A Statistical Proof of Chebyshev’s Sum Inequality

Letxy,25,...,2, and Y1, yo, . . . , Y, be arbitrary real numbers satisfying x; >
To > -+ > x, and y; > Yo > - -+ Y,. The well-known Chebyshev’s Sum In-
equality states that
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Typical proofs rely on clever algebra built upon the observation that the quantity
(x; — x;)(y; — y;) is nonnegative for all ¢, j. We offer a statistical proof. Let
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T= > andy = o Zi:l yi- Since the z;’s and y;’s decrease together,
they have nonnegative covariance, i.e.,
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Rearranging, we get % (>°, zy:) > T Y, as desired. If instead the real num-
bers satisfy z1 < x5 < .-+ <z, and y; > Yo > - -Y,, the covariance is
nonpositive and the inequality is reversed.
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