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Abstract

When factoring integer polynomials, it often helps to be able to tell if
a polynomial is irreducible before trying (and failing) to find its factors.
We examine one such irreducibility test presented by A. Bevelacqua and
extend its applicability via shifts, or translations, of the polynomial. On
the way there, we also encounter fixed divisors, Bunyakovsky’s conjecture,
and a bound on the size of the complex roots of the polynomial.

1 Introducing Shifts

Factoring integer polynomials can be a difficult problem, especially if the given
polynomial is irreducible. It is easily determined, for instance, that x2 +5x+6
is reducible as (x + 2)(x + 3), but it may not be as obvious that the superfi-
cially similar polynomial x2+5x+8 has no such factorization over the integers.
Attempting to factor the polynomial does not exclude the possibility that the
correct factorization has simply not been found yet. To aid in the process of fac-
toring integer polynomials, various criteria have been developed over the years
which can positively identify irreducible integer polynomials (see [8], [1], [5]).
More recently, the following irreducibility test was presented by A. Bevelacqua
in [2] (and subsequently extended in [11]):

Theorem 1. For any prime p and integers a1, . . . , an sucn that p ≥ a1 ≥ · · · ≥
an ≥ 1, the polynomial f = p + a1x + · · · + anx

n is irreducible in Z[x] if and
only if the list (p, a1, . . . , an) does not consist of (n+ 1)/d consecutive constant
lists of length d > 1.

The edge case in which the coefficients form constant lists arises due to a
trivial factorization of such polynomials. We can eliminate this edge case by
making the inequalities strict, which leads to the following corollary.

Corollary 1.1. For any prime p and integers a1, . . . , an sucn that p > a1 >
· · · > an > 1, the polynomial f = p+ a1x+ · · ·+ anx

n is irreducible in Z[x].

Here we aim to generalize Bevelacqua’s result by allowing the polynomial to
be translated, or shifted. This shifting is accomplished by adding an integer k to
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the input x of the polynomial, thereby changing the coefficients. It is straight-
forward to show that shifting the polynomial does not change its reducibility;
nevertheless, we include the proof here for completeness.

Proposition 1. For any f(x) ∈ Z[x] and any k ∈ Z, f(x) is reducible iff
f(x+ k) is reducible.

Proof. Suppose f(x) is reducible, i.e. f(x) = ag1(x)g2(x) · · · gn(x) where all
the gi ∈ Z[x] are nonconstant, a ∈ Z, and n > 1. Then f(x + k) = ag1(x +
k)g2(x+k) · · · gn(x+k), and is therefore reducible. Conversely, suppose f(x+k)
is reducible, so that f(x + k) = ag1(x)g2(x) · · · gn(x) with the same conditions
on a, n, and the gi. Then f(x) = ag1(x − k)g2(x − k) · · · gn(x − k), and is
therefore reducible.

The above observation is sufficient to extend the scope of Theorem 1 and
Corollary 1.1. If, for example, a polynomial has decreasing coefficients but the
constant term is not prime, it can perhaps be shifted so that the constant term
is prime. Then if this shifted polynomial still has decreasing coefficients, our
proposition implies that the original polynomial was irreducible. In fact, since
the constant term of f(x+k) is f(k), a natural way to check for shifts which give
a prime constant term is to simply look for a prime value of the polynomial.
However, it is not guaranteed that a prime value will be found, even if the
polynomial is irreducible.

There are some integer polynomials whose output values all share a common
factor D > 1. This common factor D is known as the fixed divisor (see [10],
[12]). It may appear at first that the fixed divisor is the same as the gcd of
the coefficients, but it is in fact possible for the fixed divisor to be greater
than 1 even if the gcd of the coefficients is 1. For example, the polynomial
h(x) = x2 +9x+6 has fixed divisor 2, because x2 and 9x have the same parity.
Since the minimum positive value of h over the integers is 6, the value of h,
and therefore the constant term of h(x + k), will never be prime. It is known
([12]) that approximately 28% of integer polynomials have fixed divisor greater
than 1, so we would like our method to apply to these polynomials as well. To
this end, we first present a generalization of Lemma 2 of [2] which allows for
the fixed divisor of the polynomial to be greater than 1. The proof involves
the complex roots of the polynomial; nevertheless, all references to reducibility
from this point on will continue to refer to reducibility in Z[x].

