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1. Foreword

Reader, beware! This manuscript was produced as an extension of [1]. However, it

appears that its contents are known already. A reviewer wrote: “The results follow

from classical results combining Minkowski’s class group bound from the geome-

try of numbers with Gauss relation between binary quadratic forms and quadratic

number fields.”

One further comment: by an appropriate substitution x → x + ky, we may

assume that form f(x, y) = x2 + mxy + ny2 has m = 1. That is, without loss we

may consider only the form f(x, y) = x2+xy+ny2. This fact was observed after the

manuscript was decisively rejected, so it seemed pointless to update the manuscript.

2. Introduction

Representation of integers by quadratic forms is a classical problem, with major

contributions by Fermat, Euler, Lagrange, and Gauss. We consider those forms that

are binary, quadratic, monic, and with a cross term. Specifically, given m,n ∈ Z
with associated monic quadratic form f(x, y) = x2 + mxy + ny2, we define τ =

τ(m,n) = |m2 − 4n|, the absolute value of the discriminant of this form. We will

study τ to determine which integers f(x, y) represents.

Recently in [3], the form τ(1, 1) = 3 was fully analyzed. More recently in

[1], the primes represented by forms τ(1, 1) = 3 and τ(1,−1) = 5 were deter-

mined. We extend these results to all forms with prime τ , provided Condition

P holds (as defined below). We have verified condition P, computationally, for

τ = 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 53, 61, 67, 101, 163, 173, 197. It likely holds
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for other τ as well, as only τ < 200 were tested. It appears that τ = 31 is the first

prime for which Condition P fails.

Our results are restricted to τ prime. Note that if τ is prime, then m must be

odd, and hence τ is also odd. We classify τ into cases via the following.

Definition 2.1. Let τ ∈ N be an odd prime. We say that τ is of Type I if τ ≡ 3

(mod 4); we say that τ is of Type II if τ ≡ 1 (mod 4).

Note that, by some simple case analysis, if τ = 4n−m2 (i.e. 4n > m2), then τ

is of Type I. If, instead, τ = m2 − 4n (i.e. m2 > 4n), then τ is of type II. The set

of representable integers is a monoid under multiplication.

Lemma 2.2 (from [1]). Let m,n ∈ Z and set Km,n = {x2+mxy+ny2 : x, y ∈ Z},
the set of representable integers. Then (Km,n,×) is a monoid.

Proof. Closure follows from the observation that (a2+mab+nb2)(c2+mcd+nd2) =

(ac−nbd)2 +m(ac−nbd)(bc+ad+mbd) +n(bc+ad+mbd)2. Identity follows from

1 = 12 +m(1)(0) + n(0)2.

We now define K′m,n = {x2 + mxy + ny2 : x, y ∈ Z, gcd(x, y) = 1}, a subset of

Km,n. Note that all nonzero squarefree elements of Km,n are in K′m,n (in particular,

all primes). We call Km,n of type I/II, based on whether τ = |m2 − 4n| is of type

I/II. Note that the type of Km,n is determined solely by τ , independently of choice

of m,n. For example, 5 = τ(1,−1) = τ(3, 1). Theorem 4.8 will prove that Km,n
depends only on τ and Condition P, to be defined below (hence K1,−1 = K3,1).

Let τ be an odd prime. We define the set Pτ as follows, using Legendre symbols

(for this and other standard notation, see [2]).

Pτ =

{
{p prime : p ≤

√
τ
3 ,
(
p
τ

)
= 1} τ is of Type I

{p prime : p ≤
√

τ
3 ,
(
p
τ

)
= 1} ∪ {−1, τ} τ is of Type II.

Note that Pτ is a finite set of integers, all prime (except perhaps −1). Most of

our results require the following condition. It states that all elements of Pτ must

be representable.

Pτ ⊆ Km,n (Condition P)

We determine all representable primes (in Theorems 3.1 and 4.6). We then find

all representable integers (in Theorem 4.8). A prime turns out to be representable

if and only if it is a quadratic residue modulo τ ; a positive integer turns out to

be representable if and only if each quadratic nonresidue prime in its factorization

appears to an even power.

Computational evidence suggests that our results hold when τ is not prime.

