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The NCAA Division I basketball tournament has 64 teams participate, in 6 =
log2 64 rounds, with no ties permitted and the loser of each two-player match elim-
inated. This is one well-known example of a knockout or single-elimination tourna-
ment. Other examples are most of the Wimbledon events (indeed all large tennis tour-
naments), and the NFL playoffs. Knockout tournaments are of substantial interest to
mathematicians and other scientists (see, e.g., [1, 5, 7]). These are distinct from round-
robin tournaments, which are of even greater interest (see, e.g., [2, 3, 6]), but which
we will not consider here.

The (knockout) tournament winner ends unbeaten, and the tournament runner-up
loses only in the final match. The tournament rankings of the other participants are
unclear, so we will focus only on the top two possible tournament outcomes. The
overall top player, named Frankie, is more likely to finish first than second, being
favored in the final match. Our interest lies in the second-best player, named Skylar.

Intuition might suggest that Skylar should be more likely to finish second than first.
However, this is not always the case. For example, in the aforementioned basketball
tournament over the fifteen years 2004-2018, the men’s second seed ended up winning
three times, and finishing second twice. Of course, this is a small sample size. We call
a situation where Skylar is more likely to finish first than second a surprise, and we
will characterize such surprises, under certain assumptions.

Our main assumption is that all other tournament participants, named Player, are
indistinguishable from each other. Hence, there are just three probabilities of interest.
Set p to be the probability that Skylar beats Frankie. Set q to be the probability that
Skylar beats Player. Set r to be the probability that Frankie beats Player. Our probabil-
ities should satisfy 0 ≤ p < 1

2
< q ≤ r ≤ 1. For convenience, set p′ = 1− p, q′ =

1− q, r′ = 1− r. Our tournament will have n rounds before the championship, n+ 1
total rounds. We assume that there are no byes, i.e. there are 2n+1 players.

The two most common ways of designing a knockout tournament are by seeding
the players, and randomly. The difference between the two might not be very large
(see [4]), but we will treat these two cases separately.

Seeded Knockout Tournaments

If the tournament is seeded, then Frankie and Skylar can only meet in the final round.
The probability that Skylar finishes first is qnrnp+ qn(1− rn)q, where the first term
corresponds to facing Frankie in the finals, and the second corresponds to Frankie
losing before the finals. The probability that Skylar finishes second is qnrnp′ + qn(1−
rn)q′.

The surprise happens when the difference qn(rnp + (1 − rn)q − rnp′ − (1 −
rn)q′) > 0. We cancel the positive qn, and note that p − p′ = 2p − 1 < 0 while
q − q′ = 2q − 1 > 0. We then combine terms to get rn(2p − 1) + (1 − rn)(2q −
1) > 0, and rearrange to (2q − 1)− 2rn(q − p) > 0.
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Hence, the surprise happens in a seeded tournament exactly when Condition (S)
holds:

2rn <
2q − 1

q − p
= 2− 1− 2p

q − p
(S)

Condition (S) has some interesting properties. If it holds for a particular p, q, r, n,
then it will still hold if we increase any one of n, p, or q (while holding all other
variables fixed), or if we decrease r. For any fixed p, q, r, with r < 1, there is some
minimum n which will ensure that the surprise occurs for that and all larger n. Setting
p = 0 we get 2rn < 2− 1

q
; if this condition holds, then the surprise will happen for

all p. Setting r = 1, we get 2 < 2− 1−2p
q−p , which never holds. Also, consider the limit

as q, r → 1
2

(with fixed p, n), the surprise again never holds.
For the special case q = r, we can plot the surprise curves for various p, q, n. The

area above each curve is the surprise region, where Condition (S) holds. Each curve
passes through (0.5, 0.5) and (1, 0.5) because no surprise can happen for those values
of r. Note that increasing q might exit the surprise region; this is because we are
simultaneously increasing r.
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Figure 1 Surprise curves for the special case q = r, seeded tournament.

Random Knockout Tournaments

For random knockout tournaments, the computation is more difficult. Frankie and Sky-
lar might meet in the finals, or in round k, for 1 ≤ k ≤ n. If they meet in round k, then
Frankie must have won up to that point, in a field of 2k−1 players. If they meet in the
finals, then Frankie must have already won in his half-tournament of 2n players. How-
ever, these n+ 1 possibilities of when the players could meet are not equally likely.
Set m = 2n+1 − 1. In a random tournament, the m positions other than Skylar’s are
all equally likely for Frankie. In 2k−1 of them, Frankie could meet Skylar in round k,
and in 2n of them, they could meet in the finals.

Hence, the probability that Skylar finishes first is

n+1∑
k=1

2k−1

m
qnrk−1p+

n+1∑
k=1

2k−1

m
qn(1− rk−1)q. (Skylar#1)
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Note that the first sum corresponds to Skylar beating Frankie at some point (includ-
ing in the finals), while the second sum corresponds to Frankie losing before facing
Skylar.