Proposition 2. Let f(x) ∈ Z[x] have fixed divisor D. Suppose that f(0) = Dp
for some prime p, and that all roots θ ∈ C of f have |θ| > D. Then f is
irreducible.

Proof. Suppose on the contrary that f is reducible, i.e. for some a ∈ Z
and r > 1, there are nonconstant integer polynomials gi(x) such that f(x) =
ag1(x)g2(x) · · · gr(x). Then |f(0)| = |a||g1(0)||g2(0)| · · · |gr(0)| = Dp. Now since
|a| divides D, we get |g1(0)||g2(0)| · · · |gr(0)| = pa′ where a′ = D/|a| ∈ Z+. For
each gi, let ci be the leading coefficient of gi. By Vieta’s formulas, we have that
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|gi(0)/ci| is the product of all the complex roots of gi. Now the roots of each of
the gi are also roots of f , so we get

|gi(0)/ci| > D ⇒ |gi(0)| > D|ci| ≥ D ≥ a′,

where in the second-to-last step we use the fact that ci ∈ Z \ {0}. Now p must
divide one of the gi(0); WLOG suppose p | g1(0). Then there is a positive
integer b such that a′ = b|g2(0)| · · · |gr(0)|. But this is impossible, since all the
|gi(0)| are greater than a′. By contradiction, f is irreducible.

From these two propositions, along with the observation that the fixed divi-
sor is invariant under shifts, our main result follows:

Theorem 2. Let f(x) ∈ Z[x] have fixed divisor D. Then f is irreducible if
there exists a k ∈ Z such that f(k) = Dp for some prime p and all complex
roots of f(x+ k) have norm greater than D.

In [2] it was shown that if the coefficients of the polynomial are strictly
decreasing, then all complex roots have norm greater than 1; therefore the
special case k = 0, D = 1 of Theorem 2 implies Corollary 1.1.

2 Finding Shifts

We now address the practical utility of Theorem 2. Firstly, one may wonder
about the commonality of values of k for which f(k) = Dp. To address this
question, we appeal to Bunyakovsky’s conjecture (first stated in [3] and discussed
further in [9]), which hypothesizes that any irreducible integer polynomial will
have infinitely many such values. More importantly, however, this result seems
to require us to find the complex roots of the polynomial in order to be of any
use. On the contrary, all that is necessary is an upper bound on the real parts
of the complex roots, as detailed in the following proposition:

Proposition 3. Let f(x) ∈ C[x] and s ∈ R+. Let z0 be the root of f with
maximal real part Re(z0), and let m ≥

⌊
Re(z0)

⌋
+ s + 1. Then all roots w of

f(x+m) have |w| > s.

Proof. For a given root z of f , let w be the corresponding root of f(x+m), i.e.
w = z−m. Then Re(w) = Re(z−m) = Re(z)−m ≤ Re(z0)−

⌊
Re(z0)

⌋
−s−1 <

1− s−1 = −s. Hence for all w, we have |w| =
√
Re(w)2 + Im(w)2 ≥ |Re(w)| >

s.

