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1 Introduction

At the sixth international conference on difference equations held in Augs-
burg, Germany, the second author was frequently asked about the stabil-
ity of non-hyperbolic fixed points. It was rather surprising to learn that a
complete stability theory for non-hyperbolic fixed points of one-dimensional
maps is not known even to specialists in dynamical systems and difference
equations. This is despite the fact that the study of the dynamics of one-
dimensional maps is central to many fields including discrete dynamical sys-
tems [1, 3, b, 12], difference equations [4, 7, 9, 10] as well as differential
equations via Poincaré [11] and Lorenz maps [1, 5, 8].

Our main objective here is to present a complete theory for the stability
of non-hyperbolic fixed points of one-dimensional continuous maps f. This
would automatically provide a parallel theory for non hyperbolic periodic
points by treating a k-periodic point 7 (f*(Z) = ) as a fixed point of the
map f¥. Here f* denotes the k-time composition fo fo...o f, while f*
denotes the k'™ derivative of f, where k € Z*, the set of nonnegative integers.

Our proofs are simple and thus suitable for undergraduates with some
calculus background. We hope that this paper will stir interest in teaching the



intriguing dynamics of one-dimensional maps for all undergraduate science,
mathematics and economics majors.

2 Brief Review of the Literature

Let f : X — X, where X is an interval in R, be a continuous map and
x* € X be a fixed point of f, i.e., f(z*) = x*. Then we have the following
definitions [4, 5, 7]:

Definition 2.1.

i. ¥ is said to be stable if given € > 0, there exists 0 > 0 such that
|z — a*| < & implies | f"(x) — z*| < e, for alln € Z+. * is said to be
unstable if it is not stable.

*

ii. x* is said to be attracting if there exists n > 0 such that |x — z*| < n
implies lim,, o, f"(z) = x*. Moreover, x* is globally attracting if n =
0.

1. x* is said to be asymptotically stable if it is both stable and attracting.
x* is said to be globally asymptotically stable if it is both stable and
globally attracting.

iv. x* is said to be semi-asymptotically stable from the left (resp. right)

if it is both

(a) stable from the left (resp. right) , i.e., for every ¢ > 0, there
exists & such that x € (x* — 6,z%)(resp. (z*,x* + 6)) implies that
|f"(z) — z*| < e, and

(b) attracting from the left (resp. right) , i.e., there exists n > 0 such
that x € (x*—n,x*)(resp. (z*,z*+n)) implies that lim, o f"(z) =

*

xT.

The following theorem, found in [4, 5, 14], summarizes what is known in
the literature. Recall that a fixed point x* of a map is said to be hyperbolic
if | f'(2*)| # 1, and non-hyperbolic if |f'(z*)| = 1. The Schwarzian derivative

of [ is defined as Sf(x) = &8 — 3L




Theorem 2.2. The following statements hold true for a continuously differ-
ential hyperbolic map f.

i. If |f'(z*)| < 1, then x* is asymptotically stable.

ii. If | f'(z*)] > 1, then x* is unstable.

For non-hyperbolic maps, we have the following:

Theorem 2.3. The following statements hold true for f € C3.
i. If f'(z*) =1, then we have three cases to consider:

(a) If f"(z*) # 0, then x* is semi-asymptotically stable from the left

if f"(x*) > 0 and from the right if f"(x*) < 0.
(b) If f"(x*)
(c) If f"(z*)

ii. If f'(z*) = —1, then we have two cases to consider:

z*) =0 and f"(x*) <0, then x* is asymptotically stable.
z*) =0 and f"(z*) > 0, then x* is unstable.

(a) If Sf(z*) <0, then x* is asymptotically stable.
(b) If Sf(x*) >0, then x* is unstable.

Cull [2] and Rosenkranz [13] considered a special class of one-dimensional
maps that they called population models, z,,,1 = f(z,), where f is a con-
tinuous map from RT — RT with exactly one positive fixed point z* such
that

i f(0)=0

>z for0<z<z*
i. f(x){ =a forz=uza*
<z forz>x*

For such models, Cull [2] considered the case when f'(z*) = 1. Due
to the complicated nature of the given stability conditions, we refrain from
stating them here and refer the interested reader to Cull’s paper. For global
asymptotic stability of population models, Rosenkranz [13] gave the following
interesting result.



Theorem 2.4. Suppose that f has no mazimum in (0,x*), then x* is globally
asymptotically stable. If f has a mazimum zye (0,2%), then x* is globally
asymptotically stable if and only if f?(x) > x for all x € (zpr, 1%).

