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The Convergence of Difference Boxes

Antonio Behn, Christopher Kribs-Zaleta,
and Vadim Ponomarenko

1. INTRODUCTION. “Difference boxes,” also known as “diffy boxes,” are the basis
for a simple mathematical puzzle that provides elementary-school students with sub-
traction practice. The idea’s original author is unknown, although among many Texas
teachers it is traced back to Professor Juanita Copley of the University of Houston,
who introduced it as a problem-solving activity in professional development sessions
about twenty years ago (and who, in turn, cites her grandmother). Another source cites
a World War II prisoner of war [4]. Diffy boxes have been used in numerous places as
a mechanism for elementary teachers to provide arithmetic practice without the tedium
of drill (their use as a problem-solving activity will be addressed in the final section of
this paper).

One creates a difference box as follows:

1. Draw a (large) square, and label each vertex with a (real) number.
2. On the midpoint of each side write the (unsigned) difference between the two

numbers at its endpoints.
3. Inscribe a new square in the old one, using these new numbers to label the ver-

tices.
4. Repeat this process, and continue inscribing new boxes until reaching a square

that has all four vertices labeled 0.

It is perhaps surprising that diffy boxes always tend to “converge” rather quickly, that
is, it usually takes no more than a handful of iterations to get a box with all zeroes.
Figure 1 shows a simple example, which converges to all zeroes after four iterations
(on the fifth box).
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Figure 1. A simple diffy box (left) and its “descendants” (right).

The question we want to investigate is whether all diffy boxes really do converge to
the zero box, and, if so, how quickly? It turns out that the answer is no if we require a
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finite number of iterations; however, the essentially unique counterexample also con-
verges to zero after a fashion. We approach the problem by considering the diffy box
process as a map from the set of all possible four-tuples of real numbers (i.e., R4) into
itself.

2. DEFINITIONS. We begin our analysis by establishing some notation. We denote
by [a b c d] the diffy box that contains the numbers a, b, c, and d on its upper left,
upper right, lower right, and lower left corners, respectively (which makes the first box
in Figure 1 [7 12 2 −2]).

Next we introduce notation to describe the diffy box iteration process, as well as
some terms related to convergence:

Definition 1. The child of a given box B = [a b c d] is C(B) = [|b − a| |c − b| |d −
c| |a − d|]; B is a parent of C(B). (We shall see that any given box has many parents.)
The parent-child relation is signified by B � C(B). We denote C(C(B)) by C2(B),
etc. The box C(B) is more commonly called the iterate of B.

Definition 2. A given box B converges to zero in n generations if Cn(B) = [0 0 0 0]
but Cn−1(B) �= [0 0 0 0]; we also say in this case that B has longevity n.

Definition 3. The range of B, denoted |B|, is the largest difference between two (not
necessarily adjacent) vertices of B.

Definition 4. A box B is monotone if its vertices are distinct and occur around the
square in numerical order from least to greatest.

Note that we consider boxes such as [2 1 4 3] monotone, since the definition allows us
to start with any vertex and proceed clockwise or counterclockwise from it. A couple
of relatively quick results may help the reader begin to develop some intuition as to
how and why diffy boxes tend to converge to zero.

Proposition 1. The estimate |C(B)| ≤ |B| always holds, and the inequality is strict if
the four numbers in B are distinct.

Proof. Let w ≥ x ≥ y ≥ z be the numbers in B (not necessarily in order of appear-
ance). We have |B| = w − z. The numbers in C(B) all fall between 0 and w − z;
hence |C(B)| ≤ (w − z) − 0 = |B|. Furthermore, if w, x, y, and z are distinct, then
C(B) does not contain zero, whence |C(B)| < |B|.

Proposition 2. Any nonmonotone diffy box converges to zero in six or fewer genera-
tions.

