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Ground Rules

This talk is all natural: {0, 1, 2, . . .}.

Congruences: a ≡ b (mod n) means n > 0 and n|(a− b).
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Routing Numbers

Routing number: 129131673

x1 = 1, x2 = 2, x3 = 9, . . . , x9 = 3 satisfy:
3x1 + 7x2 + x3 + 3x4 + 7x5 + x6 + 3x7 + 7x8 + x9 ≡ 0
(mod 10)



Motivation The First Obstacle Distinct Solutions Closing Thoughts

Routing Numbers

Routing number: 129131673

x1 = 1, x2 = 2, x3 = 9, . . . , x9 = 3 satisfy:
3x1 + 7x2 + x3 + 3x4 + 7x5 + x6 + 3x7 + 7x8 + x9 ≡ 0
(mod 10)



Motivation The First Obstacle Distinct Solutions Closing Thoughts

ISBN codes

ISBN10: 3126754953
ISBN13: 9783126754958

ISBN10 satisfies
10x1 +9x2 +8x3 +7x4 +6x5 +5x6 +4x7 +3x8 +2x9 +x10 ≡ 0
(mod 11)

ISBN13 satisfies x1 + 3x2 + x3 + 3x4 + · · ·+ 3x10 + x11 ≡ 0
(mod 10)
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UPC Numbers

UPC number: 639382000393

Satisfies 3x1 + x2 + 3x3 + 1x4 + · · ·+ 3x11 + x12 ≡ 0
(mod 10)
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Postnet Barcodes

Postnet number: 123456789014

Satisfies x1 + x2 + x3 + · · ·+ x12 ≡ 0 (mod 10)



Motivation The First Obstacle Distinct Solutions Closing Thoughts

VIN codes

VIN (translated): 17189231975800001

Satisfies
8x1 + 7x2 + 6x3 + 5x4 + 4x5 + 3x6 + 2x7 + 10x8 + 10x9 +
9x10 + 8x11 + 7x12 + 6x13 + 5x14 + 4x15 + 3x16 + 2x17 ≡ 0
(mod 11)
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Okay, enough examples already!

A multilinear modular equation consists of constants
{r , ai , b, n} and variables {xi}, where

a1x1 + a2x2 + · · ·+ ar xr ≡ b (mod n)

Question 1: Does it have a solution?
Question 2: Does it have a distinct solution?
Note: A solution is distinct if xi 6≡ xj (mod n) for all i 6= j .



Motivation The First Obstacle Distinct Solutions Closing Thoughts

Okay, enough examples already!

A multilinear modular equation consists of constants
{r , ai , b, n} and variables {xi}, where

a1x1 + a2x2 + · · ·+ ar xr ≡ b (mod n)

Question 1: Does it have a solution?
Question 2: Does it have a distinct solution?
Note: A solution is distinct if xi 6≡ xj (mod n) for all i 6= j .



Motivation The First Obstacle Distinct Solutions Closing Thoughts

Two Simple Examples

4x1 + 2x2 + 2x3 ≡ 1 (mod 6)

LHS is 2(2x1 + x2 + x3), even. RHS is odd. LHS-RHS is
odd, so 6 cannot divide.

4x1 + 2x2 + 2x3 ≡ 1 (mod 5)

No problem: x1 = 0, x2 = 1, x3 = 2 works.
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What’s The Problem?

If gcd(a1, a2, . . . , ar , n) does not divide b, no solution.

We call this the Subgroup Obstacle.
If each ai lies in some subgroup of Z/nZ, then every linear
combination does too.
e.g. 2(Z/6Z) = {0, 2, 4} ≤ (Z/6Z)
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Finally, a Theorem

Thm: [folklore]
A multilinear modular equation has a solution if and only if
the subgroup obstacle does not hold.

Proof: Suppose that gcd(a1, . . . , ar , n)|b. Choose {xi} so
that a1x1 + · · ·+ ar xr = gcd(a1, . . . , ar ). Let c > 0 with
c gcd(a1, . . . , ar ) ≡ gcd(a1, . . . , ar , n) (mod n).
Let d > 0 with d gcd(a1, . . . , ar , n) = b. Then
a1(cdx1) + a2(cdx2) + · · ·+ ar (cdxr ) ≡ b (mod n).
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Another Obstacle

We focus henceforth on finding distinct solutions.

x1 − x2 ≡ 0 (mod n) has no solutions.

