Wolstenholme's Congruence for Lucas sequences

The recent paper [1] in this Monthly showed that $\sum_{k=1}^{p-1} \frac{1}{F_{k}^{2}} \equiv 0\left(\bmod F_{p}\right)$ for any odd prime p, a variation of a well-known result of Wolstenholme. Below we show a similar result involving both Fibonacci numbers and Lucas numbers. Recall that the Lucas sequence L_{n} has the same recursive relationship as the Fibonacci sequence, but with different starting values, namely $L_{1}=1, L_{2}=3$. Here the statement $a / b \equiv 0(\bmod n)$ means that $\operatorname{gcd}(b, n)=1$ and $a \equiv 0$ $(\bmod n)$.

Theorem. If p is an odd prime, then $\sum_{k=1}^{p-1} \frac{1}{L_{k}^{2}} \equiv 0\left(\bmod F_{p}\right)$.
Proof. We rewrite the sum as follows:

$$
\sum_{k=1}^{p-1} \frac{1}{L_{k}^{2}}=\sum_{k=1}^{\frac{p-1}{2}}\left(\frac{1}{L_{k}^{2}}+\frac{1}{L_{p-k}^{2}}\right)=\sum_{k=1}^{\frac{p-1}{2}} \frac{L_{k}^{2}+L_{p-k}^{2}}{L_{k}^{2} L_{p-k}^{2}} .
$$

It suffices to show that each term of this sum is congruent to $0\left(\bmod F_{p}\right)$. Let $1 \leq k \leq \frac{p-1}{2}$. We first show that each denominator is coprime to F_{p}. Since p is an odd prime, we have that $\operatorname{gcd}(2 k, p)=1$. By strong divisibility of the Fibonacci sequence, we get $\operatorname{gcd}\left(F_{2 k}, F_{p}\right)=F_{1}=1$. Applying the identity $F_{2 k}=$ $F_{k} L_{k}$ then yields $\operatorname{gcd}\left(L_{k}, F_{p}\right)=1$; hence $\operatorname{gcd}\left(L_{k}^{2} L_{p-k}^{2}, F_{p}\right)=1$ as required.

We now show that $L_{k}^{2}+L_{p-k}^{2} \equiv 0\left(\bmod F_{p}\right)$. Applying the identity $L_{n}=$ $F_{n+1}+F_{n-1}$ gives

$$
\begin{align*}
& L_{k}^{2}+L_{p-k}^{2}=\left(F_{k+1}+F_{k-1}\right)^{2}+\left(F_{p-k-1}+F_{p-k+1}\right)^{2} \\
&=\left(F_{k+1}^{2}+F_{p-(k+1)}^{2}\right)+\left(F_{k-1}^{2}+F_{p-(k-1)}^{2}\right) \tag{1}\\
&+2\left(F_{k+1} F_{k-1}+F_{p-k-1} F_{p-k+1}\right) .
\end{align*}
$$

Applying Cassini's identity, $F_{n-1} F_{n+1}=(-1)^{n}+F_{n}^{2}$, to the final term gives

$$
\begin{equation*}
F_{k+1} F_{k-1}+F_{p-k-1} F_{p-k+1}=\left(F_{k}^{2}+F_{p-k}^{2}\right)+\left((-1)^{k}+(-1)^{p-k}\right) \tag{2}
\end{equation*}
$$

Since p is odd, it follows from Catalan's identity that $F_{n}^{2}+F_{p-n}^{2}=F_{p} F_{p-2 n}$ for all $n \in \mathbb{N}$. This implies that the first two terms of (1), as well as the first term of the right-hand side of (2), are congruent to $0\left(\bmod F_{p}\right)$. Therefore $L_{k}^{2}+$ $L_{p-k}^{2} \equiv 2\left((-1)^{k}+(-1)^{p-k}\right) \equiv 2(-1)^{k}\left(1+(-1)^{p}\right)=0\left(\bmod F_{p}\right)$.

REFERENCES

1. B. He, Y. L. Mao \& A. Togbé. (2023). A Fibonacci Version of Wolstenholme's Harmonic Series Congruence, Amer. Math. Monthly, 130:1, 83-85, DOI: 10.1080/00029890.2022.2128165
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX
MSC: Primary 00X00, Secondary $11 \mathrm{Y} 11 ; 22 \mathrm{Z} 22$