Remark 2.5.

i. Theorem 2.3 fails to address the situation when f'(z*) =1 and f"(z*) =
f"(x*) =0 as in the case for f(z) = x + (x — 1)* with z* = 1.

ii. Theorem 2.3 also fails to address the case when f'(x*) = —1 and
Sf(x*) =0 as demonstrated by f(z) = —x + 22> — 423, 2* = 0.

iii. Theorem 2.3 does not address the extreme cases when f'(x*) =1 and

fE (x*) =0 for k> 2, and f'(z*) = —1 and g¥) (x*) = 0 for k > 2

3 Global Stability of General Maps

In this section, we divide the plane into eight regions A;, B;, 1 < i < 4 as
depicted in the figure.

Ay ={(z,y):y > w0 > "}

Ay ={(z,y) 12" <y <w}

As ={(z,y) : —x + 22* <y < x*}
Ay =A{(z,y) :y < —x+ 22",z > 2*}
By ={(z,y): —x + 22" <y,x <z}
By ={(z,y) :a* <y < —x+22%}
By ={(z,y) 12 <y < ¥}
By={(z,y):y <z <z}

Let f: R — R and z* be the only fixed point of f. Write f as

| Yx) ifx <zt
f(x)—{ o(x) ifx >z
where ¢ (z*) = p(z*) = z* and both 1 (z) and ¢(z) are continuous maps.
The lines y; = z, yo = 22" — x, y3 = x*, and © = z* divide the plane into
the above-mentioned eight regions.



Definition 3.1. If the set {(x, ¥(z)) : © < a*} C By, for some i, then we
say that (x) stays in B;. On the other hand, if the set {(x, ¢(x)) : © >
x*} C A;, for some i, then we say that o(x) stays in A;.

In the sequel, we will address the possible scenarios reqarding the behavior
of the map f in the regions A; and B;, 1 <1i < 4.

Proposition 3.2. If o(x) stays in Ay for all x € R, then

i. x* is globally asymptotically stable if (x) stays in one of the regions
Bl) Bg, or Bg.

ii. x* is semi-asymptotically stable from the right if ¥ (x) stays in By.

Proof. Let xp > x*. Then from the assumption f(z) = ¢(x) stays in the
region A,. Hence z* < f(x9) < 0.

In the first case if f(zo) = 2*, then z* is an eventually fixed point and
the iterative process stops there. In the latter case, a decreasing sequence
{f™(x)} is generated such that lim, ,,, f"(zo) = z*. This is true since if
lim,, 00 f™(20) = &, then lim,, o f"(zy) = & = f(Z) and hence & must be
a fixed point of f. But then z = x*, since f has only one fixed point. On
the other hand, if o < 2* and v (z) stays in By, then 9 (zg) = f(xo) > z*.
Consequently, lim,, ., f™(xo) = z*.

The proofs of the remaining two cases and of (ii) are similar.

U

The remaining cases are now summarized in the following propositions.

Proposition 3.3. The following statements hold true.

i. If () stays in Az for all x € R, then x* is globally asymptotically
stable if 1 (x) stays in Bs; it is unstable if p(x) stays in By.

ii. If o(x) stays in Ay for all © € R, then x* is unstable if 1 (x) stays in
Bs; it is globally asymptotically stable if 1(x) stays in By.

iii. If p(x) stays in Ay for all x € X, then x* is unstable if (x) stays in
one of the regions By, By, or By, it is semi-asymptotically stable from
the left if ¥ (x) stays in Bs.



4 Local Stability of Nonoscillatory Nonhy-
perbolic Maps

In this section, we will utilize propositions 3.3 and 3.2 to tackle the cases
pertaining to f'(z*) = 1 where z* is a fixed point of the map f.

Theorem 4.1. The following statements hold true:

i. Suppose that f € C?*. If f'(z*) =1, and f"(z*) = ... = fEV(z*) =
0 but fCR)(z*) £ 0, then x* is semi-asymptotically stable from the left
if f@R)(x*) > 0 and from the right if f@F(2*) < 0.

ii. Suppose that f € CZ+V. If f'(z*) = 1, and f"(z*) = 0...
fE(z*) = 0 but fC*+V(2*) £ 0, then

(a) z* is (locally) asymptotically stable if fE*+1D(z*) <0,
(b) z* is unstable if fP*+D(z*) >0

Proof of (i). Let q(x) = f(x) — = and let ¢ be a sufficiently small number.
Then, by Taylor’s Theorem

(2k=1) (. (2k)

(2k — 1) (2l<;)!
Holds for some x* < £ < x* 4+ 4, and hence
f2k(€) 2k * *
qg(z" +0) = (2]{:)‘5 ot <E<aT+d (1)