Proof. Table 1 details the longevity of all diffy boxes whose vertices are nonmonotone.
The proof is an exhaustive case analysis (a simpler proof follows from Figure 3 in
section 3). To put a given diffy box into a form listed in the table, reorder the vertices
(using reflection and/or rotation, isometry properties that we shall discuss in section 4)
so that the smallest vertex is listed first, followed by the smaller of the two vertices
adjacent to it. (If two copies of the smallest number occupy adjacent vertices, put them
first and second, followed by the smaller of the two vertices adjacent to them.) This
reordering does not affect longevity.
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Table 1. Longevities for all nonmonotone diffy boxes
(here a < b < c < d).

Longevity Isometric form of diffy box

1 [a a a a], a �= 0
2 [a b a b]

[a b c b], b = (a + c)/2
3 [a a b b]

[a b b c], b = (a + c)/2
[a b d c], a − b = c − d
[a c b d], a − b = c − d

4 [a a a b]
[a a b c], b at least as close to c as to a
[a b a c]
[a b b b]
[a b b c], b �= (a + c)/2
[a b c b], b �= (a + c)/2
[a b c c], b at least as close to a as to c
[a b d c], a − b �= c − d , (a + d)/2 between b and c
[a c b c]
[a c b d], a − b �= c − d

6 [a a b c], b closer to a than to c
[a b c c], b closer to c than to a
[a b d c], b and c on the same side of (a + d)/2

We remark that Proposition 2 includes any box whose vertex numbers are not all
distinct. We will observe in section 4 that diffy boxes [a b c d] whose vertices are
monotone (with a < b < c < d or a > b > c > d) have longevity five or greater.

Since, in view of Proposition 1, |C(B)| = |B| only when the vertices of B are
not all distinct, we can bound the longevity of any box that has integer vertices by
observing that the range |B| of any such box must decrease by at least 1 per iteration,
until we reach a box C with at least one pair of identical vertices. At this point we
compare in Table 1 the possible longevities of C (2, 3, 4, or 6) with the corresponding
minimum possible range (1, 1, 1, or 3, respectively) and record the greatest difference.
We therefore have the following result:

Corollary. If B consists of integers, then the longevity of B is less than or equal to
|B| + 3.

We leave improvements on this specialized estimate as an exercise for the reader. For
example, it can be sharpened from linear to logarithmic; namely, to 4(1 + �log2 |B|�).

3. CANONICAL FORM. A little experimentation with different sets of numbers
quickly leads one to the observation that there are different boxes that behave the same
way with respect to the iteration process. For example, adding the same number k
to each of the vertices of a box B (written B + k) or changing the signs of all the
vertices (−B) will produce other parents of C(B), since each iteration records only
differences between successive vertices; thus the map B �→ C(B) is many-to-one.
Furthermore, since our real interest is the history of families rather than of individuals,
we observe three other types of changes that generate family histories parallel to the
original. Multiplying each vertex of a box B by a positive constant k will produce
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a box (kB) whose child is that same multiple of C(B) (i.e., kB � kC(B)); B and
kB therefore take the same number of iterations to reach the all-zero box. We may
think of B and kB as “cousins” with the same family histories. Finally, rotating or
reflecting the numbers on the vertices of a box B (call these rot(B) and ref(B)) will
create further cousins, boxes whose respective children are the rotated and reflected
versions of C(B) (i.e., rot(B)� rot(C(B)), ref(B)� ref(C(B)), and so on through
successive iterations). These changes are merely cosmetic, since the numbers retain
their positions relative to each other.

To simplify the analysis that follows, we define a set of equivalence classes that
reduces the number of distinct boxes we must consider (and thereby reduce the dimen-
sion of the problem considerably, as we shall see).

Definition 5. The equivalence class of a box B = [a b c d] consists of all boxes that
can be obtained from B via a finite sequence of the following five elementary opera-
tions:

(1) translation: [a b c d] �→ [(a + α) (b + α) (c + α) (d + α)] (α ∈ R);

(2) negation: [a b c d] �→ [−a − b − c − d];
(3) positive scaling: [a b c d] �→ [(αa) (αb) (αc) (αd)] (α ∈ R+);

(4) rotation: [a b c d] �→ [b c d a];
(5) reflection: [a b c d] �→ [d c b a].

