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On Subprime Recurrences
(author names suppressed for review)

Abstract. Mathematical legend John Conway invented a sequence that combines elements
of Fibonacci numbers and the Collatz problem: after adding the previous two elements, we
divide that sum by its least prime factor (but only if that sum is composite). This leads to some
very interesting structure, which has yet to receive the widespread attention it deserves. We
generalize from Fibonacci numbers to general second order recurrences, and prove a variety
of results for such sequences.

The Fibonacci sequence Fn = Fn−1 + Fn−2 (with F0 = 0, F1 = 1) is everybody’s
favorite recurrence (see, e.g., [5, 6, 7]). John Conway invented an interesting variation,
the subprime Fibonacci sequence. We include an operation after adding the previous
two terms: if the sum is composite, it is divided by its least (positive) prime factor.
That is,

an =
an−1 + an−2

B(an−1 + an−2)
,

where

B(x) =

{
lpf(x) x ∈ X
1 otherwise

.

Here lpf(x) denotes the least positive prime factor of x, X denotes the set of compos-
ites {n ∈ Z : |n| ≥ 2 and ∃a, b ∈ P, ab|n}, and P denotes the set of positive primes.
Conventionally we set lpf(x) = 1 for |x| ≤ 1, so B(x) = lpf(x) unless x is prime.

More generally, we can define the Conway subprime function on Z via

C(n) =
n

B(n)
,

with which the Conway subprime Fibonacci sequence is an = C(an−1 + an−2).
This family of subprime sequences (with various initial conditions) have interesting

structure, combining elements of Fibonacci sequences with elements of the famous
Collatz (3x+ 1) problem. Like with the Collatz problem, long-term behavior remains
unknown in general, although substantial progress was made in [4]. Also, a group of
undergraduate students generalized this to the subprime Tribonacci recurrence in [2].
Very few other papers have appeared even close to this area, e.g. [1] and [3].

We propose to generalize to arbitrary first- and second-order recurrences on Z. This
leads to many beautiful sequences and a wealth of interesting and accessible questions.

In particular, we consider the problem of fixing a0, a1, c1, c2 ∈ Z, and looking at
the subprime sequence an = C(c1an−1 + c2an−2) (for n ≥ 2). Here the special case
of c1 = c2 = 1 gives the original subprime Fibonacci sequence.

An important step to understanding these sequences is looking at end conditions,
such as cycles. For fixed c1, c2, we call [x0, x1, . . . , xn−1] a cycle or n-cycle if the
sequence beginning with a0 = x0, a1 = x1 satisfies ai = xi (mod n) for all i ≥ 0. In
particular, we say that [x0] is a 1-cycle if a0 = a1 = x0 leads to the constant sequence
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ai = x0 for all i ≥ 0. Note that [0] (or [0, 0], etc.) is always a 1-cycle, regardless of
c1, c2; we call any such cycle trivial. For convenience, let Z? denote the set of nonzero
integers.

We begin by considering cycles of the form [x] and [x,−x].

Theorem 1. The subprime sequence for any c1, c2 ∈ Z and any x ∈ Z? has a 1-cycle
[x] exactly when:

1. c1 + c2 ∈ P and lpf(x) ≥ c1 + c2; or
2. c1 + c2 = 1 and x /∈ X.

Proof. A nontrivial 1-cycle [x] arises exactly when x = C(c1x+ c2x) = x c1+c2
B(x(c1+c2))

,
i.e. exactly when c1 + c2 = B(x(c1 + c2)). In particular, c1 + c2 ∈ P ∪ {1}. If
c1 + c2 ∈ P, then x must have a prime factor (else B(x(c1 + c2)) = 1), and in
fact lpf(x) ≥ c1 + c2 (else B(x(c1 + c2)) = lpf(x)). If instead c1 + c2 = 1, then
B(x) = 1, so x /∈ X.

A similar result holds for the class of 2-cycles [x,−x].

Theorem 2. The subprime sequence for any c1, c2 ∈ Z and any x ∈ Z? has a non-
trivial 2-cycle [x,−x] exactly when:

1. c2 − c1 ∈ P and lpf(x) ≥ c2 − c1; or
2. c2 − c1 = 1 and x /∈ X.

Proof. A nontrivial 2-cycle [x,−x] arises exactly when x = C(−c1x + c2x) =
x −c1+c2

B(x(−c1+c2))
(and also −x = C(c1x − c2x) = −x c1−c2

B(x(c1−c2))
, which is alge-

braically equivalent). This occurs exactly when c2 − c1 = B(x(c2 − c1)). In par-
ticular, c2 − c1 ∈ P ∪ {1}. If c2 − c1 ∈ P, then x must have a prime factor (else
B(x(−c1 + c2)) = 1), and in fact lpf(x) ≥ c2 − c1 (else B(x(−c1 + c2)) =
lpf(x)). If instead c2 − c1 = 1, then B(x) = 1, so x /∈ X.

It turns out that the first order special case (i.e. an = C(c1an−1) for n ≥ 1) is
completely characterized by these simple cycles. Note that if c1 = 0 we immediately
fall into the trivial cycle [0].