However we have been unable to remove either this restriction, or Condition P.
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3. Preliminaries

Our first result proves non-representability for roughly half of Z. If t ∈ Z is a

quadratic nonresidue, then it is not representable. Theorem 3.1 does not require

Condition P. Theorems 4.6 and 4.8 provide a converse to Theorem 3.1; both require

Condition P.

Theorem 3.1. Let m,n, t ∈ Z with τ = |m2 − 4n| prime and τ - t. Suppose that t

is a quadratic nonresidue modulo τ . Then t /∈ Km,n.

Proof. We assume by way of contradiction the existence of a, b ∈ Z with t =

a2+mab+nb2. Multiplying by 4 and working modulo τ , we have 4t ≡ 4a2+4mab+

4nb2 ≡ (2a+mb)2+b2(4n−m2) ≡ (2a+mb)2. Hence 1 =
(
4t
τ

)
=
(
t
τ

)(
2
τ

)2
=
(
t
τ

)
= −1,

a contradiction.

We next consider the special case of representing prime τ itself. If τ is of Type

I, then τ can always be represented as f(−m, 2) = (−m)2 + m(−m)2 + 4n =

−m2 + 4n = τ . If τ is of Type II, there is no such nice formula. For example, 37 =

τ(1,−9) ∈ K1,−9 as 37 = f(31, 12). For the slightly larger prime 97 = τ(11, 6) ∈
K11,6 as 97 = f(−116837, 11208). Condition P allows us to avoid this difficulty by

assuming that τ is represented.

We now consider the case of representing −1. By Fermat’s theorem on the sum

of two squares, those τ of Type II can be written as the sum of two squares. If one

of those squares is 12 or 22, then −1 will be representable by Lemma 3.2. Otherwise,

we avoid this difficulty by imposing Condition P. The smallest prime of type II for

which Lemma 3.2 doesn’t apply is 41 = 42 + 52.

Lemma 3.2. Let m,n ∈ Z with τ = m2 − 4n prime of type II. If there is some

k ∈ Z with τ = 1 + k2 or τ = 4 + k2, then −1 ∈ Km,n.

Proof. If τ = 1 + k2, we have f(−m − k, 2) = (−m − k)2 + m(−m − k)2 + 4n =

k2 − (m2 − 4n) = −1. If τ = 4 + k2, we first note that m, k are both odd. Then, we

calculate f(−m−k2 , 1) = 1
4 (k2 −m2 + 4n) = −1.

Lemma 3.3 gives a condition for a monoid of type II to be nicely symmetric

around 0. That condition is always met if Condition P holds.

Lemma 3.3. Let m,n ∈ Z with τ = m2 − 4n prime of type II. Suppose that

−1 ∈ Km,n. Then, for every t ∈ Z, t ∈ Km,n if and only if −t ∈ Km,n.

Proof. Apply Lemma 2.2 to t = (−1)(−t) and −t = (−1)(t).

If, instead, the monoid is of type I, then it contains no negative integers at all.

Lemma 3.4. Let m,n ∈ Z with τ = 4n−m2 prime of type I. Then Km,n ⊆ N0.
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Proof. Let a, b ∈ Z. Since 4n > m2, we must have n > 0. Set s = m√
n

, and c = b
√
n.

We have a2 +mab+nb2 = a2 +sac+c2 = 2+s
4 (a+c)2 + 2−s

4 (a−c)2. Since 4n > m2,

|s| < 2 and hence both 2+s
4 and 2−s

4 are positive. Thus a2 + mab + nb2 ≥ 0, with

equality only for a = b = 0.

4. Representing Quadratic Residues

We turn now to the question of representing quadratic residues. This is harder than

Theorem 3.1, as not all quadratic residues are representable. First, in several steps

we prove Theorem 4.6, which resolves representation of primes that are quadratic

residues. Then, we prove Theorem 4.8, which resolves representation of all integers.

This next lemma, relying on the law of quadratic reciprocity, is the starting

point toward Theorem 4.6. It will be needed for all primes except 2, τ .

Lemma 4.1. Let m,n ∈ Z with τ = |m2 − 4n| prime. Let p be any odd prime

different from τ . Then p is a quadratic residue modulo τ , if and only if m2 − 4n is

a quadratic residue modulo p.

Proof. Suppose first that m2 − 4n > 0. By quadratic reciprocity, 1 =(
m2−4n

p

)(
p

m2−4n
)
, since m2 − 4n ≡ m2 ≡ 1 (mod 4). On the other hand, if

m2 − 4n < 0, then (−1)(p−1)/2 =
(
τ
p

)(
p
τ

)
, since τ ≡ −(m2 − 4n) ≡ −1 (mod 4).

