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A Further Self-Improvement of the
Cauchy–Schwarz Inequality

(authors suppressed for review)

Abstract. In this note we present a new self-improvement of the well-known Cauchy–Schwarz
inequality for expectations of random variables. We compare our new result with another self-
improvement of the Cauchy–Schwarz inequality.

Inequalities play an important role in probability theory and mathematical statis-
tics. One of the most widely used inequalities in this regard is the well-known
Cauchy–Schwarz inequality, which states in its probabilistic form for two random
variables X and Y that

E2(XY ) ≤ E(X2)E(Y 2), (1)

where equality holds if and only if Y = αX a.s. for some constant α.
Many proofs are known for the Cauchy–Schwarz inequality. A standard proof can

be found in [7], however, it can be obtained as a special case of the Hölder’s inequality
(see, e.g., [5]). In [4], it is shown that the Cauchy–Schwarz inequality is a consequence
of Jensen’s inequality. Many generalizations and improvements have also been pro-
posed for the Cauchy–Schwarz inequality, most of them for its non-probabilistic (or
discrete) form i.e. (

∑
i xiyi)

2 ≤ (
∑

i xi)(
∑

i yi) with xi, yi are non-random num-
bers (see, e.g., [2], [3], and [6]). Recently, Walker [8] proposed the following self-
improvement for the probabilistic Cauchy–Schwarz inequality (1):

E2 (XY ) ≤ E(X2)E(Y 2)−
(
|E(X)|

√
Var(Y )− |E(Y )|

√
Var(X)

)2

. (2)

Indeed, the concept of self-improvement here is to improve the Cauchy–Schwarz
inequality by using itself. Hence, Walker’s inequality (6) is interesting because it shows
the ability of probabilistic version of Cauchy–Schwarz inequality to improve itself.

We now present a new self-improvement for the Cauchy–Schwarz inequality (1).

Theorem 1. For any arbitrary random variables X and Y , we have

E2(XY ) ≤ E(X2)E(Y 2)− E
(
XE(Y )− Y E(X)

)2
.

Proof. Applying the Cauchy–Schwarz inequality (1) to centered random variables as

E2 ((X − E(X))(Y − E(Y ))) ≤ E(X − E(X))2E(Y − E(Y ))2,

and hence(
E(XY )− E(X)E(Y )

)2 ≤ (E(X2)− E2(X)
)(
E(Y 2)− E2(Y )

)
.

Expanding and rearranging, the theorem follows.
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We also offer a corollary to Theorem 1, which allows us to compare to Walker’s
self-improvement (6). We show that Theorem 1 always gives a better bound, for non-
negative random variables.

Corollary 2. Let X and Y be two nonnegative random variables. Then

E2 (XY ) ≤ E(X2)E(Y 2)−
(
|E(X)|

√
Var(Y )− |E(Y )|

√
Var(X)

)2

−2E(X)E(Y )
√

Var(X)
√

Var(Y )(1− r),

where r ∈ [−1, 1] is the Pearson’s correlation coefficient.

Proof. We begin with

r =
E(XY )− E(X)E(Y )√

Var(X)
√

Var(Y )
.

We rearrange this to

E(XY ) = r
√

Var(X)
√

Var(Y ) + E(X)E(Y ).

We now calculate

E(XE(Y )− Y E(X))2 = E(X2)E2(Y ) + E(Y 2)E2(X)− 2E(XY )E(X)E(Y )

= E(X2)E2(Y ) + E(Y 2)E2(X)

−2
(
r
√

Var(X)
√

Var(Y ) + E(X)E(Y )
)
E(X)E(Y )

= −2rE(X)E(Y )
√

Var(X)
√

Var(Y )

+E(X2)E2(Y ) + E(Y 2)E2(X)− 2E2(X)E2(Y )

= −2rE(X)E(Y )
√

Var(X)
√

Var(Y )

+
(
E(X)

√
Var(Y )− E(Y )

√
Var(X)

)2
+2E(X)E(Y )

√
Var(X)

√
Var(Y )

=
(
E(X)

√
Var(Y )− E(Y )

√
Var(X)

)2
+2E(X)E(Y )

√
Var(X)

√
Var(Y )(1− r).

Applying Theorem 1, the corollary follows.
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