Primes in ($0, n$] vs. $(n, m]$

The prime number theorem gives us an approximate distribution of primes, but what can be said about the relative number of primes in the intervals $(0, n]$ and $(n, m]$, for natural numbers $m>n$? The case $m=2 n \gg 0$ was known clasically, but recent advances allow for a sharper result.

Suppose that $m>n \geq 5393$. These nice bounds for the prime counting function π were proved in [1]:

$$
\frac{n}{\log n-1}<\pi(n) \leq \pi(m)<\frac{m}{\log m-1.112}
$$

Theorem. Suppose that $m>n \geq$ 5393. Suppose further that $\frac{m}{n}>e^{0.112} \approx$ 1.12. Then

$$
\frac{\pi(n)}{n}=\frac{\pi(n)-\pi(0)}{n-0}>\frac{\pi(m)-\pi(n)}{m-n}
$$

Proof. $\frac{m}{n} \pi(n)-\pi(m)>\frac{m}{n} \frac{n}{\log n-1}-\frac{m}{\log m-1.112}=m\left(\frac{1}{\log n-1}-\frac{1}{\log m-1.112}\right)$. This is positive, since $\frac{m}{n}>e^{0.112}$ and thus $\log n-1<\log m-1.112$. We now rearrange $\frac{m}{n} \pi(n)-\pi(m)>0$ into the desired statement.

REFERENCES

1. Dusart, P. (2018). Explicit estimates of some functions over primes. Ramanujan J. 45(1): 227-251. doi.org/10.1007/s11139-016-9839-4
-Submitted by François Huppé and Vadim Ponomarenko
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX
MSC: Primary 11N05