But also
(
τ
p

)
=
(−1
p

)(
m2−4n

p

)
= (−1)(p−1)/2

(
m2−4n

p

)
. In both cases, 1 =

(
m2−4n

p

)(
p
τ

)
.

Our approach to prove that some p ∈ Km,n will be to start with pt ∈ Km,n for

some integer t. The following strong lemma shows that if p is a nonresidue modulo

τ , then not only is p not in K′m,n, but no multiple of p is in K′m,n either. It also

gives examples of nonrepresentible quadratic residues. If p, q are distinct, prime,

nonresidues, then pq /∈ K′m,n. A simple argument then shows that pq /∈ Km,n, even

though pq is a quadratic residue.

Lemma 4.2. Let m,n ∈ Z with τ = |m2 − 4n| prime. Let p be any odd prime

different from τ and let t ∈ Z. If p is a quadratic nonresidue modulo τ , then pt /∈
K′m,n.

Proof. We assume by way of contradiction the existence of a, b ∈ Z with pt =

a2 + mab + nb2 and gcd(a, b) = 1. If p|b, then p|(pt − mab − nb2), so p|a, which

contradicts gcd(a, b) = 1. Hence p - b, and we can choose an integer c so that cb ≡ 1

(mod p). Working modulo p, we have 0 ≡ a2 +mab+ nb2 ≡ b2((ac)2 +m(ac) + n).

Hence 0 ≡ 4((ac)2+m(ac)+n) ≡ (2ac+m)2+4n−m2, and thus (2ac+m)2 ≡ m2−4n

(mod p). Thus m2 − 4n is a quadratic residue, modulo p. By Lemma 4.1, p is a

quadratic residue modulo τ ; this contradicts hypothesis.

Since every odd prime τ has quadratic nonresidues, we can apply Dirichlet’s

theorem on arithmetic progressions to find some odd prime p 6= τ that is a quadratic
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nonresidue modulo τ . Applying Lemma 4.2 to this p and to t = 0, implies that

0 /∈ K′m,n.

We now present an analogue of Lemma 4.2 for p = 2.

Lemma 4.3. Let m,n, t ∈ Z with τ = |m2 − 4n| prime. If 2 is a quadratic non-

residue modulo τ , then 4t /∈ K′m,n.

Proof. Since
(
2
τ

)
= −1, by the second supplement to the law of quadratic reci-

procity, we must have m2 − 4n = ±τ ≡ ±3 (mod 8). A simple case analysis shows

thatm,n are both odd. Assume now by way of contradiction the existence of a, b ∈ Z
with 4t = a2 +mab+nb2 and gcd(a, b) = 1. In particular, a, b cannot both be even.

If a, b are both odd, then a2 + mab + nb2 is also odd, a contradiction. If b is odd

and a = 2k is even, we have 0 ≡ (2k)2 +m(2k)b+nb2 ≡ b(2mk+nb) (mod 4). But

now 4|(2mk + nb), so nb is even and hence b is even, a contradiction. Lastly, if a is

odd and b = 2j is even, we have 0 ≡ a2 +ma(2j) + n(2j)2 ≡ a(a+ 2mj) (mod 4).

But now 4|(a+ 2mj), so a is even, a contradiction.

We now represent, not yet an arbitrary prime, but some integer multiple thereof.

The condition p >
√

τ
3 is why most of Condition P is imposed. An improvement

here would equally improve Condition P.

Lemma 4.4. Let m,n ∈ Z with τ = |m2 − 4n| prime. Let p be any odd prime

different from τ . If p is a quadratic residue modulo τ , then pt ∈ K′m,n, for some

t ∈ Z. If p >
√

τ
3 , then we may assume that 0 < |t| < p.

Proof. By Lemma 4.1, there is some r ∈ Z such that r2 ≡ m2 − 4n (mod p).

Choose s ∈ Z such that 2s+m ≡ r (mod p). We have 4s2 +4ms+4n ≡ 0 (mod p),

and hence s2 +ms+n ≡ 0 (mod p). Hence, for some t′ ∈ Z, there is representation

t′p = f(s, 1).