We can consider the first three operations as field operations, and the last two as isome-
tries. It is simple to verify that the relation ∼ thus defined is indeed an equivalence re-
lation on the set B of all diffy boxes (i.e., it is reflexive, symmetric, and transitive). We
also observe, following the same arguments given informally earlier, that if B1 ∼ B2,
then C(B1) ∼ C(B2), and B1 and B2 have the same longevity unless one of them is
the zero box and the other is [a a a a] (a �= 0).

We would like to find a way to select a unique member from each equivalence class
in B so that we can concentrate our remaining analysis on a reduced domain. To this
end, we define the canonical form for an equivalence class.

Definition 6. The canonical form for an equivalence class in B is one of the following:
(i) [0 0 0 0] for the class containing this (zero) box; (ii) [0 0 1 1] for the class containing
this box; or (iii) the unique class member of the form [0 1 x y] for which (x, y) belongs
to S = {(x, y) : x ≥ 0, y ≥ 1, x − 1 ≤ y ≤ x + 1} otherwise.

Equivalence class (i) consists of all boxes [a a a a] (a ∈ R), each of which con-
verges to zero in one iteration (if a �= 0). Equivalence class (ii) consists of all boxes
[a a b b] and [a b b a] (a, b ∈ R), which are seen to converge to zero in three iter-
ations ([0 0 1 1]� [0 1 0 1]� [1 1 1 1]� [0 0 0 0]). Identifying the canonical form
for all other classes requires the notion of an extreme element, that is, an element a of a
box that is either maximal (at least as big as each of the other elements) or minimal (at
least as small as each of the other elements). Note that at least two of the four elements
of each box must be extreme. The following result gives a procedure for determining
a type (iii) canonical form, as well as a justification of its uniqueness.

Theorem 1. Any equivalence class in B of type (iii) (i.e., not including a box of
the form [a a a a] or [a a b b]) has a unique representative [0 1 x y] with (x, y) in
S = {(x, y) : x ≥ 0, y ≥ 1, x − 1 ≤ y ≤ x + 1}.
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Proof. We first provide an algorithm for finding the representative, using our elemen-
tary operations. We begin with an arbitrary diffy box [a b c d] and operate on it as
follows (relabeling the results [a b c d]).

1. Rotate (operation (4)) until a box is obtained for which |d − a| is maximal
among |a − b|, |b − c|, |c − d|, |d − a|.

2. (a) Observe that either a or d must be extreme. If necessary, reflect [a b c d]
(operation (5)) to ensure that a is extreme.

(b) If a and d are both extreme, it’s possible that |a − b| < |c − d|. If necessary,
reflect (operation (5)) to make |a − b| ≥ |c − d|.

3. If a is maximal, use negation (operation (2)) to make a minimal.
4. Use translation (operation (1)) to make a = 0.

5. Use positive scaling (operation (3)) to make b = 1.

Observe that properties created at any step are preserved in subsequent steps. The last
step is always possible since steps 2(b) and 4 together imply that c = d when b = 0,
and the only two such cases correspond to equivalence classes of type (i), c = d = 0,
or (ii), c = d �= 0. Otherwise b > 0 (from steps 3 and 4), so positive scaling can be
used to normalize b.

We now have a class representative of the form [0 1 c d] (from steps 4 and 5). Since
a = 0 is minimal, c and d are nonnegative. From steps 1, 4, and 5, we infer that d ≥ 1.
On the basis of 2(b) we have that |c − d| ≤ 1, so c − 1 ≤ d ≤ c + 1. Thus (c, d) lies
in S.

It remains to show that the canonical form (iii) is unique: if [0 1 a b] ∼ [0 1 c d],
where (a, b) and (c, d) belong to S, then (a, b) = (c, d). This can be seen first by
observing that 0 is a unique minimal number (i.e., a, b, c, d > 0 except for [0 1 0 1],
which has no other [0 1 c d] representation), and second on a case-by-case basis by
taking a or b to be maximal and showing that each of the seven transformations that
would transform 0, 1, a, or b to 0 and normalize either of the numbers adjacent to it
results in a box with (c, d) not in S. As the details are simple but technical, we leave
them as an exercise for the reader (we likewise leave as an exercise the proof that the
equivalence classes containing [0 0 0 0] and [0 0 1 1] have no type (iii) canonical form
representation).

