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Abstract

We look for functions that, evaluated symmetically on the angles of a
triangle and added, achieve their maximum at surprising values.
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It is well-known (e.g. in [1]) that for any plane triangle with angles θ1, θ2, θ3,
the function cos θ1 + cos θ2 + cos θ3 ≤ 3

2 , where 3
2 is achieved with an equilat-

eral triangle. This symmetric outcome is unsurprising, since the function is
symmetric in the three angles.

We consider therefore the question of finding simple, familiar, “nice” func-
tions f (x) on [0, π], such that the triangle function f (θ1) + f (θ2) + f (θ3) achieves
its maximum on a surprising triangle, i.e. neither equilateral nor degenerate.
Such a function f (x) (also the triangle function f (θ1) + f (θ2) + f (θ3)) would be
surprising at its maximum, i.e. maximal-ly surprising. The above example
shows that f (x) = cos(x) is not maximal-ly surprising, and perhaps it may
seem that such functions do not exist.

The natural approach to finding maximal values would be with Lagrange
multipliers. We seek maximal values of f (x) + f (y) + f (z), on the triangle formed
by intersecting the plane x + y + z = π with the first orthant. Unsurprising
maxima would be found on the boundary (i.e. if xyz = 0), or at the center (i.e.
x = y = z = π

3 ).
Here we will consider functions f (x) = cosm(x), for all natural m. We will

show that all odd m > 1 are maximal-ly surprising, while even m are not.
Further, the triangle function at these surprising triangles approaches a limit as
odd m → ∞, and we will determine this limiting value, which is 22/3 − 2−4/3.
The first few maximal-ly surprising triangles are illustrated in Figure 1, below.

First, we need a technical lemma. It will allow us to rule out maxima that
are nondegenerate and scalene.

Lemma 1. Let m ∈ N, and set g(x) = cosm(x) sin(x). Suppose θ1, θ2, θ3 ∈ [0, π]
are distinct with θ1 + θ2 + θ3 = π and g(θ1) = g(θ2) = g(θ3). Then θ1θ2θ3 = 0.
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Figure 1: The maximal-ly surprising triangles for f (x) = cosm(x) at m = 3, 5, 7.

Proof. We first prove that g(x) is unimodal on [0, π/2]. We calculate g′(x) =
−m cosm−1(x) sin2(x) + cosm+1(x) = cosm−1(x)(−m sin2(x) + cos2(x)) =
cosm−1(x)(−m + (m + 1) cos2(x)). Note that cosm−1(x) > 0 on [0, π/2), while
−m + (m + 1) cos2(x) is monotone decreasing from 1 down to −m. Hence g(x)
monotonically increases from g(0) = 0 to some maximum achieved at some
x?, then monotonically decreases down to g(π/2) = 0. Also g(x) is positive on
[0, π/2).

Next, we observe that if m is even then g(π − x) = g(x), so g(x) is unimodal
and positive on (π/2, π] as well. On the other hand, if m is odd then g(π− x) =
−g(x), so −g(x) is unimodal and positive on (π/2, π].

Now, suppose m is even. Each horizontal line y = M crosses g(x) in 0, 2,
3, or 4 places. 3 crossings occurs only for M = 0, and 2 crossings occurs only
if M is that unique maximum value, achieved once in [0, π/2) and again in
(π/2, π]. Suppose now that g(θ1) = g(θ2) = g(θ3), for distinct θ1, θ2, θ3. If M = 0
then {θ1, θ2, θ3} = {0, π/2, π} so θ1θ2θ3 = 0. Otherwise the three θ’s are chosen
from {x, π − x} ∪ {y, π − y} for some x, y. By the pigeonhole principle, two
must be chosen from the same set, so without loss we have θ1 = π − θ2. But
now π = θ1 + θ2 + θ3 = (π − θ2) + θ2 + θ3, so θ3 = 0 and hence θ1θ2θ3 = 0.

The case of m odd is simpler. Since g(x) is unimodal and positive on [0, π/2),
and negative on (π/2, π], if g(x) = M > 0 has at most two distinct solutions,
both in [0, π/2). Similarly, g(x) = M < 0 has at most two distinct solutions,
both in (π/2, π]. Hence g(x) = M can have three distinct solutions only for
M = 0, and again we have {θ1, θ2, θ3} = {0, π/2, π} so θ1θ2θ3 = 0.

We now present a technical lemma that locates the roots of a particular poly-
nomial. Its proof is tedious and computational, and is deferred until later.