The probability that Skylar finishes second is

2n

m
qnrnp′ +

n∑
k=1

2k−1

m
qn−1rk−1pq′ +

n+1∑
k=1

2k−1

m
qn(1− rk−1)q′ (Skylar#2)

Here, the first term corresponds to Skylar losing to Frankie in the finals. The second
term corresponds to Skylar beating Frankie in round k, but losing in the finals. The
third term corresponds to Frankie losing prior to meeting Skylar, and Skylar winning
every round except the finals. The surprise happens when (Skylar#1) is greater than
(Skylar#2). We multiply each by the positive m

qn−1 , and pull constants out of sums, to
find the surprise equivalent to

qp
n+1∑
k=1

2k−1rk−1 + q2
n+1∑
k=1

2k−1(1− rk−1) >

2nqrnp′ + pq′
n∑

k=1

2k−1rk−1 + qq′
n+1∑
k=1

2k−1(1− rk−1)

Each series is either geometric or the difference of two geometric series, hence we
can find their sums. After considerable rearrangement, we find the surprise happens in
a random tournament exactly when Condition (R) holds:

2n+1q(2q − 1)(2r − 1) + (2q − 1)(2q − 2qr − p) > 2nrn(q − p)(4qr − 1) (R)

Note that 2q − 1, 2r − 1, q − p, 4qr − 1 are each positive. Considering the bounds
on p, q, r, we find that − 1

2
≤ 2q − 2qr − p ≤ 1

2
. Condition (R) shares some prop-

erties with Condition (S). For convenience, set f(p, q, r, n) = 2n+1q(2q − 1)(2r −
1) + (2q − 1)(2q − 2qr − p)− 2nrn(q − p)(4qr − 1); Condition (R) is equivalent
to f(p, q, r, n) > 0.

We calculate f(p+ ε, q, r, n)− f(p, q, r, n) = −(2q − 1)ε+ 2nrn(4qr− 1)ε ≥
ε(2q − 1)(−1 + 2nrn(2r + 2r−1

2q−1)) > 0. Hence, if Condition (R) holds, it will still
hold if we increase p.

We calculate f(p, q, r, n + 1) − 2rf(p, q, r, n) = 2n+1q(2q − 1)(2r − 1)(2 −
2r) + (1− 2r)(2q − 1)(2q − 2qr− p) = (2r− 1)(2q − 1)(q(1− r)(2n+2 − 2) +
p) ≥ 0. Hence, if Condition (R) holds, it will still hold if we increase n. Further, if
r < 1 then limn→∞

f(p,q,r,n)

2n
= 2q(2q − 1)(2r − 1) > 0, so there is some minimum

n which will ensure that the surprise occurs for that and all larger n.
Hence, if the surprise holds for p = 0, n = 1, then it will hold independently of

p, n. Unfortunately, no values of q, r meet this condition; neither for p = 0, n = 2.
However, for p = 0 and for each n ≥ 3, there is a region in the q − r plane for which
the surprise will hold independently of p. Note that each successive region includes all
previous ones. These regions are plotted in Figure 2.

Unfortunately, varying q or r does not appear to respect Condition (R) in the same
way as with Condition (S). We are able to prove that, considering each of these vari-
ables separately, the surprise will hold on a (possibly empty) interval.

The function f(p, q, r, n), fixing p, r, n, is a quadratic polynomial in q, with leading
coefficient 2n+2(2r − 1) + 4(1− r)− 2n+2rn+1. This leading coefficient is positive
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Figure 2 Surprise regions for p = 0, random tournament.

for all r ∈ (0.5, 1), so the parabola points up. Hence, f(p, q, r, n) > 0 will hold for
all q ∈ R, apart from some interval. This interval may interesect with (or contain all
of) (0.5, r].

Considering f(p, q, r, n) as a function of r, we find that ∂
∂r
f(p, q, r, n) = Arn +

B, for some real constantsA,B. This has at most one positive zero. By the mean value
theorem, f(p, q, r, n) has at most one positive zero. Hence the surprise will happen for
r in some halfline intersected with [q, 1].

As before, we consider the special case of q = r. We have limr→1/2
f(p,q,r,n)

2r−1 =

limr→1/2 2
n+1r(2r − 1) + 2r(1 − r) − p − 2nrn(r − p)(2r + 1) = 1/2 − p −

(1/2− p)(2) = −1/2 + p < 0. Hence, for q, r sufficiently close to 1/2, Condition
(R) fails to hold. On the other hand, if we take q = r = 1, then Condition (R) sim-
plifies to p > 2n

3·2n−1 . Compare with the seeded tournament case, where for r = 1 the
surprise is impossible. We plot the surprise curves below.
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Figure 3 Surprise curves for the special case q = r, random tournament.

We close by asking if a player even lower-ranked than second, might still be more
likely to win the tournament than to finish second. Such a situation would be an even
greater surprise.
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