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The Indifference Graph Numerical Monoid

Conjecture
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Abstract - A numerical monoid is a subset of the nonnegative integers, containing zero,
that is closed under addition. We conjecture that every indifference graph whose vertex
degrees all appear in a numerical monoid, must have its order appear in that same numerical
monoid. We offer several results in the direction of this conjecture.
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1 Introduction

An indifference graph is an undirected graph whose vertices are a finite (multi)set of real
numbers, and whose edges are those pairs of vertices which are within distance one of
each other, as real numbers. Since each vertex is within one of itself, we take a loop at
each vertex. Indifference graphs are an important class of graphs with many applications
such as to order theory and algebra, and are the subject of considerable study (see, e.g.,
[3, 4, 5, 6, 9, 10, 12, 14]).

√
2 2 e 3 π

Figure 1: An indifference graph

A numerical monoid is a subset of the nonnegative integers N0, containing 0, closed
under addition. A numerical monoid that is also cofinite is called a numerical semigroup.
Both of these are important objects (particularly numerical semigroups), themselves well-
studied (see, e.g., [1, 2]).

For graph G, we denote by |G| the order of |G|, i.e. the number of vertices of G. For
vertex v ∈ G, we denote by deg(v) the degree of v, i.e. the number of edges incident to
v. We consider a loop at v to contribute 1 to deg(v); hence the example in Figure 1 has
deg(π) = 3. Given a graph G and a numerical monoid S, we say that G respects S if:

(∀v ∈ G, deg(v) ∈ S)→ |G| ∈ S
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Note that G can respect S vacuously, if the degree of some vertex of G does not
appear in S. If instead all vertex degrees of G appear in S, then the order of G must
also appear in S, for G to respect S. By Ja, bK we mean the integers between a and b,
inclusive; similarly, by Ja,∞M we mean all integers greater than or equal to a. For any
set S ⊆ N0, by kS we mean {kn : n ∈ S}. Note that the example in Figure 1 respects
2N0 (vacuously), respects J2,∞M and J2, 5K, but does not respect J2, 4K.

Inspired by a recent result (Theorem 2.1 below), we propose several conjectures. Al-
though we are not able to prove any of them, we do have a variety of partial results.

Conjecture 1.1 Every indifference graph respects every numerical monoid.

Conjecture 1.2 Every indifference graph respects every numerical semigroup.

Conjecture 1.3 Every indifference graph respects kN0, for all k ∈ N0.

Because kN0 and numerical semigroups are each numerical monoids, Conjecture 1
implies the others. Perhaps surprisingly, Conjecture 2 is equivalent to Conjecture 1.

Theorem 1.4 If Conjecture 2 holds, then Conjecture 1 holds.

Proof. Let G be an indifference graph and S a numerical monoid such that ∀v ∈
G, deg(v) ∈ S. Set S ′ = S ∪ J|G| + 1,∞M. Note that S ′ is a numerical semigroup that
agrees with S on J0, |G|K. Hence, ∀v ∈ G, deg(v) ∈ S ′. Applying Conjecture 2, G respects
S ′, so |G| ∈ S ′. Hence |G| ∈ S, so G respects S. �

In the remainder, we approach these conjectures from several directions. In Section
2, we consider fixed numerical monoids/semigroups respected by all indifference graphs.
In Section 3, we instead consider fixed indifference graphs that respect every numerical
monoid or every kN0.

2 Fixed Numerical Monoids

In this section, we consider specific numerical monoids that are respected by many indif-
ference graphs.

We begin with the motivating theorem for these conjectures. It appears in [8] in
contrapositive form. For completeness, we provide a proof.

Theorem 2.1 (Balof/Pinchasi) Every indifference graph respects 2N0.

Proof. Let G be an indifference graph with adjacency matrix M . Suppose that deg(v) is
even for every v ∈ G. Then every row sum of M is even, hence the sum of all the entries
of M is even. Now consider M − I. This is symmetric with 0 along the diagonal, so the
sum of all its entries is even. Combining these results, we conclude that the sum of all
entries of I (namely, |G|) is even. �

We collect some basic properties in the following theorem.
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Theorem 2.2 Let G be a graph, S, S ′ be numerical monoids, and a ∈ N0.

