.3.2 are met.

None of A}, A}, A% have internal sums in {{a, z),<0, —z), {a,0), so con-
dition (2') of theorem 1.3.2 is met.

Meeting conditions (3’) and (4’) of theorem 1.3.2, we have > A} =
SAL, =3 A, =0,x), and X B = ... = >, B, =0, ).

So (Z;, [p], @) is accepted when a = 3, and by theorem 2.2.1 and the
equivalence theorem, it follows that (Z;, [p], @) is accepted when ord,(p) =
6 and a =3 (mod 6).

If « = 4, we have 8 = 6 and p = 9/4. By theorem 1.3.2, } A} =
Y([p]®) = (a,0) for j = 1,...,e, and 3B} = ¢([p]*) = 0,—x) for j =
L, ..., f. Further, by (2’) of theorem 1.3.2, for j = 1, ..., ¢, A has no internal
sum in {{a, x),<0, —x)}.

Solet A} = Ay = {((a, ~2)?. (5.0} Ay = Af = f{a, ~2)?.a + b0},
And let B = ... = By = {{a,—2),<{b,0),{a +b,00}, By = {{a,—z)*},
where a and b are distinct nonzero elements of Zo X Zs.

Then e =4,f =9, 50 f/e = 9/4 and |J;_, A; = {{a, —2)'2,{b,0)%,
{a+b,008} = U?:1 B!, and conditions (1), (5’) of theorem 1.3.2 are met.

None of A, ..., A} have internal sums in {{a,z),{0, —z)}, so condition
(2') of theorem 1.3.2 is met.



ON THE ACCEPTED ELASTICITY OF ARTITHMETIC CONGRUENCE MONOIDS 37

Meeting conditions (3') and (4’) of theorem 1.3.2, we have > A} = ... =
M A, =<a,0y, and X B} = ... = > B} =0, —x).

So (Z;,[p], @) is accepted when a = 4, and by theorem 2.2.1 and the
equivalence theorem, it follows that (Z;, [p], @) is accepted when ord,(p) =
6 and a =4 (mod 6).

If « = 5, we have 8 = 6 and p = 2. By theorem 1.3.2, 3, A} = ¢([p]*) =
0,—xz) for j =1,...,e, and 3, B = ¢([p]) = {a,z) for j = 1,..., f. Further,
by (2') of theorem 1.3.2, for j = 1,...;e, A} has no internal sum of {a, z).

So let A} = {<0,2)*,<0, —)?}, A5 = {<a,0)*,<0, —2)}. And let B} =
o= By = {{a,0),40,2)}, B} = {<{a,0),{0,z),{0, —x)>}, where a and b are
distinct nonzero elements of Zg X Zs.

Thene =2, f = 4,50 f/e = 2and | J7_, A} = {40, 2)*,€0, —x),{a,0)*} =
Ule B;, and conditions (1’), (5") of theorem 1.3.2 are met.

Neither A} nor A, contain an internal sum of {a, z:), so condition (2') of
theorem 1.3.2 is met.

Meeting conditions (3') and (4') of theorem 1.3.2, we have Y A} =
M A, =<0,—z), and Y B} = ... = Y. B} ={a,z).

So (Z;,[p], @) is accepted when a = 5, and by theorem 2.2.1 and the
equivalence theorem, it follows that (Z;, [p], @) is accepted when ord,(p) =
6 and a =5 (mod 6).

[l
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