4. A TWO-DIMENSIONAL MAP. We can now focus our remaining analysis on
what happens to equivalence classes in B of the form [0 1 x y] with (x, y) in S. We
first observe that in the special case y = 1 the children are of type (i) or (ii) (since
[0 1 x 1]� [1 |x − 1| |x − 1| 1]), hence convergence to zero occurs in two (x = 0, 2)
or four generations.

We now consider the diffy box process as a continuous map from S\{(x, y) : y = 1}
into S that calculations show to be given by

(u, v) = f (x, y)

=




(
1 + x

y − 1
,

x

y − 1

)
if 0 ≤ x ≤ 1, 1 < y ≤ x + 1

(
(x, y) ∈ S1

);
(

1 + 2 − x

y − 1
,

x

y − 1

)
if x > 1, x < y ≤ x + 1

(
(x, y) ∈ S2

);
(

1 + 2 − x

y − 1
, 2 + 2 − x

y − 1

)
if x, y > 1, x − 1 ≤ y ≤ x

(
(x, y) ∈ S3

)
.
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Figure 2 illustrates the three sets S1, S2, and S3 into which this definition decom-
poses S.

0.5 1 1.5 2 2.5
x

1

1.5
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2.5

y

S1

S2

S3

Figure 2. Subdivision of S into regions corresponding to the three branches of f .

By inspection we can see that the first and third branches of this function are infinite-
to-one mappings: the first branch sends all points to the line v = u − 1 (with u ≥ 2,
since y ≤ x + 1 implies that x/(y − 1) ≥ 1), while the third branch sends all points to
the line v = u + 1 (with u ≥ 0, since y ≥ x − 1 implies that (2 − x)/(y − 1) ≥ −1).
On the first branch (where x ≤ 1), f (x1, y1) = f (x2, y2) holds when

y1 − 1

x1 − 0
= y2 − 1

x2 − 0
,

that is, when (x1, y1) and (x2, y2) lie on the same line segment from (0,1). Likewise,
on the third branch (where y ≤ x), f (x1, y1) = f (x2, y2) occurs when

y1 − 1

x1 − 2
= y2 − 1

x2 − 2
,

that is, when (x1, y1) and (x2, y2) lie on the same line segment from (2,1). On these
branches, f compresses two-dimensional regions into rays on the boundary of S.

The second branch, however, is one-to-one: for (x1, y1) and (x2, y2) both in S2,
f (x1, y1) = f (x2, y2) implies that (x1, y1) = (x2, y2) (we can see this by rewriting

x1

y1 − 1
= x2

y2 − 1
as y2 − 1 =

(
y1 − 1

x1

)
x2

and substituting this into

1 + 2 − x1

y1 − 1
= 1 + 2 − x2

y2 − 1
).
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We can also see that the first and third branches have no fixed points inside their
respective domains: the first branch sends all points to the line v = u − 1, which
isn’t in S1, and branch 3 sends all points to the line v = u + 1, which isn’t in S3.
(In fact, there is no possible periodicity in these regions, either, since for (x, y) in
S1 or S3, (c, d) = f ( f (x, y)) has d = 1.) Therefore any fixed points must lie in
S2. Indeed, straightforward calculations show that S2 contains the unique fixed point
(q(q − 1), q) ≈ (1.5437, 1.8393), where

q = 1

3

(
1 + 3

√
19 + 3

√
33 + 3

√
19 − 3

√
33

)

is the unique real solution to q3 − q2 − q − 1 = 0. Here C([0 1 q(q − 1) q]) ∼
[0 1 q(q − 1) q] (i.e., the child is in the same equivalence class as the parent, and
therefore takes just as long to converge—in other words, it has infinite longevity). The
only other equivalence class for which this is true is [0 0 0 0] (but properly speaking
this class has no longevity).