Theorem 3. Consider the first order subprime sequence for any c1, a0 ∈ Z?. Then its
long-term behavior is determined by c1, as follows:

1. If c1 /∈ X and c1 > 0, then the sequence will fall into a 1-cycle.
2. If c1 /∈ X and c1 < 0, then the sequence will fall into some [x,−x] cycle.
3. If c1 ∈ X, then the sequence will diverge.

Proof. First consider c1 = 1. If a0 /∈ X, then the 1-cycle is immediate by Theorem 1
(taking c2 = 0). Otherwise, an =

an−1

B(an−1)
, so each successive term in the sequence

loses the smallest prime factor of the preceding term. This continues until all that is
left is (±) the largest prime factor of a0, and then the 1-cycle begins.

Now consider c1 ∈ P. If lpf(a0) ≥ c1, then again the 1-cycle is immediate. Other-
wise, suppose a0 has j prime factors (counted with multiplicity) strictly less than c1.
Now a1 =

c1a0
B(c1a0)

= c1
a0

lpf(a0)
, so a1 now has j − 1 prime factors strictly less than c1.

Continuing in this way we see that aj = cj1a
′
0, where a′0 is just a0 with its j smallest

prime factors removed. Now lpf(a′0) ≥ c1, so the 1-cycle begins at this point.
Next consider c1 = −1. If a0 /∈ X, then the 2-cycle is immediate by Theorem 2

(taking c2 = 0). Otherwise, an =
−an−1

B(−an−1)
, so each successive term in the sequence
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alternates sign, and loses the smallest prime factor of the preceding term. This con-
tinues until all that is left is (±) the largest prime factor of a0, and then the 2-cycle
begins.

Now consider −c1 ∈ P. If lpf(a0) ≥ −c1, then again the 2-cycle is immediate.
Otherwise, suppose a0 has j prime factors (counted with multiplicity) strictly less
than c1. Now a1 =

c1a0
B(c1a0)

= c1
a0

lpf(a0)
, so a1 now has j − 1 prime factors strictly less

than c1. Continuing in this way we see that aj = cj1a
′
0, where a′0 is just a0 with its

j smallest prime factors removed. Now lpf(a′0) ≥ −c1, so the 2-cycle begins at this
point.

Lastly, suppose c1 ∈ X. Now we have |an| =
∣∣∣ c1an−1

B(c1an−1)

∣∣∣ ≥ ∣∣∣ c1
lpf(c1)

an−1

∣∣∣ ≥
2|an−1|. Hence |an| ≥ 2n|a0| ≥ 2n.

Note that if c1 = 0 the second order sequence is really two interwoven first or-
der sequences: a2n = C(c2a2n−2) and a2n+1 = C(c2a2n−1), which are each fully
explained by Theorem 3. Henceforth we restrict to the case of c1, c2 ∈ Z?. We now
continue our study of 2-cycles [x, y] by restricting to x, y ∈ Z? via the following.

Lemma 4. Suppose the subprime sequence for some c1, c2 ∈ Z? and some x, y ∈ Z
has a nontrivial 2-cycle [x, y]. Then x, y ∈ Z?.

Proof. Suppose to the contrary that y = 0. Then 0 = y = C(c1x + c2y) =
c1x

B(c1x)

and hence c1x = 0. Since c1 6= 0 by hypothesis, we must have x = 0, so the 2-cycle
is trivial. The case x = 0 is similar.

We now offer a characterization of nontrivial 2-cycles.

Theorem 5. The subprime sequence for some c1, c2, x, y ∈ Z? has a nontrivial [x, y]
2-cycle, if and only if

1. B(c1y + c2x) = c1
y
x
+ c2; and

2. B(c1x+ c2y) = c1
x
y
+ c2.

Proof. Set b1 = B(c1x + c2y), b2 = B(c1y + c2x) for convenience. Suppose now
that we have a [x, y] cycle. Then x = C(c1y + c2x) =

c1y+c2x
b2

and y = C(c1x +

c2y) =
c1x+c2y

b1
. These rearrange to b2 =

c1y+c2x
x

and b1 =
c1x+c2y

y
, respectively.

Theorem 5 admits various corollaries.

Corollary 6. If the subprime sequence for some c1, c2 ∈ Z? admits a nontrivial [x, y]
cycle, then it also admits the cycle [kx, ky], for any k ∈ Z with

lpf(k) ≥ max(c1
y

x
+ c2, c1

x

y
+ c2).

These 2-cycles have some interesting number theoretic properties.