Lemma 2. Let m ∈ N be odd with m ≥ 3. Set f (x) = xm−2 − 2(2x2 − 1)m−1,
x1 = 1− ln 2

3(m−1) , and x2 = 1− ln 2
3m . Then f (x) has two roots in (0, 1): one root is 1

2 ,
and the second root is contained in the interval (x1, x2) because f (x1) > 0 > f (x2).

Now we are ready for the main result.

Theorem 3. Let m ∈N with m ≥ 2, and set f (x) = cosm(x). If m is even, then f (x)
is not maximal-ly surprising, i.e. there is no maximal-ly surprising triangle. If instead
m is odd, then f (x) is maximal-ly surprising. Further, there is exactly one maximal-
ly surprising triangle, whose triangle sum f (θ1) + f (θ2) + f (θ3) is within 0.88

m−1 of the
limiting value 22/3 − 2−4/3 ≈ 1.190550789.

Proof. We first consider the domain boundary, i.e. θ1 + θ2 + θ3 = π in the first or-
thant. On that boundary, without loss of generality, θ3 = 0, so θ2 = π − θ1, and
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our triangle function is f (0) + f (θ1) + f (π − θ1) = 1 + cosm(θ1) + (−1)m cosm(θ1).
If m is even, then this is 1 + 2 cosm(θ1), which has maximum 3, which is the
global maximum since each of f (θi) achieves its maximum there. No interior
maxima can beat this, so even m causes f (x) to be not maximal-ly surprising.
We assume henceforth that m is odd. Now, this function is constant 1 on the
entire boundary, which we will show is not maximal.

We consider the Lagrangian L = f (θ1) + f (θ2) + f (θ3) + λ(θ1 + θ2 + θ3 − π),
with gradient ∇L =

(−m cosm−1(θ1) sin(θ1) + λ,−m cosm−1(θ2) sin(θ2) + λ,−m cosm−1(θ3) sin(θ3) + λ).

Setting∇L = 0 and rearranging, we find that we need both θ1 + θ2 + θ3 = π and
cosm−1(θ1) sin(θ1) = cosm−1(θ2) sin(θ2) = cosm−1(θ3) sin(θ3). Applying Lemma
1, we find that if θ1, θ2, θ3 are distinct, then θ1θ2θ3 = 0, which is on the boundary.

Since we are looking for interior Lagrangian zeroes, we may assume with-
out loss of generality that our angles are θ = θ1 = θ2 and π − 2θ = θ3. Set
x = cos θ, and note that cos θ3 = − cos(2θ) = −(2 cos2(θ) − 1) = −2x2 + 1.
So now we have reduced our problem to finding zeroes of the polynomial
g(x) = 2xm + (−2x2 + 1)m. Since 0 ≤ θ ≤ π

2 , we have x = cos θ ∈ (0, 1), where
the endpoints are excluded since this would not be interior.

Now, g′(x) = 2mxm−1 + (−4x)m(−2x2 + 1)m−1 = 2mx(xm−2− 2(−2x2 + 1)m−1),
whose zeroes coincide with the zeroes of h(x) = xm−2− 2(2x2− 1)m−1. We now
apply Lemma 2 to h(x), concluding that there are two zeroes: x = 1

2 , and an-
other x′ ∈ (1− ln 2

3(m−1) , 1− ln 2
3m ).

Now, x = 1
2 corresponds to an equilateral triangle, so this would not be

maximal-ly surprising if it were maximal. However, it is not maximal, since
the triangle function evaluates to 3( 1

2 )m < 1, even less than on the boundary.
Turning now to the other zero of h(x), x′, we set c = ln 2

3 and compute

(1)

f (x′) = 2(x′)m +
(

1− 2(x′)2
)m

≤ 2
(

1− c
m

)m
+

(
1− 2

(
1− c

m − 1

)2
)m

= 2
(

1− c
m

)m
−
(

1− 4c
m − 1

+
2c2

(m − 1)2

)m

≤ 2
(

1− c
m

)m
−
(

1− 4c
m − 1

)m

= 2
(

1− c
m

)m
−
(

1− 4c
m − 1

)m−1 (
1− 4c

m − 1

)
≤ 2e−c − e−4c− c2

2(m−1−c)

(
1− 4c

m − 1

)
,

where in the last step we used the standard bounds e−c− c2
2(x−c) ≤ (1− c

x )x ≤ e−c
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(valid for x > c). In the other direction, we have

(2)

f (x′) = 2(x′)m +
(

1− 2(x′)2
)m

≥ 2
(

1− c
m − 1

)m
+
(

1− 2
(

1− c
m

)2
)m

= 2
(

1− c
m − 1

)m−1 (
1− c

m − 1

)
−
(

1− 4c
m

+
2c2

m2

)m

≥ 2e−c− c2
2(m−1−c)

(
1− c

m − 1

)
− e−4c+ 2c2

m .