We should note, however, that the foregoing does not imply that B = C(B) for
members of the class containing [0 1 q(q − 1) q]. In fact, in an R4-norm sense, as
well as that of Definition 3, members of this class do approach the zero box under
iteration—they just take infinitely long to get there. For example, calculation of a few
iterations of the diffy box process beginning with [0 1 q(q − 1) q] shows that after the
first step the four entries gradually diminish in size (by a factor of q − 1) as they cycle
around counterclockwise, in keeping with Proposition 1.

We now determine whether the fixed point (q(q − 1), q) is stable, in the sense
of other nearby points’ images approaching it under repeated application of f . To
determine the stability of a fixed point of a complex map f , one looks at its Jacobian
matrix J f . This is derived from the linearization of the map and consists of the map’s
partial derivatives, evaluated at a given fixed point. For f = ( f1(x, y), f2(x, y)), the
Jacobian is given by

J f =




∂ f1

∂x

∂ f1

∂y

∂ f2

∂x

∂ f2

∂y


 .

This (second) branch of f has

J f (x, y) =




− 1

y − 1

x − 2

(y − 1)2

1

y − 1
− x

(y − 1)2


 ,

J f

(
q(q − 1), q

) ≈
[ −1.1915 −0.6478

1.1915 −2.1915

]
.

The matrix on the right has eigenvalues λ ≈ −1.6915 ± 0.7224i . Because the eigen-
values have magnitude greater than 1, the fixed point is unstable. Because the imagi-
nary components are nonzero, we see that points near (q(q − 1), q) spiral away from
it under (repeated) application of f . (To read more about stability analysis of fixed
points, see [2] or [3].) Because this is the only fixed point, one might expect that fur-
ther applications of f will eventually move any other point to the boundary of the
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domain, and then out of it entirely. Therefore, we might expect that those diffy boxes
that take longest to converge to zero correspond to those points in S closest to the fixed
point (q(q − 1), q). As we shall see later, these intuitive notions turn out to be correct.

If we begin a case-by-case analysis of the successive applications of f in S, we no-
tice the domain subdividing into regions beginning along the boundaries and working
in toward the fixed point.

Example 1. Any box [0 1 x y] with x ≤ 1 converges to zero within four generations
(three if y = x + 1, two if (x, y) = (0, 1)). We calculate

[0 1 x y]� [
1 (1 − x) (y − x) y

]
�

[
x (y − 1) x (y − 1)

]
�

[|y − x − 1| |y − x − 1| |y − x − 1| |y − x − 1|]� [0 0 0 0]
and observe convergence to zero one or two generations sooner in the aforementioned
special cases. (This corresponds to region S1 in Figure 2.)

Example 2. Any box [0 1 x y] with x ≥ y and x ≥ 2 converges to zero within four
generations (three if y = x − 1, two if (x, y) = (2, 1)). We compute

[0 1 x y]� [
1 (x − 1) (x − y) y

]
�

[
(x − 2) (y − 1) (2y − x) (y − 1)

]
�

[
(y − x + 1) (y − x + 1) (y − x + 1) (y − x + 1)

]
� [0 0 0 0],

again observing the quicker convergence for the special cases.

Example 3. Any box [0 1 x y] with 1 < y ≤ x < 2 converges to zero within six
generations. Here we find that

[0 1 x y]� [
1 (x − 1) (x − y) 2

]
�

[
(2 − x) (y − 1) (2y − x) (y − 1)

]
�

[|x + y − 3| (y − x + 1) (y − x + 1) |x + y − 3|]� [p 0 p 0]
� [p p p p]� [0 0 0 0],

where p = ||x + y − 3| − y + x − 1|. (Examples 2 and 3 together comprise region S3

in Figure 2.)

Note that Examples 1, 2, and 3, together with the case y = 1 discussed earlier and
the type (i) and (ii) classes, cover all nonmonotone classes of diffy boxes.1 (Mono-
tone classes have 0 < 1 < x < y.) Further calculations show that monotone classes
have longevity at least five. Figure 3 demonstrates how S is subdivided into regions
of different longevities (the lighter the region, the greater the longevity). The only two
equivalence classes not depicted are (i) and (ii); here (ii) can be considered as the point
at infinity (by which is meant the point that must be adjoined to R2 in order to com-
pactify it). The black dot in the center is the fixed point, and the white region around
it represents all equivalence classes of longevity ten or more generations. Note that
where two regions of different longevity meet, the boundary between them belongs to
the region of lower longevity.