Corollary 7. Suppose the subprime sequence for some c1, c2 ∈ Z? admits a nontrivial
[x, y] cycle with y 6= −x. Set x′ = x

gcd(x,y)
, y′ = y

gcd(x,y)
. The following must hold:

1. Both c1
y
x
+ c2 and c1

x
y
+ c2 lie in P ∪ {1}, and are not equal; and

2. If c1
y
x
+ c2 ∈ P, then lpf(x) ≥ c1

y
x
+ c2 (otherwise x /∈ X); and

3. If c1 x
y
+ c2 ∈ P, then lpf(y) ≥ c1

x
y
+ c2 (otherwise y /∈ X); and
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4. xy
gcd(x,y)2

= lcm(x,y)

gcd(x,y)
= x′y′ divides c1; and

5. |x′| ≤ |c1| and |y′| ≤ |c1|; and
6. c2 > 0; and
7. c21 = (c2 −B(c1y + c2x))(c2 −B(c1x+ c2y)).

Proof. (1) If c1
y
x
+ c2 = c1

x
y
+ c2, then y

x
= x

y
. Hence x = ±y.

(6) c2 ≥ 0 follows from combining 1
c1
≤ x

y
≤ c1 with c1

y
x
+ c2 ≥ 1.

Corollary 8. Let c1, c2 ∈ Z?, and set S = {c2 − n : n ∈ P ∪ {1}}. If S does not
contain two distinct elements whose product is c21, then the subprime sequence with
c1, c2 admits no nontrivial 2-cycles.

Proof. Corollary 7(7).

For example, with c1 = 2, c2 = 3, we have S = {2, 1, 0,−2,−4, . . .}. No two
distinct elements of S have product 4 = c21. Indeed, nontrivial 2-cycles seem rather
rare due to these many conditions, but once one is found in a sequence there are in-
finitely many others due to Corollary 6.

We now demonstrate infinitely many examples of 2-cycles that are neither trivial
nor simple.

Proposition 9. Let a, b ∈ Z? with a + b ∈ P. Let c, x ∈ Z? with ac2 + b ∈ P,
lpf(c) ≥ a+ b, and lpf(x) ≥ max(a+ b, ac2 + b). Then the subprime sequence with
c1 = ac, c2 = b admits 2-cycle [x, cx].

Proof. We calculate B(c1y + c2x) = B(ac(cx) + bx) = B(x(ac2 + b)) = ac2 +
b = c1

y
x
+ c2 and B(c1x + c2y) = B(acx + b(cx)) = B(xc(a + b)) = a + b =

c1
x
y
+ c2.

For example, we could take a = b = 1, c = x = 2 in Proposition 9, which gives
cycle [2, 4] in subprime sequence c1 = 2, c2 = 1. However, all of the 2-cycles we
found have this structure, and we believe there are no others.

Conjecture 10. If the subprime sequence for some c1, c2, x, y ∈ Z has a 2-cycle
[x, y], then one of x, y must divide the other.

Our analysis of the first order case shows that if a cycle arises in a subprime se-
quence, it need not do so immediately. However, this is not true for the trivial cycle
[0]. We show that if it does not begin immediately with a0 = a1 = 0, it never does.

Proposition 11. Let c1, c2 ∈ Z?, and let a0, a1 ∈ Z, not both zero. Then this subprime
sequence will not fall into the trivial cycle [0].

Proof. Suppose otherwise; let n be minimal with an = an+1 = 0, so an−1 6= 0. Now
an+1 = C(c1an + c2an−1) = C(c2an−1) 6= 0, a contradiction.

There is much more to learn about cycles. For example, Figure 1 contains a plot
of the subprime sequence with c1 = 2, c2 = 5, a0 = 0, a1 = 1. It gets as big as
10932575866748112593 (which is a prime and approximately 1.09 × 1019), but at
n = 133581 it falls into a cycle of length 37790.
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Figure 1. Subprime sequence with c1 = 2, c2 = 5, a0 = 0, a1 = 1

We close with some families of sequences without cycles.

Theorem 12. Let c1, c2, a0, a1 ∈ N with gcd(c1, c2) > 1. Then this subprime se-
quence diverges.

Proof. Set k = lpf(gcd(c1, c2)), c′1 = c1
gcd(c1,c2)

, c′2 = c2
gcd(c1,c2)

. We have an =
c1an−1+c2an−2

B(c1an−1+c2an−2)
≥ gcd(c1,c2)

k
(c′1an−1 + c′2an−2) ≥ c′1an−1 + c′2an−2. Now the

non-subprime recurrence with c′1, c
′
2, a0, a1 is bigger than the Fibonacci sequence

Fn (easily proved by induction). Hence an ≥ Fn, which diverges.

Theorem 12 can be immediately generalized to allow c1, c2, a0, a1 ∈ Z? with
c1c2 > 0 and a0a1 > 0. More complicated are the cases with mixed signs, which
sometimes gives sequences that alternate sign (for a while?). There is more to learn
here. Our final result shows a familiar sequence that is also a subprime sequence.

Theorem 13. Let c1, a0, k ∈ Z?, and set a1 = a0k. Choose p ∈ P with p ≤ lpf(a1),
and set c2 = pk2 − c1k. This gives a subprime sequence that is also geometric,
namely an = kna0.

Proof. By strong induction, assume an−1 = kn−1a0 and an−2 = kn−2a0. Now an =

C(c1an−1 + c2an−2) = C(pkna0) =
pkna0

B(pkna0)
= pkna0

p
= kna0.
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