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Ground Rules

This talk is all natural: {0,1,2,...}.
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Ground Rules

This talk is all natural: {0,1,2,...}.

Congruences: a= b (mod n) means n > 0 and n|(a— b).
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x1=1,X%=2,x3=9,...,x9 = 3 satisfy:

3X1 +7Xo+X3+3X4+7X5+ Xg +3X7 +7Xxg + X9 =0

(mod 10)
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ISBN codes

LSO 3-12-675495-3 ISBN10: 3126754953
‘ 20000 ISBN13: 9783126754958
754958

783126

ISBN10 satisfies
10X1 +9Xo +8X3+7X4+6X5+5X5 +4X7+3Xg+2Xg+ X190 = 0
(mod 11)

ISBN13 satisfies X1 +3x + X3 + 3X4 + -+ 3X10 +x41=0
(mod 10)
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UPC Numbers

6! |39382 00039'13

UPC number: 639382000393

Satisfies 3xy +xo +3x3 +1x4 + - +3x41 + X2 =0
(mod 10)
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Satisfies Xy + xo + X3 + - - + X12 = 0 (mod 10)
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VIN codes
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VIN (translated): 17189231975800001

Satisfies

8X1 4+ 7Xo + 6X3 + 5x4 + 4X5 + 3xg + 2x7 + 10xg + 10x9 +
9X10 + 8X41 + 7X42 + 6X13 + 5X14 + 4X15 + 3X16 + 2Xx47 =0
(mod 11)
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Okay, enough examples already!

A multilinear modular equation consists of constants
{r,a;, b, n} and variables {x;}, where

aixy + agXo +---+ arxr = b (mod n)
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Okay, enough examples already!

A multilinear modular equation consists of constants
{r,a;, b, n} and variables {x;}, where

aixy + aXxo + -+ arxy = b (mod n)

Question 1: Does it have a solution?
Question 2: Does it have a distinct solution?
Note: A solution is distinct if x; # x; (mod n) for all i # j.
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Two Simple Examples

4x1 + 22X + 2X3 = 1 (mod 6)
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Two Simple Examples

4x1 + 22X + 2X3 = 1 (mod 6)

LHS is 2(2x1 + x2 + x3), even. RHS is odd. LHS-RHS is
odd, so 6 cannot divide.
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Closing Thoughts

Two Simple Examples

4x1 + 22X + 2X3 = 1 (mod 6)

LHS is 2(2x1 + x2 + x3), even. RHS is odd. LHS-RHS is
odd, so 6 cannot divide.

4x1 4+ 2x2 + 2x3 =1 (mod 5)
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Two Simple Examples

4x1 + 22X + 2X3 = 1 (mod 6)

LHS is 2(2x1 + x2 + x3), even. RHS is odd. LHS-RHS is
odd, so 6 cannot divide.

4x1 4+ 2x2 + 2x3 =1 (mod 5)
No problem: x; =0, x> = 1, x3 = 2 works.
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What’s The Problem?

If gcd(ay, a, . . ., ar, n) does not divide b, no solution.
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The First Obstacle

What’s The Problem?

Closing Thoughts

If gcd(ay, a, . . ., ar, n) does not divide b, no solution.

We call this the Subgroup Obstacle.

If each a; lies in some subgroup of Z/nZ, then every linear
combination does too.

e.g. 2(Z/6Z) = {0,2,4} < (Z/6Z)
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Finally, a Theorem

Thm: [folklore]

A multilinear modular equation has a solution if and only if
the subgroup obstacle does not hold.
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Finally, a Theorem

Thm: [folklore]

A multilinear modular equation has a solution if and only if
the subgroup obstacle does not hold.

Proof: Suppose that gcd(a;, . .., ar, n)|b. Choose {x;} so
that a;xy +--- + arx, = gcd(ay, ..., ar). Let ¢ > 0 with
cgcd(ay,...,ar) =gcd(ay, ..., ar,n) (mod n).

Let d > 0 with dgcd(ay,...,ar,n) = b. Then

ai(cdxy) + az(cdxz) + - - - + as(cdx;) = b (mod n).
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Another Obstacle

We focus henceforth on finding distinct solutions.

X1 — X2 =0 (mod n) has no solutions.
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Another Obstacle

We focus henceforth on finding distinct solutions.

X1 — X2 =0 (mod n) has no solutions.

We call this the Bivariate Obstacle.

Closing Thoughts
0o
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A New Perspective

By taking some a; = 0 if needed, we henceforth assume
that r = n.
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A New Perspective

By taking some a; = 0 if needed, we henceforth assume
that r = n.

Then {x;} is a permutation of {0,1,...,n—1}.
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A New Perspective

By taking some a; = 0 if needed, we henceforth assume
that r = n.

Then {x;} is a permutation of {0,1,...,n—1}.

SetS:X1—|-X2—|-...-|-xn:0_|_1_|_...+(n_1):(n;1)n.