We call this the Bivariate Obstacle.
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A New Perspective

By taking some ai = 0 if needed, we henceforth assume
that r = n.

Then {xi} is a permutation of {0, 1, . . . , n − 1}.

Set S = x1 + x2 + · · ·+ xn = 0 + 1 + · · ·+ (n− 1) = (n−1)n
2 .

Note that either S ≡ 0 (mod n) or S ≡ n
2 (mod n).
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Equivalence for Multilinear Modular Equations

Fix k . Suppose there are a′i , b′ with ai ≡ a′i + k (mod n),
b ≡ b′ + kS (mod n).
a1x1 + · · ·+ anxn ≡ (a′1 + k)x1 + · · ·+ (a′n + k)xn =
k(x1 + · · ·+xn)+(a′1x1 + · · ·+a′nxn) = kS+a′1x1 + · · ·+a′nxn.

Hence a1x1 + · · ·+ anxn ≡ b (mod n) if and only if
a′1x1 + · · ·+ a′nxn ≡ b − kS ≡ b′ (mod n).

We say that {ai , b, n} and {a′i , b′, n} are equivalent.
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An Example

1x1 + 1x2 + 1x3 + 3x4 + 3x5 + 5x6 ≡ 2 (mod 6)

S = 15 ≡ 3 (mod 6), so this is equivalent to
0x1 + 0x2 + 0x3 + 2x4 + 2x5 + 4x6 ≡ 5 (mod 6), which has
no solutions at all by the subgroup obstacle.

Note: x1 = 2, x2 = x3 = x4 = x5 = x6 = 0 solves the
non-distinct version.
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Another Example

1x1 + 1x2 + 1x3 + 1x4 + 2x5 ≡ 3 (mod 6)

S ≡ 3, so this is equivalent to x5 − x6 ≡ 0 (mod 6), which
has no distinct solutions by the bivariate obstacle.

Note: x1 = 3, x2 = x3 = x4 = x5 = x6 = 0 solves the
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Today’s Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct
solution if and only if, for all equivalent equations, neither
the subgroup nor the bivariate obstacles hold.

Proof Strategy: Replace Z/nZ with a general finite abelian
group. One more obstacle arises, for Klein 4-group.



Motivation The First Obstacle Distinct Solutions Closing Thoughts

Today’s Other Theorem

Thm: [GPP] A multilinear modular equation has a distinct
solution if and only if, for all equivalent equations, neither
the subgroup nor the bivariate obstacles hold.

Proof Strategy: Replace Z/nZ with a general finite abelian
group. One more obstacle arises, for Klein 4-group.



Motivation The First Obstacle Distinct Solutions Closing Thoughts

Concrete Version

Thm: Consider a1x1 + · · ·+ anxn ≡ b (mod n). This has a
distinct solution, unless either:

1. gcd(a2 − a1, a3 − a1, . . . , an − a1, n) does not divide b− a1S
(subgroup obstacle), or

2. For some c, d , i , j , all of the following hold:
• For all k /∈ {i, j}, ak ≡ c (mod n)
• ai ≡ c + d (mod n)
• aj ≡ c − d (mod n)
• b ≡ cS (mod n)
• gcd(d , n) = 1

(bivariate obstacle)
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Open Problems

Problem: What about distinct solutions to systems of
multilinear modular equations?
e.g. 1x1 + 2x2 + 2x3 + 1x4 ≡ 2 (mod 4),

1x3 + 1x4 ≡ 3 (mod 4).

Easier Problem: What if the systems are decoupled?
e.g. 1x1 + 2x2 ≡ 2 (mod 4), 1x3 + 1x4 ≡ 3 (mod 4).
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For Further Reading

D. Adams, P
Distinct Solutions to a Linear Congruence.
Involve 3 (3), 2010.

D. Grynkiewicz, A. Philipp, P
Arithmetic-Progression-Weighted Subsequence Sums.
To appear in Israel Math Journal.

Preprints available at:
http://www-rohan.sdsu.edu/∼vadim/research.html
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