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A Further Self-Improvement of the
Cauchy–Schwarz Inequality

Reza Farhadian, Habib Jafari, and Vadim Ponomarenko

Abstract. In this note, we present a new self-improvement of the well-known Cauchy–Schwarz
inequality for expectations of random variables. We compare our new result with another self-
improvement of the Cauchy–Schwarz inequality.

Inequalities play an important role in mathematical analysis and many areas of ap-
plied mathematics, such as probability theory and statistics. One of the most widely
used inequalities in this regard is the well-known Cauchy–Schwarz inequality. In its
probabilistic version, for two random variables X and Y with expectations E(X) and
E(Y ), respectively, the Cauchy–Schwarz inequality states that

E2(XY ) ≤ E(X2)E(Y 2), (1)

where equality holds if and only if Y = αX a.s. for some constant α.
Many proofs are known for the Cauchy–Schwarz inequality. A standard proof can

be found in [6]. However, it can be obtained as a special case of Hölder’s inequality
(see, e.g., [4]). In [3], it is shown that the Cauchy–Schwarz inequality is a consequence
of Jensen’s inequality. Many generalizations and improvements have also been pro-
posed for the Cauchy–Schwarz inequality, most of them are for its non-probabilistic
(or discrete) form, i.e., (

∑
i xiyi)

2 ≤ (
∑

i xi)(
∑

i yi), where xi, yi are non-random
numbers (see, e.g., [1], [2], and [5]). Recently, S.G. Walker [7] proved the following
self-improvement for the probabilistic Cauchy–Schwarz inequality (1):

E2 (XY ) ≤ E(X2)E(Y 2)−
(
|E(X)|

√
Var(Y )− |E(Y )|

√
Var(X)

)2

, (2)

where Var(X) = E
(
X − E(X)

)2
= E(X2)− E2(X).

Indeed, the concept of self-improvement here is to improve the Cauchy–Schwarz
inequality by using itself. This idea that shows that the ability of the Cauchy–Schwarz
inequality to improve itself is interesting and important if it is developed to produce
more and better self-improvements. In this note, we present a new self-improvement
for the Cauchy–Schwarz inequality (2). In general, we prove the following theorem.

Theorem 1. For any arbitrary random variables X and Y , we have

E2(XY ) ≤ E(X2)E(Y 2)− E
(
XE(Y )− Y E(X)

)2
.

Proof. Applying the Cauchy–Schwarz inequality (1) to centered random variables as

E2 ((X − E(X))(Y − E(Y ))) ≤ E(X − E(X))2E(Y − E(Y ))2,

and hence(
E(XY )− E(X)E(Y )

)2 ≤ (E(X2)− E2(X)
)(
E(Y 2)− E2(Y )

)
.

Expanding and rearranging, the theorem follows.
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Next, we offer a corollary to Theorem 1, which allows us to compare it to Walker’s
self-improvement (2). Our corollary of Theorem 1 always gives a better bound for
nonnegative random variables.

Corollary 2. Let X and Y be two nonnegative random variables. Then

E2 (XY ) ≤ E(X2)E(Y 2)−
(
E(X)

√
Var(Y )− E(Y )

√
Var(X)

)2

−2E(X)E(Y )
√

Var(X)
√

Var(Y )(1− r),

where r ∈ [−1, 1] is the Pearson correlation coefficient.

Proof. We begin with

r =
E(XY )− E(X)E(Y )√

Var(X)
√

Var(Y )
,

that is, the Pearson correlation coefficient.
We rearrange this to

E(XY ) = r
√

Var(X)
√

Var(Y ) + E(X)E(Y ). (3)

We now calculate

E(XE(Y )− Y E(X))2 = E(X2)E2(Y ) + E(Y 2)E2(X)− 2E(XY )E(X)E(Y )

= E(X2)E2(Y ) + E(Y 2)E2(X)

−2
(
r
√

Var(X)
√

Var(Y ) + E(X)E(Y )
)
E(X)E(Y ) (by (3))

= E(X2)E2(Y ) + E(Y 2)E2(X)

−2rE(X)E(Y )
√

Var(X)
√

Var(Y )− 2E2(X)E2(Y )

= −2rE(X)E(Y )
√

Var(X)
√

Var(Y )

+
(
E(X)

√
Var(Y )− E(Y )

√
Var(X)

)2
+2E(X)E(Y )

√
Var(X)

√
Var(Y )

=
(
E(X)

√
Var(Y )− E(Y )

√
Var(X)

)2
+2E(X)E(Y )

√
Var(X)

√
Var(Y )(1− r).

Applying Theorem 1, the corollary follows.

Obviously, Corollary 2 shows that the right-hand side of Theorem 1 is always less
than or equal to the right-hand side of Walker’s inequality (2) when X and Y are
nonnegative random variables.
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