We return now to the choice of s, and try to find a different choice (but still equiv-

alent modulo p), which will make |t′| small. Consider the quadratic real, integer-

valued, polynomial g(x) = (s + xp)2 + m(s + xp) + n. For all x ∈ Z, g(x) will

not only be integer-valued, but a multiple of p. g(x) has vertex at k′ = − 2s−m
2p .

We calculate g(k′) = 4n−m2

4 , and g(k′ + 1
2 ) = g(k′ − 1

2 ) = 4n−m2

4 + p2

4 . Choose

an integer k ∈ [k′ − 1
2 , k
′ + 1

2 ]. We have g(k) ∈ [ 4n−m
2

4 , 4n−m
2

4 + p2

4 ]. Hence,

|g(k)| ≤ | 4n−m
2

4 | + |p
2

4 | =
τ
4 + p2

4 < 3p2

4 + p2

4 = p2. Hence, for some t with |t| < p,

we have tp = g(k) = f(k, 1). We have t 6= 0 since 0 /∈ K′m,n.

This next lemma is a generalization of a result found in [3]. It shows that if

prime p and pt are both representable, then t is also representable.

Lemma 4.5. Let m,n ∈ Z with τ = |m2 − 4n| prime. Let t, p ∈ N with p prime. If

tp, p ∈ Km,n, then t ∈ Km,n.
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Proof. By hypothesis, there are integers a, b, c, d with tp = a2 + mab + nb2 and

p = c2+mcd+nd2. Since p is prime, in fact gcd(c, d) = 1. We calculate b2p−d2tp =

b2(c2 +mcd+ nd2)− d2(a2 +mab+ nb2) = (bc− ad)(mbd+ bc+ ad). Hence either

p|(bc− ad) or p|(mbd+ bc+ ad), which splits the proof into two cases.

Suppose first that p|(bc − ad). There is some r ∈ Z with rp = bc − ad. Set

y = a + rnd and x = b − rc. We substitute for a, b to get rp = r(c2 + mcd +

nd2)− rmcd− yd+ xc, so 0 = −rmcd− yd+ xc and hence c(x− rmd) = dy. Since

gcd(c, d) = 1, there is some w ∈ Z with y = cw. Substituting, we get x = d(w+rm).

Hence a = cw − rnd and b = d(w + rm) + rc. We claim that t = w2 +mwr + nr2,

since (w2 +mwr+nr2)(c2 +mcd+nd2) = (cw− rnd)2 +m(cw− rnd)(d(w+ rm) +

rc) + n(d(w + rm) + rc)2 = a2 +mab+ nb2 = tp.

Suppose now that p|(mbd+bc+ad). There is some r ∈ Z with rp = mbd+bc+ad.

Set y = a − rnd and x = b − rc. We substitute for a, b to get rp = r(c2 + mcd +

nd2) + mxd + xc + yd, so 0 = mxd + xc + yd and hence d(mx + y) = c(−x).

Since gcd(c, d) = 1, there is some w ∈ Z with −x = dw. Substituting, we get

y = w(dm + c). Hence a = w(dm + c) + rnd and b = −dw + rc. We claim that

t = w2 + mwr + nr2, since (w2 + mwr + nr2)(c2 + mcd + nd2) = (w(dm + c) +

rnd)2 +m(w(dm+ c) + rnd)(−dw + rc) + n(−dw + rc)2 = a2 +mab+ nb2 = tp.

We now prove that all primes that are quadratic residues are representable,

subject to Condition P.

Theorem 4.6. Let m,n ∈ Z with τ = |m2 − 4n| prime. Suppose that Condition P

holds. Then p ∈ Km,n for every prime p that is a quadratic residue modulo τ .

Proof. By way of contradiction, let p be the smallest prime with
(
p
τ

)
= 1 and

p /∈ Km,n. If p ≤
√

τ
3 , then p ∈ Pτ , which contradicts Condition P.

We now choose t ∈ Z to have minimal absolute value to satisfy both 0 < |t| < p

and pt ∈ K′m,n. Note that such a t exists by Lemma 4.4.

If t = 1 we contradict p /∈ Km,n. If τ is of Type I, t = −1 is impossible by

Lemma 3.4. If τ is of Type II and t = −1, then, by Condition P, −1 ∈ Km,n.