To determine the longevity of monotone classes in full detail, we change our ap-
proach from the sort of increasingly detailed calculations in the foregoing examples
to a consideration of preimages under f . We will need to invoke the following result
regarding the invertibility of the map f .

1They thus provide an alternate proof of Proposition 2.
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Figure 3. Subdivision of S into regions colored by longevity.

Theorem 2. The map f |S2 has an inverse g that is defined on the set

A = int S ∪ {
(x, 1) : 0 < x < 2

}
,

maps the interior of S into the interior of S2, and preserves line segments.

Proof. We have already seen that of the three branches in the definition of f , only the
second is one-to-one. Since the images of the first and third branches lie on the left and
right boundaries of S, the inverse map g = f |−1

S2
should be well-defined on the set A.

We can invert the expression for f on the second branch to find that

g(x, y) =
(

2y

x + y − 1
,

x + y + 1

x + y − 1

)

for (x, y) in A. We observe that g maps the interior of S into the interior of S2: for
g(x, y) = (u, v), x > 0, y > 1, and x − 1 < y < x + 1 together imply that u > 1 and
u < v < u + 1.

Straightforward calculation shows that g preserves line segments in the interior of
S and that f preserves line segments in S2.

We define a sequence of sets Tn (n > 1) inductively, as follows. Let T2 = S, and
for n > 1 let Tn+1 = f −1(Tn). Because the backward map g is not defined on the left
and right boundaries of S, we shall consider the first few examples individually, until
we arrive at a Tn such that Tn ⊂ int S. We also need to consider the type (ii) class (the
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point at infinity), because when 0 < x < 2,

[0 1 x 1]� [
1 |x − 1| |x − 1| 1

] ∼ [0 0 1 1]� [0 1 0 1],
that is, the diffy box process sends points (x, 1) on the boundary (0 < x < 2) to the
type (ii) class and then sends the type (ii) class to the point (0, 1) in S.

x
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0 1

1
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0 1

1

x

y

0 1

1
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y

0 1

1

x

y

0 1

1
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y
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1

T2 T3

T7T6T5

8

T4

Figure 4. The sets Tn for 2 ≤ n ≤ 7.

Four further calculations are necessary before we can make use of g. Excluding
the point at infinity from S, we find that T3 = f −1(S) is S without its lower boundary
{(x, 1) : 0 < x < 2} but with the point at infinity (see Figure 4), since the only points
in S that do not have images in S are on the lower boundary y = 1. (The previous
paragraph addresses the point at infinity.) Next, T4 = f −1(T3) is S without its left and
right boundaries (i.e., T4 = A), as the preimage of the interior of S is the interior of S2,
the preimage of the left boundary of S is S3 ∩ int S, the preimage of the right boundary
of S is S1 ∩ int S, and the preimage of the point at infinity is the lower boundary of S
(endpoints excluded). The left and right boundaries of S (endpoints excluded), which
we exclude from T4, are the preimage of the lower boundary of S (endpoints included),
which we excluded from T3. (The corners are not preimages of anything in S.) Next
we find that T5 = f −1(T4) = S2; the included boundary is the preimage of the lower
boundary of S, endpoints excluded. Finally, we find that T6 = f −1(T5) is the interior
of the triangle with vertices (1,1), (2,1), and (2,3), again by excluding the preimages of
the parts of S excluded from T5 (see Figure 4 for sketches of all these). T6 lies in int S.

If we continue in this way, we discover that the Tn for n > 6 are also interiors of
triangles. When n ≥ 8 the vertices of these triangles are in the interior of S, which
allows us to keep track of the Tn via their vertices (Table 2 provides a partial list, and
Figure 5 shows boundaries of some of the Tn (n ≤ 10) superimposed upon each other).