Note that either S= 0 (mod n) or S = 7 (mod n).
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Equivalence for Multilinear Modular Equations

Fix k. Suppose there are &, b’ with a; = & + k (mod n),
b= b+ kS (mod n).
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Equivalence for Multilinear Modular Equations

Fix k. Suppose there are &, b’ with a; = & + k (mod n),
b= b+ kS (mod n).

aixy + -+ apxp= (a8 + K)xy + -+ (a, + k)xp =
K(x1+---+xn)+ (& X1 +---+apxn) = kKS+a\ x4 +- - -+ apxn.
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Equivalence for Multilinear Modular Equations

Fix k. Suppose there are &, b’ with a; = & + k (mod n),
b= b+ kS (mod n).

aixy + -+ apxp= (a8 + K)xy + -+ (a, + k)xp =
K(x1+---+xn)+ (& X1 +---+apxn) = kKS+a\ x4 +- - -+ apxn.

Hence a;x; + --- + anxnp = b (mod n) if and only if
axy+---+axpn=b—-kS="b (mod n).
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Fix k. Suppose there are &, b’ with a; = & + k (mod n),
b= b+ kS (mod n).

aixy + -+ apxp= (a8 + K)xy + -+ (a, + k)xp =
K(x1+---+xn)+ (& X1 +---+apxn) = kKS+a\ x4 +- - -+ apxn.

Hence a;x; + --- + anxnp = b (mod n) if and only if
axy+---+axpn=b—-kS="b (mod n).

We say that {a;, b, n} and {&}, b’, n} are equivalent.
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An Example

1x1 + 1x2 + 1x3 + 3x4 + 3x5 + 5x¢ = 2 (mod 6)
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An Example

1x1 + 1x2 + 1x3 + 3x4 + 3x5 + 5x¢ = 2 (mod 6)

S =15=23 (mod 6), so this is equivalent to
0x1 4+ 0x2 + Ox3 + 2x4 + 2x5 + 4xs = 5 (mod 6), which has
no solutions at all by the subgroup obstacle.
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An Example

1x1 + 1x2 + 1x3 + 3x4 + 3x5 + 5x¢ = 2 (mod 6)

S =15=23 (mod 6), so this is equivalent to
0x1 4+ 0x2 + Ox3 + 2x4 + 2x5 + 4xs = 5 (mod 6), which has
no solutions at all by the subgroup obstacle.

Note: x1 =2, X0 = X3 = X4 = X5 = Xg = 0 solves the
non-distinct version.
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Another Example

1x1 +1x2 + 1x3 + 1x4 + 2x5 = 3 (mod 6)
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Another Example

1X1 +1x2 + 1x3 + 1x4 + 2x5 = 3 (mod 6)

S = 3, so this is equivalent to xs — X = 0 (mod 6), which
has no distinct solutions by the bivariate obstacle.
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Another Example

1X1 +1x2 + 1x3 + 1x4 + 2x5 = 3 (mod 6)

S = 3, so this is equivalent to xs — X = 0 (mod 6), which
has no distinct solutions by the bivariate obstacle.

Note: x; = 3, X0 = X3 = X4 = X5 = Xg = 0 solves the
non-distinct version.
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Today’s Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct
solution if and only if, for all equivalent equations, neither
the subgroup nor the bivariate obstacles hold.
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Today’s Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct
solution if and only if, for all equivalent equations, neither
the subgroup nor the bivariate obstacles hold.

Proof Strategy: Replace Z/nZ with a general finite abelian
group. One more obstacle arises, for Klein 4-group.
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Concrete Version

Thm: Consider a;xy + --- 4+ apxp = b (mod n). This has a
distinct solution, unless either:
1. gcd(az — a1,as — ai, ..., an — a1, n) does not divide b — a; S
(subgroup obstacle), or
2. For some ¢, d, i, ], all of the following hold:
e Forallk ¢ {i,j}, ax = c (mod n)
e g =c+d (mod n)
e gg=c—d (mod n)
e b=cS (mod n)
e gcd(d,n) =1
(bivariate obstacle)
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Open Problems

Problem: What about distinct solutions to systems of
multilinear modular equations?

eg. 1xi+2x%+2x3+1x, =2 (mod 4),
1x3+ 1x4 = 3 (mod 4).
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Open Problems

Problem: What about distinct solutions to systems of
multilinear modular equations?

e.g. 1X1 —|—2X2 —+ 2X3 —+ 1X4 =2 (mod 4),
1x3+ 1x4 = 3 (mod 4).

Easier Problem: What if the systems are decoupled?
e.g. 1x1+2x2 =2 (mod 4),1x3 + 1x4 = 3 (mod 4).
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For Further Reading

[ D.Adams, P
Distinct Solutions to a Linear Congruence.
Involve 3 (3), 2010.

@ D. Grynkiewicz, A. Philipp, P
Arithmetic-Progression-Weighted Subsequence Sums.
To appear in Israel Math Journal.

[§ Preprints available at:
http://www-rohan.sdsu.edu/~vadim/research.html
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