Applying Lemma 2.2, p = (−1)(tp) ∈ Km,n, a contradiction. Hence we may assume

that |t| > 1 and write |t| = p1p2 · · · pk, a product of (not necessarily distinct) primes,

each less than p.

Suppose that some pi ∈ Km,n; we will show that this is impossible. By Lemma

4.5, p t
pi
∈ Km,n. Hence p t

pi
= a2 + mab + nb2 for some a, b ∈ Z. We have

gcd(a, b)2|p t
pi

. If gcd(a, b) = p, then p2|pt, a contradiction. Hence gcd(a, b)2| tpi .

We now have p t
pi gcd(a,b)2

= ( a
gcd(a,b) )

2 +m( a
gcd(a,b) )(

b
gcd(a,b) ) + n( n

gcd(a,b) )
2 ∈ K′m,n.

This contradicts our choice of t. Hence each pi /∈ Km,n and in particular pi 6= τ .

Hence, each pi is a quadratic nonresidue modulo τ , otherwise by our choice of p

we must have pi ∈ Km,n. If any pi were odd, this would contradict Lemma 4.2. Hence

t = 2c for some c ∈ N, where 2 is a quadratic nonresidue modulo τ . If c = 1, then

tp = 2p is the product of a quadratic nonresidue and a quadratic residue. Hence tp
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is a quadratic nonresidue, and by Theorem 3.1, tp /∈ Km,n, a contradiction. Hence

c ≥ 2, but by Lemma 4.3, tp = 4(2c−2p) /∈ K′m,n, a contradiction.

We can now reproduce the known results. For the known τ = 3, of Type I, P3 =

∅, and Condition P holds vacuously. For the known τ(−1,−1) = 5, P5 = {−1, 5}.
−1 is representable by Lemma 3.2, so to check Condition P we need only find

5 = f(3, 1). For another example, take τ(3,−2) = 17. We have P17 = {−1, 2, 17}.
−1 is again representable by Lemma 3.2, so Condition P is verified once we find

2 = f(1, 1) and 17 = f(5, 8).

We turn now to the question of characterizing irreducibles in the monoid Km,n.

Due to Lemmas 3.3 and 3.4, we concern ourselves only with irreducibles in Km,n∩N,

itself a monoid.

Lemma 4.7. Let m,n ∈ Z with τ = |4n −m2| prime. Suppose that Condition P

holds. Then the irreducibles in monoid Km,n ∩ N are exactly those integers of the

form:

(1) p, where p is prime and a quadratic residue modulo τ ; and

(2) q2, where q is prime and a quadratic nonresidue modulo τ .

Proof. We have p ∈ Km,n by Theorem 4.6. We have q2 = f(q, 0) ∈ Km,n; it is

irreducible by Theorem 3.1. Now let t ∈ Km,n be some other irreducible. Write t =

p1p2 · · · pk, for not necessarily distinct primes pi. We must have k ≥ 2 by Theorem

3.1 again. If any pi ∈ Km,n, then by Lemma 4.5, t
pi
∈ Km,n, which contradicts

irreducibility. In particular, by Condition P, no pi can be τ . If any pi is odd, then

by Lemma 4.2, t /∈ K′m,n. But then, writing t = a2 +mab+nb2, there is some prime

r dividing gcd(a, b). We have r2 = f(r, 0) and t
r2 = (ar )2 + m(ar )( br ) + n( br )2. But

t
r2 > 1 since t is not among the two types of irreducibles already described. Hence t

is reducible, which is a contradiction. The remaining possibility is that t is a power

of 2, where 2 is a quadratic nonresidue. An even power of 2 may be written as a

product of irreducibles 22, while an odd power of 2 is not in Km,n by Theorem 3.1.

Hence no such t can exist.

With the irreducibles we may easily determine the full monoid Km,n. The state-

ment of Theorem 4.8 is similar to a well-known theorem on representing integers as

the sum of two squares, i.e. the quadratic form 4 = τ(0, 1). We recall also Lemmas

3.3 and 3.4, which combine with Theorem 4.8 to resolve the membership question

for negative integers.

Theorem 4.8. Let m,n ∈ Z with τ = |4n−m2| prime. Suppose that Condition P

holds. Let t ∈ N. Then t ∈ Km,n if and only if the prime decomposition of t contains

no prime, that is a quadratic nonresidue modulo τ , raised to an odd power.

Proof. Immediate from Lemma 4.7.
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