It is clear from Equation (1) that whenever f%)(z*) > 0 (< 0), it follows
that ¢(z) > 0 (< 0) in (z* — 0, 2* + J) for a sufficiently small §. Applying
Propositions 3.2 and 3.3 now yields the desired result. O

Proof of (ii). Under the given assumption in part 2, and by using Taylor’s
theorem, we obtain

f(2k+1 (5) 52n+1

9@ +90) = G

Lot <E<a 46 2)

Now, from Equation (2), if &+ (z*) > 0, then ¢(x) > 0 in (2*,2* + 0)
and ¢(z) < 0 in (2* — 0,2*), for a sufficiently small §. This implies, by

6



Proposition 3.3, that 2* is unstable. On the other hand, if 1) (z*) < 0,
then ¢(z) > 0 in (2* — 6, 2*) and ¢(z) < 0 in (z*,2* + ¢), for a sufficiently
small 9. This implies by Proposition 3.2 that z* is asymptotically stable. [

Recall the example f(z) = x + (x — 1)*. Here z* = 1 is a fixed point of
f with f/(z*) =1, f"(2*) = f"(2*) = 0 and f#(2*) = 24 > 0. Hence by
Theorem 4.1, x* is semi-asymptotically stable from the left

5 Local Stability of Oscillatory Nonhyperbolic
Maps

We now consider the case when f’(z*) = —1. A nice trick here is to look at

the map g(z) = f(f(z)) = f*(»).

5.1 Results with g(z)

Since z* is a fixed point of f, it must be a fixed point of g and ¢'(z*) = 1.
Moreover, ¢"(z*) = 0 and ¢"(z*) = 25f(z*) [4]. By results in [4, 14], we
know that z* is asymptotically stable {unstable} under g if, and only if, it is
asymptotically stable {unstable} under f.

We can then apply the second half of Theorem 4.1 to get the following
result.

Theorem 5.1. Suppose that f € C**Y and x* is a fived point of f such
that f'(z*) = —1. If ¢"(z*) = ... = ¢@P(2*) = 0 and g +Y (z*) £ 0, then

i. x* is asymptotically stable if g**+V)(2*) < 0 and
ii. o is unstable if g@?*+Y (z*) > 0.

Observe that this strategy does not use the other part of Theorem 4.1
— where z* is semi-asymptotically stable under g. That is, the case where

fl(z*) = —1, ¢"(z*) = ... = ¢ V(2*) = 0 and g¥)(2*) #£ 0.
We now argue that this situation will never occur for analytic f.

Theorem 5.2. Let f be analytic with f'(x*) = —1. Then, for some k > 1,

i If ¢"(x*) = ... = gV (z*) =0, then ¢g®*)(z*) = 0.
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1. x* cannot be semi-asymptotically stable under g.

Proof. By Taylor’s Theorem, we have some small § with

fla*+06) = f(z*) +of (a%) + 250 4
=z* —§+ 0(6?%)

Hence, for zo = z* + § > z*, we have f(zy) < z* and for zo = 2* — § <
x*, we have f(xg) > z*. In other words, for zy € (z* — 0, z* + J) either
() € (z%, ¥+ d) and f**(2*) € (2 — 9, %) for all k € ZF or
f2*(z*) € (x* =4, x*) and f*(z*) € (z*, 2* +0) for all k € Z7.

Now, if f?*(zy) — z* as k — oo, then f%*¥1(zy) — 2* as k — co. Hence
either z* is asymptotically stable or x* is unstable and, more importantly, it
cannot be semi-asymptotically stable. O

These results using g(x) are conclusive but not entirely satisfactory. For
example, we return to f(z) = —x + 22? — 423, To determine the stability of
f(x) at 0, we need to find derivatives of g(x) = —z+42? —8x3+64x°—192x5+
38417 — 3842% + 2562°. Tt turns out that ¢°(0) = 7680; hence, by Theorem
5.1, 0 is an unstable fixed point. However, this was computationally difficult,
and we would like an analogue of Theorem 5.1 using only the derivatives of

f(z).

5.2 Results to avoid ¢g(z)

We can avoid the need to calculate g(x) by using another trick — Faa di

Bruno’s formula. A recent survey of the history of this marvelous result can
be found in [6].

Theorem 5.3 (Faa di Bruno). Let f € C". Then 4-g(z) = Lo f(f(z)) =
S ot s () (L8 (L) - (o

where the summation extends over all possible integer a; such that 0 < a; < n
and n = a; + 2as + 3az + - - - + na,.