1. Every indifference graph respects 0N0 = {0}.

2. Every indifference graph respects 1N0 = N0.

3. If G respects S, then G also respects S ∪ Ja,∞M.

4. If G respects S and S ′, then G also respects S ∩ S ′.

5. If G respects S, then G also respects S \ J1, a+ 1K.

Proof. (1) Every vertex in an indifference graph has degree at least one, since we assume
it has a loop. Hence, all nonempty graphs respect 0N0 vacuously, and the empty graph
respects it nonvacuously.
(2) clear
(3) Suppose all vertices of G have their degree in S∪Ja,∞M. If any vertex v has deg(v) /∈ S,
then deg(v) ≥ a; in this case, |G| ≥ a (looking at the neighbors of v alone), and so
|G| ∈ S ∪ Ja,∞M. Otherwise, all vertices v ∈ G have deg(v) ∈ S. Since G respects S by
hypothesis, we have |G| ∈ S ⊆ S ∪ Ja,∞M.
(4) Suppose all vertices of G have their degrees in S ∩S ′. Then, in particular, all vertices
of G have their degrees in S. Since G respects S, |G| ∈ S. Repeating for S ′ we find
|G| ∈ S ′; hence |G| ∈ S ∩ S ′.
(5) By (1) and (3), G respects S ′ = {0} ∪ Ja+ 2,∞M; now apply (4). �

We combine Theorems 2.1 and 2.2 to get the following result.

Corollary 2.3 Let t ∈ N be odd. Every indifference graph respects the numerical semi-
group 〈2, t〉 = {2x+ ty : x, y ∈ N0}.

Proof. 〈2, t〉 = 2N0 ∪ Jt,∞M. �
We can move from one numerical monoid to another with the following result.

Theorem 2.4 Let S be a numerical monoid and k ∈ N0. Suppose that every indifference
graph respects kS. Then every indifference graph respects S.

Proof. Let G be an indifference graph with deg(v) ∈ S for all v ∈ G. We produce a new
indifference graph G′ which has the same vertices as G, only each repeated k times. For
every v ∈ G, there are k copies v1, v2, . . . , vk ∈ G′ with k deg(v) = deg(v1) = deg(v2) =
· · · = deg(vk). Hence deg(vi) ∈ kS for all vi ∈ G′. Since G′ respects kS, we have
|G′| ∈ kS. Hence there is some n ∈ S with kn = |G′| = k|G|, so |G| ∈ S. �

In particular, Theorem 2.4 tells us that if a numerical monoid T is respected by all
indifference graphs, we can set k = gcd(T ). Then T = kS for a numerical monoid S with
gcd(S) = 1, and now all indifference graphs respect S. It is well-known (e.g. [1]) that
a numerical monoid with no common factor is a numerical semigroup, so in fact S is a
numerical semigroup.

For our remaining results, it will be useful to develop some machinery. Let G be
an indifference graph with vertices v1 ≤ v2 ≤ · · · ≤ vn. We relabel these real values
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by their integer indices 1, 2, . . . n. The neighborhood of each vertex of G will then form
some integer interval. For vertex i ∈ J1, nK, define L(i) and R(i) to be the left and right
endpoints of that interval. That is, i is connected to each element of JL(i), R(i)K, and
nothing else. Note that L(i) ≤ i ≤ R(i); hence L(1) = 1 and R(n) = n. We also have the
key property that deg(i) = R(i)−L(i)+1. By symmetry, j ≤ R(i) if and only if i ≥ L(j).
Also, L and R are each nondecreasing functions; i.e. L(i) ≤ L(i+ 1) and R(i) ≤ R(i+ 1).

For example, the indifference graph of Figure 1 can be relabeled as shown in Figure 2.
Here 1 = L(1) = L(2), 2 = R(1) = L(3) = L(4), 3 = L(5), 4 = R(2), 5 = R(3) = R(4) =
R(5). We see deg(3) = R(3)− L(3) + 1 = 5− 2 + 1 = 4.