The utility of the Tn derives from the fact that all equivalence classes of longevity
n (n > 1) are represented in Tn . It is simple enough to check this for the first few
examples; thereafter the result follows by induction. It is also worth noting that, al-
though Tn does not contain all classes of longevity n + 1, it does contain all classes
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Table 2. Vertices of Tn for 6 ≤ n ≤ 10.

n Vertex 1 Vertex 2 Vertex 3

6 (1, 1) (2, 1) (2, 3)

7 (2, 3) (1, 2) ( 3
2 , 3

2 )

8 ( 3
2 , 3

2 ) (2, 2) ( 3
2 , 2)

9 ( 3
2 , 2) ( 4

3 , 5
3 ) ( 8

5 , 9
5 )

10 ( 8
5 , 9

5 ) ( 5
3 , 2) ( 3

2 , 11
6 )
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Figure 5. Tn (n ≤ 10) superimposed upon each other.

of longevity n + 2 or greater. Furthermore, we observe (again by induction, starting
with n = 2) that Tn+2 ⊂ Tn , so that Tn+3 ⊂ Tn+1, and we can classify the set of all
equivalence classes of longevity n (n > 1) as precisely Tn\(Tn+1 ∪ Tn+2). That is, an
equivalence class has longevity n if and only if its canonical representative is in Tn but
not Tn+1 or Tn+2.

At this point the question arises of how to test where a given point (i.e., equivalence
class) falls relative to the sequence of triangles Tn (n ≥ 6). Arguably the simplest is
just to plot it on a graph containing (enough of) the Tn. There are also several simple
algebraic approaches, however, to test whether a point falls within a given triangle. One
is to write the points involved in vector form. First let the interior of each triangle be
written as the set of points whose coordinates are a weighted average of the coordinates
of the three vertices V1, V2, and V3:

T̂ = {
(x, y) : (x, y) = r V1 + sV2 + (1 − r − s)V3; r, s > 0, r + s < 1

}
.
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Now, to test whether a point P is inside T̂ , calculate the corresponding “coordinates”
r and s:

[
r
s

]
=

[−−→
V3V1

−−→
V3V2

]−1 −−→
V3 P,

and check whether r > 0, s > 0, and r + s < 1. For example, T6 is the set of
(x, y) such that (x, y) = r(1, 1) + s(2, 1) + (1 − r − s)(2, 3) for some r and s
satisfying r > 0, s > 0, and r + s < 1, and the fixed point P is (q(q − 1), q) ≈
(1.5437, 1.8393), making

−−→
V3V1 = (−1, −2),

−−→
V3V2 = (0, −2),

−−→
V3 P ≈ (−0.4563, −1.1607),

and

[
r
s

]
=

[ −1 0
−2 −2

]−1 [ −0.4563
−1.1607

]
= (0.4563, 0.124),

verifying that P lies in T6.
The only drawback to an algebraic approach is that it is inescapably recursive, and

the number of calculations required to continue testing whether a given point falls in-
side each Tn is comparable to the number of calculations required simply to take the
diffy box process toward its eventual end. A graphical approach merely requires plot-
ting a sufficient number of Tn so that the point falls outside two consecutive triangles.

We close this section with one more way to look at the domain S. Figure 6 divides
S into three disjoint invariant regions by shades of gray: that is, each shade (light,
medium, or dark) represents a sequence of images and preimages under f , jumping
around and toward the fixed point. The fading of the colors near the fixed point indi-
cates increasing longevity.

5. CONCLUSIONS, APPLICATIONS, AND EXTENSIONS. We now return to
our original question: Does every diffy box converge to the zero box in a finite number
of generations, and, if so, how many generations will it take? We can now reinterpret
the results of our analysis on equivalence classes in terms of boxes as four-tuples.