We can combine Theorem 5.3 with Theorem 5.1 to make a stability test
using only the derivatives of f. We know that f’'(z*) = —1. We can use that
in the formula, and we find the Schwarzian g©® = —2f©) —3(f(®)2, If this is

nonzero, then Theorem 5.1 gives us an answer. If this is zero, then we know



that ¢4 = 0 by Theorem 5.2. We can now use f' = —1, f& = —2(f@)2 {0
find that ¢®® = —2f0®) — 153 & 1 30(f(2))*,

This helps us right away with our example f(r) = —x + 22 — 423, We
have f/(r) = —1 + 4z — 1222, f(2) = 4 — 24z, f®) () = —24. Hence,
g® =30(4)* = 7680.

Theorem 5.4. If f'(z*) = —1 and ¢"(z*) = --- = g®*¥)(z*) = 0, then we
can write g (z*) = =2+ (1) + poy. 11, where pop11 is a polynomial in
even derivatives of f: f&(x*), f®(2*),... fCH) (2¥).

Proof. The summands in Theorem 5.3 only include terms in derivatives of f
up to the (2k + 1)™. Furthermore, there are exactly two terms containing
f@R+1) — one has a; = 2k + 1,0 = ay = ag = -+ = @941, and the other has
0=a =ay ="+ =ap_1,1 = asr1. We can now prove the theorem by
induction. The base case of £ = 1 is just the Schwarzian. For higher £ we
can solve for the each of the odd derivatives of f and successively substitute
them into the formula of Theorem 5.3 until only even derivatives are left. [

It is easy to calculate these pori1. We have:

ps = —3(f(2 )%,

ps = —15f® f@ 4 30(f@)*,

pr = —28f 2)f(6) 4 945( 2 )3 (4) _ 4095 (f(2 ) 35(f(4 )

p9=—45f 2) £®) 14410(f2)3 £ 208845(f< )2 F@ 210 f@ (6 +411075( f2))34-
15750(f )2 (FW)2.

This gives us the following analog of Theorem 5.1.

Theorem 5.5. Let f be an analytic function with f'(x*) = —1. Let k be the
smallest index where fCF+V(z*) £ p%%l(x*). If fOH1)(1%) < IM then

f is unstable at x*; otherwise f**+V(z*) > p%%(m*) and f is asymptotzcally
stable.

5.3 Other results for oscillatory nonhyperbolic f(z)

The previous theorems handle the cases of analytic (nonhyperbolic) f where
some k™ derivative is nonzero, for & > 1. If no such derivative is nonzero,
then we have the following.

Remark 5.6. If f'(z*) = 1, f®)(z*) = 0 for all k > 1, and f is analytic,
then f(x) = x. Consequently, every point in the vicinity of =* is a fized



point and x* is thus stable but not asymptotically stable. If f'(z*) = —1,
g (z*) = 0 for all k > 1, and f is analytic, then g(x) = x. Hence every
point in the vicinity of x* is periodic of period 2, and x* is again stable but
not asymptotically stable.

If f is not analytic, we must revert to Proposition 3.3. The situation is
much more involved as the following example demonstrates.

Example 5.7. Consider the maps fi(z) = x4+ e %, fo(x) = & + ze ™,
fs(z) = 2 —xze ", with f;(0) = 0. Each of these maps has f/(0) = —1, and
fi(k)(O) =0 for all k > 1. However, the fixed point O is semi-asymptotically
stable from the left, unstable, and asymptotically stable, respectively.

6 Further Work

In the course of this work several problems have suggested themselves. There
appear to be deeper relationships between the derivatives of f and g.

Conjecture 6.1. If f'(z*) = 1 and f"(z*) = f"(z*) = --- = fEV(z*) = 0,
and f®) (2*) # 0, then g (z*) = 2f®) (2*).

Conjecture 6.2. If f'(z*) = —1 and ¢"(z*) = ¢"(z*) = -+ - = gV (2*) =
0, then g0 (z*) = —%k(2k —3)f"(z*) gV (2*).

There is also some questions surrounding the pogiy from Theorem 5.4.
What patterns are in those polynomials? It appears that the terms are of
the following form, but the coefficients are a complete mystery.

Conjecture 6.3. In the notation of Theorem 5.4, the polynomials poj.q
consists of terms a(f(@))or(fle2))oz...(flaibi = where 20 € Z and 2k =

;bl (ai — 1)

Finally, we can construct polynomials f that, locally, are square roots of
y = x to arbitrarily many derivatives. These f, incidentally, can be quite
different from y = —x, the usual square root. We build f from low-degree
terms to high degree terms, by choosing the even derivatives arbitrarily, and
setting the odd derivatives to satisfy Theorem 5.4. If we did this forever, we
would get a power series instead of a polynomial. Can we choose the even
derivatives to make the emerging power series converge?
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