1 2 3 4 5

Figure 2: An indifference graph, relabeled

We turn briefly to numerical semigroups. Given a numerical semigroup S, its multi-
plicity m(S) is the smallest positive integer contained in S. Its Frobenius number F (S)
is the largest integer not contained in S. Let S denote the set of numerical semigroups
S such that 2m(S) > F (S). This set S is independently interesting (see, e.g. [7, 11]).
Further, S has been shown (in [13]) to be asymptotically a strictly positive fraction of all
numerical semigroups.

Theorem 2.5 Let S ∈ S. Then every indifference graph respects S.

Proof. Let G be an indifference graph with deg(v) ∈ S for all v ∈ G. Set n = |G|.
Since every vertex degree must be at least m(S), we have R(1) ≥ m(S) and L(n) ≤
n−m(S) + 1. We have two cases: if L(n) > R(1), then n−m(S) + 1 > m(S) and hence
n ≥ 2m(S) > F (S). Since n > F (S) and F (S) is the last integer missing from S, we
must have n ∈ S. If instead L(n) ≤ R(1), then R(1) is connected to all vertices, i.e.
L(R(1)) = 1 and R(R(1)) = n. We calculate deg(R(1)) = R(R(1)) − L(R(1)) + 1 = n,
and hence in this case also n ∈ S. �

3 Fixed Indifference Graphs

We now approach the conjectures from the other direction. Our remaining results are for
specific indifference graphs which respect all numerical monoids or all kN0.

Theorem 3.1 Let G be an indifference graph whose diameter is 1. Then G respects every
numerical monoid S.

Proof. Here R(1) = |G|, so deg(1) = R(1)−L(1) + 1 = |G|−1 + 1 = |G|. If deg(1) ∈ S,
then |G| ∈ S. �

Theorem 3.2 Let G be an indifference graph whose diameter is 2. Then G respects every
numerical monoid S.
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Proof. Here R(R(1)) = |G|, so deg(R(1)) = R(R(1))−L(R(1)) + 1 = |G| − 1 + 1 = |G|.
If deg(R(1)) ∈ S, then |G| ∈ S. �

Theorem 3.3 Let G be an indifference graph whose diameter is 3. Then G respects kN0

for every k ∈ N0.

Proof. Let G be an indifference graph of diameter 3 with deg(v) ∈ kN0 for all v ∈ G.
Set a = R(1), b = R(a). Since the diameter of G is 3, we must have |G| = R(b). Note
that R(1) − L(1) + 1 = a and R(a) − L(a) + 1 = b, so by hypothesis a, b ∈ kN0. If
R(b) − b ∈ kN0, we are done (since b, |G| − b ∈ kN0, so is their sum). We turn to the
remaining case of R(b)− b /∈ kN0.

Consider the function R(x)− b. We have R(a)− b = 0 ∈ kN0, while R(b)− b /∈ kN0.
Hence there is some e ∈ Ja + 1, bK such that R(e − 1) − b ∈ kN0 while R(e) − b /∈ kN0.
Subtracting, we find R(e)−R(e−1) /∈ kN0 and in particular we must have R(e) > R(e−1),
and hence L(R(e)) = e. Since e ≥ a, R(e) ≥ R(a) = b, so R(R(e)) = |G|. So, we find
that R(R(e))− L(R(e)) + 1 = |G| − e+ 1 ∈ kN0.

We now prove that L(e−1) 6= L(e); supposing to the contrary that L(e) = L(e−1), we
find R(e)−L(e)+1, R(e−1)−L(e)+1 ∈ kN0. Subtracting, we find R(e)−R(e−1) ∈ kN0,
a contradiction. Hence L(e − 1) < L(e) and so R(L(e − 1)) = e − 1. Also, e − 1 ≤ b, so
L(e−1) ≤ L(b) ≤ a, so L(L(e−1)) = 1. So, we find that R(L(e−1))−L(L(e−1)) + 1 =
e− 1 ∈ kN0. Combining with |G| − e+ 1 ∈ kN0 we find |G| ∈ kN0. �

Extending these results substantially beyond diameter 3 seems difficult with these
methods.
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