Note that as m→ ∞, both upper and lower bounds approach 2e−c − e−4c =
22/3 − 2−4/3. It only remains to estimate convergence rate.

We will bound the gap between the upper and lower bounds, which we call
E(m). We have

(3)
E(m) = 2e−c

(
1−

(
1− c

m − 1

)
e−

c2
2(m−1−c)

)
+ e−4c

(
e

2c2
m −

(
1− 4c

m − 1

)
e−

c2
2(m−1−c)

)
Set x1 = c2

2(m−1−c) and x2 = 2c2

m . Now, x1 = c2

2(m−1)

(
1− c

m−1
)−1. Since

(
1− c

m−1
)−1 ≤(

1− log 2
6

)−1
≤ 1.14, so x1 ≤ 1.14 c2

2(m−1) . Also, x2 ≤ 2c2

m−1 .

Since m ≥ 3 and c = ln 2
3 we have x1, x2 ∈ (0, 0.05). We multiply 1− e−x1 ≤

x1 on both sides by 1− c
m−1 and rearrange to find

1−
(

1− c
m− 1

)
e−x1 ≤ c

m− 1
(1− x) + x1 ≤

c
m− 1

+ 1.14
c2

2(m− 1)
.

We now multiply 1− e−x1 ≤ x1 on both sides by 1− 4c
m−1 and rearrange to

find

1−
(

1− 4c
m− 1

)
e−x1 ≤ 4c

m− 1
(1− x1) + x1,

and therefore

(4)

ex2 −
(

1− 4c
m − 1

)
e−x1 ≤ 4c

m − 1
(1− x1) + x1 + (ex2 − 1)

≤ 4c
m − 1

+ 1.14
c2

2(m − 1)
+ 2x2

≤ 4c
m − 1

+ 1.14
c2

2(m − 1)
+

4c2

m − 1
.
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Putting it all together, we find

E(m) ≤ 2e−c(c + 0.57c2) + e−4c(4c + 0.57c2 + 4c2)
m− 1

≤ 0.88
m− 1

.

We close by inviting the reader to look for other maximal-ly surprising tri-
angle functions, which may provide other magical values, like 22/3 − 2−4/3.
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1 Appendix: Proof of Lemma 2

Lastly, we turn to the proof of Lemma 2. Surely there are better proofs than the
one which follows, but after many attempts this is the nicest we could find.

Proof of Lemma 2. We have f (x) ≥ 0 exactly when xm−2 ≥ 2(2x2 − 1)m−1. Pro-
vided x 6= 1√

2
(and since m − 1 is even), this is equivalent to xm−2

2(2x2−1)m−1 ≥ 1.

Hence, provided x 6= 1√
2

, f (x) has the same sign as g(x) = ln xm−2

2(2x2−1)m−1 =

(m− 2) ln x− ln 2− (m− 1) ln(2x2 − 1).
Next, we prove that g(x) is monotone in x. Taking its derivative, we get

dg(x)
dx = m−2

x − 4x(m−1)
2x2−1 = (m−2)(2x2−1)−4x2(m−1)

x(2x2−1) = −2mx2−(m−2)
x(2x2−1) . If x ∈ (0, 1√

2
),

then both numerator and denominator are negative so g(x) > 0. If instead
x ∈ ( 1√

2
, 1), then the numerator is negative and the denominator is positive

so g(x) < 0. Hence f (x) is unimodular, increasing from f (0) = −2 up to a
(positive) maximum, then decreasing down to f (1) = −1, and therefore has two
roots. One root is easily found as 1

2 , since f ( 1
2 ) = 2−m+2 − 2−1(−2−1)m−1 = 0

(since m is odd). The theorem will be complete once we find the other root,
by proving that f (x1) > 0 > f (x2). To do this, we will need the well-known
bounds −u − u2 ≤ ln(1− u) < −u, which hold for all u ∈ (0, 1

2 ). Note that
since ln 2

3m < ln 2
3(m−1) ≤

ln 2
6 < 1

8 , each of 1− x1, 1− x2, 1− (2x2
1 − 1), 1− (2x2

2 − 1)

lie in (0, 1
2 ). Set δi = 1− xi for convenience.
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Now we will prove that g(x1) > 0, by calculating

(5)

g(x1) = (m − 2) ln(1− δ1)− ln 2− (m − 1) ln(1− (4δ1 − 2δ2
1))

≥ − ln 2 + (m − 2)(−δ1 − δ2
1) + (m − 1)(4δ1 − 2δ2

1)
= − ln 2 + δ1(3m − 2) + δ2

1(−3m + 4)

=
−(ln 2)(3m − 3)

3m − 3
+

(ln 2)(3m − 2)
3m − 3

+ δ2
1(−3m + 4)

=
ln 2

3m − 3
+ δ2

1(−3m + 4)

= δ1 + δ2
1(−3m + 4)

= δ1

(
3m − 3
3m − 3

+
(ln 2)(−3m + 4)

3m − 3

)
=

δ1

3m − 3
(3m(1− ln 2) + (4 ln 2− 3))

> 0,

where the final inequality follows since 3m(1− ln 2) ≥ 9(1− ln 2) ≈ 2.76, while
4 ln 2− 3 ≈ −0.23.