The answer to our question as phrased is no, for the diffy boxes belonging to the
class containing the box [0 1 q(q − 1) q] associated with the fixed point of the map
f require an infinite number of iterations to reach zero: any diffy box in this class
has entries (vertex numbers) that become smaller and smaller but never actually reach
zero. However, the counterexample class is unique, and all other diffy boxes converge
to zero in finitely many generations (the number depends on how close their canonical
forms are to the fixed point). In fact, for any specified longevity, there are classes
of diffy boxes that take precisely that long to converge to zero. Nonmonotone boxes
converge especially quickly (in no more than six generations), while monotone boxes
have longevity at least five. To determine the longevity of a monotone diffy box, it is
simplest to put the box in canonical form and compare its coordinates (x, y) with a
graph of the regions of various longevities identified in the previous section. We might
also make the observation that (as seen by the regions into which S is subdivided
in Figure 3) the use of “complicated” numbers such as radicals or transcendentals
does not really prolong convergence much, since within a couple of generations the
differences have propagated through the four vertices and get subtracted out.
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Figure 6. Subdivision of S into 3 invariant regions (by color).

As mentioned in the introduction, diffy boxes can be used as problem-solving con-
texts for elementary grades students (see [1]). After working through several diffy
boxes, children can group them according to longevity and begin to observe some
patterns in the forms of boxes that converge in one, two, three, and possibly four
generations. They can also observe the properties we used in Definition 5 to define
equivalence, as well as the effects (or lack thereof) of using numbers other than whole
numbers.

A natural extension of the diffy-box problem that we leave to the reader is the
generalization from squares to other polygons. For example, a quick investigation of
“diffy triangles” reveals a peculiar chasing pattern and the surprising(?) result that
no “diffy triangles” ever converge to the all-zero triangle, except for those with all
three numbers the same (to convince yourself of this, try to construct the parent of
such a diffy triangle). From this observation one might try to classify the types of
possible behavior of diffy triangles, or else move to a larger scale and perhaps consider
convergence of “diffy polygons” with varying numbers of edges. (If we place “diffy
polygons” in the context of graph theory, we see that any simple generalization to a
more general class of graphs is prevented by the fact that only the cycle graphs Cn

(i.e., polygons) have line graphs isomorphic to themselves. Considering polygons as
cycle graphs, however, does allow us to include the trivial example C2, the two-sided
polygon, which converges to zero in two steps for any two starting values.) The reader
interested in the “diffy n-gon” may wish to take a hint from Winkler [4, chap. 2],
who observes (p. 17) that, for the special case where all vertices are integers, “A little
analysis via polynomials over the integers modulo 2 shows that the salient issue is
whether n is a power of 2.” Winkler’s book also uses integers modulo 2 to establish
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the logarithmic bound suggested at the end of section 2 for integer-valued diffy boxes
(using the maximum entry rather than |B|).

Another possible extension is a change in the distance function used to calculate
the vertices of a given box’s child. We have used the symmetric “one-dimensional”
norm f (a, b) = |a − b|, but we might instead have used a “two-dimensional” norm
f (a, b) = √

a2 − b2, or an asymmetric one-norm f (a, b) = |Aa − Bb| for fixed
weights A and B with A + B = 2 that places more emphasis on one vertex than
the other (in this case we would clearly have to identify vertices by orientation, for
example, b as clockwise from a).

It is also interesting to note that the irrational number q involved in the fixed-point
diffy box class is also associated with sequences of numbers called tribonacci num-
bers. Similar to the notion of Fibonacci numbers, tribonacci numbers are a sequence
of numbers tn that obey the recursive relation tn = tn−1 + tn−2 + tn−3. (The sequence
typically begins with t1 = 1, t2 = 1, and t3 = 2.) Like Fibonacci numbers, any se-
quence of tribonacci numbers tends toward a geometric increase, with the ratio of any
two successive numbers in the sequence approaching a fixed constant. For tribonacci
numbers that constant is q. In fact, beginning as indicated, tn ∼ qn as n → ∞. (If we
look for geometric solutions tn = an to the defining recursive relation, we see that we
must have an = an−1 + an−2 + an−3 or a3 = a2 + a + 1, the same equation we solved
to obtain q.)

It is remarkable how mathematically rich such a simple notion can be. We invite the
reader to explore further.
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