Since the above result holds for all m ≥
⌊
Re(z0)

⌋
+ s + 1, using an upper

bound for Re(z0) will still yield an acceptable shift. Furthermore, since Re(z0) ≤
|z0|, an upper bound on the norms of the roots is also an upper bound on the
real parts. There are many methods for bounding the norms of the roots given
the coefficients of the polynomial (see [6], [7]); here we will use Cauchy’s bound
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(first presented in [4]). Using this bound, we find that if f(x) = a0 + a1x +
a2x

2 + · · ·+ anx
n, with (an ̸= 0), then

Re(z0) ≤ |z0| ≤ 1 + max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣ , · · · , ∣∣∣∣ a0an
∣∣∣∣} , (1)

which together with Proposition 3, leads us to the following corollary.

Corollary 2.1. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ Z[x] have fixed
divisor D. Let

M = 1 +max

{∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣ , · · · , ∣∣∣∣ a0an
∣∣∣∣}

and m = ⌊M⌋ +D + 1. If there exists a k ∈ Z+ such that f(m + k) = Dp for
some prime p, then f is irreducible.

Proof. From (1) we getm ≥ Re(z0)+D+1, and thereforem+k ≥ Re(z0)+D+1
for any k ∈ Z+. Then applying Proposition 3 with s = D, we see that all
complex roots of f(x + m + k) will have norm greater than D. Finally, if
f(m+k) = Dp for some prime p, we get that f is irreducible by Theorem 2.

The above result no longer references the complex roots of the polynomial,
only the coefficients; this allows us to find acceptable shifts without calculating
the complex roots. For our earlier polynomial h(x) = x2+9x+6, we have D = 2
and m = 13. From there, the smallest k such that h(m + k) = Dp is k = 6,
which gives h(19) = 538 = 2 ·269. If we have information about the roots of the
polynomial, however, we can find a smaller shift. It turns out that the smallest
k such that all roots of h(x+k) have norm greater than 2 is k = 2. From there,
we get h(4) = 58 = 2 · 29. So both methods show that h is irreducible.

In the above example, the input at which the polynomial evaluated to a
prime multiple of the fixed divisor was not much greater than the shift amount
required to meet the first condition. As it turns out, this will not always be the
case. For instance, take the polynomial x12 + 4094 (from [8]). We see that all
the complex roots have norm 12

√
4094 < 2, so the smallest k required to meet

the complex root condition is 3. In addition, since D = 1, our upper bound
on this k is 4097. However, the polynomial does not attain a prime value until
k = 170625.

3 More on Shifts

We have just shown how to achieve the conclusion of Bevelacqua’s theorem (f is
irreducible), as well as one of the hypotheses (the constant term is prime) using
shifts. Now one may naturally wonder about achieving the other hypothesis of
the theorem (the coefficients are decreasing) using shifts, so that Bevelacqua’s
original theorem can be applied directly. Here we do just that; we claim that
for any integer polynomial f(x) with positive leading coefficient, there is some
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positive integer k such that the coefficients of f(x+ k) are positive and strictly
decreasing. First, let f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n, where all the ai ∈ Z

and an ∈ Z+. Then

f(x+ k) =

n∑
j=0

aj(x+ k)j

=

n∑
j=0

j∑
i=0

aj

(
j

i

)
xikj−i

=

n∑
i=0

n∑
j=i

aj

(
j

i

)
xikj−i

=

n∑
i=0

xi
n∑

j=i

aj

(
j

i

)
kj−i.

So we see that the ith coefficient of f(x+ k) is

bi =

n∑
j=i

aj

(
j

i

)
kj−i = an

(
n

i

)
kn−i +

n−1∑
j=i

aj

(
j

i

)
kj−i = Θ(kn−i).

Now as i increases, the power of k in the big-theta expression decreases.
Therefore there is some k ∈ Z+ such that bi+1 < bi for all i ∈ Z where 0 ≤ i < n,
as was previously claimed. Now one may naturally wonder about an upper
bound on the smallest such k. Indeed, the authors have identified an upper
bound of m+ n+1, where m = max(−min{a0, a1, · · · an}, 0), though the proof
of this bound would be too lengthy to include here. We invite any interested
readers to derive and potentially improve upon this bound for themselves.
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