To prove that g(x2) < 0, we will recall that x2 = 1− ln 2
3m and instead treat

g(x2) := h(m) as a function in m. We will prove h(3) < 0, limm→∞ h(m) = 0, and
h(m) is increasing on (3, ∞). This will prove that h(m) is negative on (3, ∞), so
in particular it is negative at the desired m.

Taking m = 3, we compute g(1− ln 2
9 ) = h(3) ≈ −0.071 < 0. For large m, we

note that δ2 = ln 2
3m → 0, and compute

(6)

h(m) = (m − 2) ln(1− δ2)− ln 2− (m − 1) ln(1− 4δ2 + 2δ2
2)

= −(m − 2)δ2 + O(δ2
2)− ln 2 + 4(m − 1)δ2 + O(δ2

2)
= (3m − 2)δ2 − ln 2 + O(δ2

2)

=
(3m − 2)(ln 2)

3m
− ln 2 + O(δ2

2)

=
−2 ln 2

3m
+ O(δ2

2).

This proves that limm→∞ h(m) = 0, as desired. Next, we need the bound
ln t ≥ 2(t−1)

t+1 , which holds for all t ≥ 1 with equality only for t = 1. This
is proved because by rearranging (t − 1)2 ≥ 0 to t2 + 2t + 1 ≥ 4t and hence
1
t ≥

4
(t+1)2 , so the function ln t− 2(t−1)

t+1 is 0 at t = 1 and has positive derivative
in (1, ∞).

We set y2 = 2x2
2 − 1. An easy calculus exercise shows that 2x2 − x− 1 < 0

on (0, 1), so x2 > y2. We calculate x′2 = ln 2
3m2 = δ2

m , y′2 = 4x2x′2 = 4x2δ2
m . Recalling

that h(m) = (m− 2) ln(x2)− ln 2− (m− 1) ln(y2), we are now ready to calculate
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(7)

h′(m) = ln x2 +
m − 2

x2
x′2 − ln y2 −

m − 1
y2

y′2

= ln(x2/y2) +
(m − 2)x′2

x2
− 4(m − 1)x2x′2

y2

≥ 2(x2 − y2)
x2 + y2

+
(m − 2)x′2

x2
− 4(m − 1)x2x′2

y2
,

where in the last step we used the bound ln t ≥ 2(t−1)
t+1 with t = x2

y2
> 1. We

continue as

2(x2 − y2)
x2 + y2

+
(m − 2)x′2

x2
− 4(m − 1)x2x′2

y2

=
1

(x2 + y2)x2y2

(
2(x2−y2)x2y2 +(m−2)x′2(x2 +y2)y2−4(m−1)x2x′2(x2 +y2)x2

)
=

1
(x2 + y2)x2y2m

(
2(x2 − y2)x2y2m + (m − 2)δ2(x2 + y2)y2

− 4(m − 1)x2δ2(x2 + y2)x2
)

=
1

(x2 + y2)x2y2m
p(δ2),

(8)

where

(9)
p(δ2) = 2(x2 − y2)x2y2m + (m − 2)δ2(x2 + y2)y2 − 4(m − 1)x2δ2(x2 + y2)x2

= δ2

(
ln 2

3
(4δ3

2 − 18δ2
2 + 26δ2 − 11) + 4δ2

2 − 10δ2 + 4
)

,

where we use x2 = 1 − δ2, y2 = 1 − 4δ2 + 2δ2
2 , and m = ln 2

3
1
δ2

and simplify.

Now δ2 lies in (0, ln(2)
9 ), and it is a routine calculus exercise to prove that cubic

polynomial q(δ2) := p(δ2)
δ2

is decreasing on the interval (0, ln(2)
9 ), and hence is

bounded below by q( ln(2)
9 ) ≈ 1.15. In particular, p(δ2) > 0, so h′(m) > 0. Since

h(3) < 0 and limm→∞ h(m) = 0, in fact h(m) < 0 on (3, ∞), and hence g(x2) < 0
and f (x2) < 0, as desired.
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